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Abstract 

Natural language processing (NLP) is useful for extracting information from clinical narratives, and both traditional 
machine learning methods and more-recent deep learning methods have been successful in various clinical NLP tasks. 
These methods often depend on traditional word embeddings that are outputs of language models (LMs). Recently, 
methods that are directly based on pre-trained language models themselves, followed by fine-tuning on the LMs (e.g. 
the Bidirectional Encoder Representations from Transformers (BERT)), have achieved state-of-the-art performance 
on many NLP tasks. Despite their success in the open domain and biomedical literature, these pre-trained LMs have 
not yet been applied to the clinical relation extraction (RE) task. In this study, we developed two different 
implementations of the BERT model for clinical RE tasks. Our results show that our tuned LMs outperformed previous 
state-of-the-art RE systems in two shared tasks, which demonstrates the potential of LM-based methods on the RE 
task. 

Introduction 

Electronic Health Records (EHRs) contain massive free-text data documented by healthcare professionals during the 
course of patient care, such as clinical notes, discharge summaries, lab reports, and pathology reports1. Compared to 
structured data, free-text data often records detailed information of clinical events and communications between teams 
in hospital settings. Much important patient information often exists in unstructured format only, and manual 
extraction of such information is expensive and time consuming. Therefore, applying natural language processing 
(NLP) technologies to extract related patient information from clinical notes is highly recommended to support clinical 
research and applications2.  
 
Relation extraction (RE), one of the essential tasks of information extraction, aims to identify semantic connections 
between mentions of concepts in a document3,4. For example, in the sentence “an MRI revealed a C5-6 disc herniation 
with cord compression,” we attempt to identify that the test “MRI” reveals two medical problems “a C5-6 disc 
herniation” and “cord compression”. Previous studies have investigated diverse types of relations, such as disease-
attribute pair extraction5-6, temporal relation identification7, adverse drug event detection8-9, etc. Recently, the clinical 
NLP community started a series of shared tasks on relation extraction from clinical notes, including the Informatics 
for Integrating Biology and the Bedside (i2b2) challenges7,10, the Semantic Evaluation (SemEval) challenges11-12, the 
BioCreative V task13 and the most recent 2018 National NLP Clinical Challenge (n2c2)14. These open challenges 
greatly facilitate the development resources (e.g., corpora) and methods for RE in the medical domain.  
 
Early RE systems can be classified into two major categories: (1) rule-based methods; and (2) machine learning-based 
methods. Rule-based methods such as dependency trees15 and coreference chains16 are used to extract relations. 
Machine learning-based methods such as Support Vector Machine (SVM)17 and Conditional Random Field (CRF)4 
are widely applied. However, current existing RE methods largely rely on heavy preprocessing steps that require 
extracting features from text, such as lexical, syntactic and semantics information18. Those extraction at early steps 
might introduce sources of errors that would accumulate to the following RE task19. These limitations severely restrict 
the portability and generalizability of RE to other novel resources.  
 
In the past few years, deep learning methods have demonstrated their effectiveness and often achieved the state-of-
the-art in diverse NLP tasks. Sequential-based deep learning methods including recurrent neural networks (RNN), 
convolutional neural networks (CNN) and their variants have been applied to clinical relation extraction20-22. More 
recently, Bidirectional Encoder Representations from Transformers (BERT)23 introduced masked language models 
and reported superior performance on multiple benchmark datasets of diverse NLP tasks. BERT is pre-trained on a 
large corpus in an unsupervised manner and can then be fine-tuned on a downstream task with a simple layer on top 
of its architecture. By fine-tuning as a whole, the network adjusts the entire language model and thus encodes more 
contextualized information. BERT has shown its benefits in downstream NLP tasks such as concept extraction24-25, 
text classification26, question answering27, and text generation28, especially pre-trained on a large clinical or 
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biomedical corpus. Due to their ability to capture contextualized information, deep language representation 
approaches achieve a task-specific architecture by simply appending the deep learning model for the downstream task.  
 
Despite BERT’s success in the open domain and biomedical literature, it has not yet been applied to clinical RE tasks. 
In this study, we aim to investigate how to apply BERT to clinical RE tasks by (1) comparing two different 
implementations of the BERT model for clinical RE; (2) evaluating BERT models across different clinical RE tasks; 
and (3) assessing four BERT models trained from the open domain, biomedical literature, and clinical text on the 
clinical RE task. To the best of our knowledge, this is the first study to apply pre-trained language models of BERT 
to clinical RE tasks and our evaluation results show that it outperformed the previous state-of-the-art systems in 
clinical RE.  

Material and Method 

Tasks and Datasets  

In this study, we used two datasets: the 2018 National NLP Clinical Challenges (n2c2) corpus14 and the 2010 
Informatics for Integrating Biology & the Bedside (i2b2) challenge corpus10.  All named entities (clinical concepts) 
were given, and the task here was to identify relations between entities. 

The n2c2 corpus included 505 discharge summaries, which came from the MIMIC-III (Medical Information Mart for 
Intensive Care III) clinical care database29. The corpus contained nine types of clinical concepts including drug and 
eight attributes (reason, frequency, ADE, strength, duration, route, form and dosage). The relations between drug and 
the eight attributes were also provided (statistics of relations are in table 1). The task is to recognize all relations 
between drugs and attributes. The training set included 303 discharge summaries and the test set included 202 
discharge summaries. 

The other dataset used in this study came from the 2010 i2b2 challenge relation extraction task, including 426 
discharge summaries collected from 2 hospitals. The dataset is a subset of the original dataset used in the challenge, 
since the University of Pittsburgh Medical Center’s data is not available to the public and was removed from the 
original dataset after the challenge. Only 170 of the original 394 training documents and 256 of 477 test documents 
were available for download, so we combined and re-split them in this study. The dataset includes 3 types of entities 
(medical problem, lab test and treatment) and 8 types of relations between them (Table 1). 

 

BERT-based relation extraction   

Given entities annotated in sentences, the relation extraction task can be transformed into a classification problem. A 
classifier can be built to determine categories of all possible candidate relation pairs (e1, e2), where entities e1 and  e2 

are from the same sentence. For the n2c2 dataset, we generated candidate pairs by pairing each of the drugs with each 
of the attributes in a sentence. For example, given sentence “Furosemide 10 mg IV ONCE Duration : 1 Doses”, there 
were five entities “Furosemide”, “10 mg”, “IV”, “ONCE” and “1”. All possible candidate pairs were (10 mg, 
Furosemide), (IV, Furosemide), (ONCE, Furosemide) and (1, Furosemide). For the i2b2 dataset, we generated 
candidate pairs by pairing each of the problems with the other entities: including problems, treatments and tests. Before 
we build the classifiers for relation extraction, all documents went through a pre-processing procedure that includes 
basic steps such as sentence boundary detection and tokenization, which were done using the CLAMP (Clinical 
Language Annotation, Modeling, and Processing) Toolkit30.   

In this study, we developed two BERT-based methods: Fine-Tuned BERT and Feature Combined BERT to determine 
relation categories for these candidate pairs, described below. 

 

Fine-Tuned BERT (FT-BERT) 

Input representation 

 In order to represent a candidate relation pair in an input sentence, we used the semantic type of an entity to replace 
the entity itself. For example, as described above, there were four possible candidate pairs in the sentence “Furosemide 
10 mg IV ONCE Duration: 1 Doses”, and it would be transformed into four samples (Figure 1). Each of them contained 
one candidate relation pair. In Sample 1, two entities “Furosemide” and “10 mg” were replaced by their semantic type 
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labels “@Drug$” and “@Strength$”. Note that even if an entity contains multiple words, it is still replaced by one 
label. 

 

 

Table 1. Statistics of relations in the n2c2 and the i2b2 corpora. 

Dataset Type Example Number 

n2c2 

Strength ® Drug 
Patient has been switched to lisinopril 10mg 1 tablet PO QD. 
10mg ® Lisinopril 10946 

Duration ® Drug 
Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 
hours as needed for pain. 
4-6 hours ® Norco 

1069 

Route ® Drug 
Patient has been switched to lisinopril 10mg 1 tablet PO QD. 
PO ® lisinopril 9084 

Form ® Drug 
Patient has been switched to lisinopril 10mg 1 tablet PO QD. 
tablet ® lisinopril 11028 

ADE ® Drug* 
Patient is experiencing muscle pain, secondary to statin therapy 
for coronary artery disease. 
muscle pain ® statin 

1840 

Dosage ® Drug 
Patient has been switched to lisinopril 10mg 1 tablet PO QD. 
1 ® lisinopril 6920 

Reason ® Drug 
Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 
hours as needed for pain. 
pain ® Norco 

8578 

Frequency ® Drug 
Patient has been switched to lisinopril 10mg 1 tablet PO  QD. 
QD ® lisinopril 10344 

  Description  

i2b2 

TrIP Treatment improves medical problem 203 

TrWP Treatment worsens medical problem 133 

TrCP Treatment causes medical problem 526 

TrAP Treatment is administered for medical problem 2616 

TrNAP Treatment is not administered because of medical problem 174 

TeRP Test reveals medical problem 3051 

TeCP Test conducted to investigate medical problem 504 

PIP Medical problem indicates medical problem 2203 
*ADE: adverse drug event. 

 

 
Figure 1. An example of transformed samples from an original sentence used in FT-BERT. 
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FT-BERT model 

Devlin et al.’s BERT model23 was used, and a linear classification layer was added on top to predict the label of a 
candidate pair in sentential context (Figure 2). In detail, a classification token [CLS] was added at the beginning of a 
sentence, whose output vector was used for classification. As typical with BERT, we used a [CLS] vector as input to 
a classification layer. Then a softmax layer was added to output labels for the sentence.  

 
Figure 2. The architecture of FT-BERT. CLS represents the [CLS] token; Wi represents words in sentence; E1 and E2 
represent replaced semantic type labels of entities. 

 

Feature Combined BERT (FC-BERT) 

Input representation  

Instead of replacing entities with semantic type labels, we used additional BIO tags to represent entities in sentence, 
where “B” represents the beginning of an entity, “I” represents other words inside an entity, and “O” represents all 
other non-entity words. Compared with the input representation in FT-BERT, the BIO representation keeps entity 
word information so that the model has more information to classify. Figure 3 shows how to use BIO tags to represent 
sample (1) from Figure 1. Both sentence words and their tags are used together as input for FC-BERT. 

 
Figure 3. An example of the input representation in FC-BERT. The traditional BIO (Beginning, Inside, Outside) tags 
are augmented with the semantic types of the respective tokens. 

FC-BERT Model  

We utilized the BERT model to generate vectors for all words in sequence; in parallel to the BERT model, the BIO 
tag sequence of the sentence was represented in an embedding layer. The vectors for words and the vectors for tags 
were concatenated (according to the original index position) and then sent to a classification layer, which was a BI-
LSTM neural network with attention31. Output labels per sentence were obtained via softmax.  
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Figure 4. The architecture of FC-BERT. “Wi” represents word, and “Ti”  represents corresponding BIO tag. “Wk Wk+1” 
and “Wm Wm+1 Wm+2” represents two entities of the sentence. 

 

Baseline methods 

We also included a few baseline methods for comparison with the BERT models. For the n2c2 dataset, two strong 
baseline methods, the CNN-RNN method and the JOINT method were used, which were developed by our group and 
achieved the best performance on relation classification task in the n2c2 challenge32. For the i2b2 dataset, the baseline 
methods used were the Seg-CNN method from Luo et al.,33 and the SDP method from Li et al,34 which both 
outperformed the best systems that participated in the i2b2 challenge.  We also compare with Li et al.’s recent Seg-
GCRN method35, which improves upon the Seg-CNN results incrementally.  The Seg-CNN and Seg-GCRN 
evaluations used the original 2010 i2b2 dataset (including data from the University of Pittsburgh Medical Center) to 
develop and evaluate their methods, while the SDP method (and our experiments) excluded the Pittsburgh data. All 
results of baseline methods came from their original paper without re-running. 

Experiments  

For each BERT-based method, we evaluated four pre-trained language models, namely, (1) uncased BERT-large23, 
(2) cased BERT-large23, (3) the BioBERT model that was pre-trained using PubMed Central full text articles and 
PubMed abstracts24 and (4) the cased MIMIC BERT model that was pre-trained using the MIMIC III dataset25. The 
difference between uncased BERT-large model and cased BERT-large model was that the former converted all words 
into lower case and the latter did not. For the n2c2 dataset, the original training set was randomly split into a new 
training set and a development set of 242 and 61 documents respectively (about 4:1), and the original test set (202 
documents) was still used as test set for evaluation. For the i2b2 dataset, we mixed the original training set and test 
set together, then randomly split it into new training, development and test sets (with a ratio about 3:1:1). The 
development set was used for optimizing parameters, and the test set was used for evaluation. Note that this split of 
data implies that our i2b2 results are not directly comparable with the published literature using the original corpus. 
The evaluation metrics used in this study were as follows.  

precision = *+,-	/012*23-
*+,-	/012*23-	+	4561-	/012*23-	

	        (1) 

       recall = *+,-	/012*23-
*+,-	/012*23-	+	4561-	9-:5*23-

        (2) 

            F1 = =	´	/+->21209	´	+->566
/+->21209	+	+->566

                   (3) 

Model parameters. The parameters of BERT were not frozen during training. The parameter maximum sequence 
length for both of methods were 128. The hidden layer size for Bi-LSTM in FC-BERT was 100 and embedding size 
of tag in FC-BERT was 100. For other parameters, we used the default parameters in the BERT. 
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Results 

Table 2 shows results of the FT-BERT/FC-BERT models and baseline methods using four different pre-trained models 
on the n2c2 dataset. On the n2c2 data all four FT-BERT models that used different pre-trained BERT models 
outperformed the baseline method CNN-RNN. Three of them (except the FT-BERT that used cased BERT) 
outperformed the JOINT method on F1 score (up to 0.0023). All FC-BERT models performed worse than baseline 
method JOINT, but the uncased BERT model was better than the CNN-RNN method. Among FT-BERTs that used 
different pre-trained models, the FT-BERT that used the MIMIC BERT model was better than the one that used other 
pre-trained BERT models on F1 score and precision. The pre-trained BERT model using biomedical literature 
(BioBERT) showed no improvement on the clinical datasets compared with the models trained on data from the open 
domain. This may be because the BioBERT model trained based on the original BERT-base model includes fewer 
parameters than the original BERT-large models used in the study.  

Table 2. The overall performances of the FT-BERT and the FC-BERT methods on the n2c2 dataset. The Cased and 
Uncased models are original Google models; BioBERT corresponds to a model trained from PMC and PubMed data; 
and MIMIC BERT is trained on MIMIC III. P, R, and F represent precision, recall and F1 score, respectively. The 
boldface represents the best performance for each metric.  

Dataset 
 Baseline FT-BERT FC-BERT 

 CNN-RNN JOINT Cased Uncased Bio MIMIC Cased Uncased MIMIC 

n2c2 

P 0.9673 0.9715 0.9811 0.9803 0.9798 0.9838 0.9632 0.9653 0.9662 

R 0.8878 0.9079 0.899 0.9021 0.9018 0.9015 0.8524 0.8952 0.8769 

F 0.9258 0.9386 0.9383 0.9396 0.9392 0.9409 0.9044 0.9289 0.9194 

 

All FT-BERT models outperformed the baseline method SDP on the i2b2 dataset under all three metrics of precision, 
recall and F1 score (Table 3). Only the FT-BERT models that used uncased BERT and MIMIC BERT outperformed 
the other two baseline methods Seq-CNN and Seq-GCRN. All FC-BERT models were worse than baseline methods. 
Among the FT-BERT models, the one that used MIMIC BERT was still the best on the i2b2 dataset. 

Table 3. The overall performances of the FT-BERT and the FC-BERT methods on the i2b2 dataset. The Cased and 
Uncased models are original Google models; BioBERT corresponds to a model trained from PMC and PubMed data; 
and MIMIC BERT is trained on MIMIC III. P, R, and F represent precision, recall and F1 score, respectively. The 
boldface represents the best performance for each metric. 

Dataset 
 Baseline FT-BERT FC-BERT 

 SDP Seq-CNN* Seq-GCRN* Cased Uncased Bio MIMIC Cased Uncased MIMIC 

i2b2 

P 0.7569 0.748 0.772 0.7489 0.7673 0.7346 0.7624 0.6885 0.6843 0.6850 

R 0.7303 0.736 0.743 0.7606 0.7681 0.7681 0.7734 0.6991 0.7056 0.7521 

F 0.7434 0.742 0.758 0.7547 0.7677 0.751 0.7679 0.6938 0.6948 0.7170 

*These two methods were developed and evaluated on the original dataset of the 2010 i2b2 challenge.  

 

Table 4 shows the F1scores of our methods on each category of the n2c2 dataset. All four FT-BERT models performed 
better on all categories than CNN-RNN. The JOINT was slightly better than FT-BERT on four categories 
(Strength®Drug, Frequency®Drug, Form®Drug and Route®Drug). Compared with JOINT, three of four FT-BERT 
models improved the performance on the most difficult categories, reason and ADE; the FT-BERT models that used 
MIMIC BERT performed best (0.7674 vs. 0.7552, JOINT; 0.8124 vs. 0.7871, JOINT). The FC-BERT models 
performed better than the CNN-RNN but worse than the JOINT on these two categories. 
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Table 4. F1 score of the FT-BERT and the FC-BERT methods on each category of the n2c2 dataset. The Cased and 
Uncased models are original Google models; BioBERT corresponds to a model trained from PMC and PubMed data; 
and MIMIC BERT is trained on MIMIC III. The boldface represents the best performance for each category. 

Relation type 
Baseline FT-BERT FC-BERT 

CNN-RNN JOINT Cased Uncased Bio MIMIC Cased Uncased MIMIC 

Strength -> Drug 0.9743 0.9875 0.9832 0.9850 0.9842 0.9850 0.9348 0.9760 0.9598 

Dosage -> Drug 0.9572 0.9709 0.9685 0.9717 0.9693 0.9708 0.9320 0.9542 0.9402 

Duration -> Drug 0.8436 0.8798 0.8815 0.8939 0.8833 0.8920 0.8279 0.8674 0.8655 

Frequency -> Drug 0.9568 0.9674 0.9624 0.9631 0.9632 0.9637 0.9364 0.9611 0.9511 

Form -> Drug 0.9707 0.9761 0.9748 0.9754 0.975 0.9750 0.9656 0.9728 0.9702 

Route -> Drug 0.9653 0.9732 0.9706 0.9717 0.9704 0.9724 0.9324 0.9560 0.9468 

Reason -> Drug 0.7271 0.7552 0.7598 0.7603 0.7642 0.7674 0.7106 0.7409 0.7338 

ADE -> Drug 0.7329 0.7871 0.8027 0.8000 0.8084 0.8124 0.7483 0.7744 0.7644 
 

Table 5 shows the F1scores of our methods on each category of the i2b2 dataset. The FT-BERT method performed 
better on 6 of all categories than SDP. On the one hand, PIP was a larger category (of 2203 relations), so there were 
enough positive examples for the model to learn. But, on the other hand, there were too many possible candidate 
relation pairs that made it difficult for the model to classify. FT-BERT improved the PIP performance from 0.6333 to 
0.7260 (BioBERT). For the categories with less relations (TrWP, TrNAP and TrIP), FT-BERT improved the 
performance on TrNAP, but failed to improve the other two. FC-BERT showed an improvement on TrWP (0.5217 
vs. 0.4457). 

Table 5. F1 score of the FT-BERT and the FC-BERT methods on each category of the i2b2 dataset. The Cased BERT, 
Uncased BERT, BioBERT, and MIMIC BERT represent the methods that uses pre-trained models of cased BERT-
large, uncased BERT-large, BERT model trained from the PMC and PubMed and BERT model trained from the 
MIMIC III respectively. The boldface represents the best performance. 

Relation  
type 

Baseline FT-BERT FC-BERT 

SDP Cased Uncased Bio MIMIC Cased Uncased MIMIC 

TeCP 0.6117 0.5833 0.6537 0.6146 0.6462 0.5486 0.6238 0.6114 

TeRP 0.8444 0.8547 0.8681 0.8535 0.8763 0.8122 0.8577 0.8303 

PIP 0.6333 0.7204 0.7188 0.7260 0.721 0.6277 0.5963 0.6591 

TrCP 0.6213 0.6369 0.6087 0.5650 0.6162 0.5904 0.6145 0.5146 

TrAP 0.7974 0.7918 0.7989 0.7762 0.7965 0.7121 0.7222 0.7437 

TrWP 0.4457 0.3051 0.3729 0.4231 0.3673 0.4138 0.5217 0.4687 

TrNAP 0.4227 0.4333 0.6286 0.3662 0.5079 0.3175 0.3235 0.4416 

TrIP 0.6159 0.4167 0.5152 0.5128 0.5275 0.5250 0.4865 0.5783 
 

In order to compare our methods with previous studies, we also merged all eight types of relations into three. Relations 
between tests and problems (TeCP and TeRP) were merged as Test-Problem, relations between treatments and 
problems (TrCP, TrAP, TrWP, TrNAP and TrIP) were merged as Treatment-Problem, and relations between problems 
and problems were kept unchanged. The performances of our methods were calculated on the merged categories. 
Table 6 shows the results. On overall performance, FT-BERT was 0.01 higher than the best baseline method Seg-
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GCRN. FT-BERT was better than baseline methods on two of three merged categories (Test-Problem and Treatment-
Problem).  

Table 6. F1 score of the FT-BERT on merged categories of the i2b2 dataset. The Uncased BERT and MIMIC BERT 
represent the methods that uses uncased BERT-large and BERT model trained from the MIMIC III respectively. The 
boldface represents the best performance.  

 
Baseline FT-BERT 

Seg-CNN Seg-GCRN Uncased MIMIC 

Test-Problem 0.820 0.827 0.836 0.843 

Problem-Problem 0.702 0.741 0.719 0.721 

Treatment-Problem 0.686 0.692 0.736 0.728 

Overall 0.742 0.758 0.768 0.768 
 

Discussion 

In this study, we investigated deep learning methods that made use of pre-trained language models on relation 
extraction from clinical narratives. It fills the gap of applying novel deep learning methods with pre-trained language 
models to the clinical RE task. Our results showed that the FT-BERT pre-trained language model achieved an F1 
score of 0.9409 and 0.7679 on the n2c2 and the i2b2 datasets respectively, which outperformed previous state-of-the-
art systems in the both challenges, demonstrating the advantage of using BERT models. A pre-trained BERT model 
that used MIMIC III corpus improved the overall performance, including performance in some difficult categories 
(e.g. Reason®Drug, ADE®Drug, etc.).   

Research about deep language representations for clinical RE is still in its early stages, and pre-trained models like 
BERT show promise as a successful paradigm for future work. Previous deep learning approaches require further 
work on issues like parameter optimization during deployment. BERT, on the other hand, is a pre-trained language 
model on a large corpus, which can be used for multiple downstream tasks. Each task simply adds a layer on top of 
the basic BERT model, and then fine-tunes the parameters for that task-specific layer. It is thus easier to deploy than 
feature-based methods that build complex models on top of features (e.g. word vectors from word2vec). In this study, 
we also show that the fine-tune method (FT-BERT) performed better than the feature-based method (FC-BERT), 
indicating the simple architecture built on BERT is promising.  

Although some improvements were observed, the FC-BERT method performed worse than the FT-BERT method. 
There could be several reasons. First, the FC-BERT method used all entity words as inputs; but low frequency entity 
words may not be easily learned by the model. In contrast, FT-BERT made the patterns clear by replacing all entities 
with their semantic types. For example, in sentence “… given nebs , IV solumedrol and dose of levoquin IV and 
admitted for copd exacerbation .”, FT-BERT recognizes all relations correctly and FC-BERT fails to recognize all of 
them. The fact that FC-BERT uses all information including words may also cause the failure of recognizing some 
parallel structure. For example, in sentence  “… Vancomycin / Cefepime for Staph …”, FC-BERT can only recognize 
relation between Cefepime and Steph, but fails to recognize relation between Vancomycin and Staph.”. Second, in the 
FC-BERT method, a random initialized embedding layer was used to represent BIO tags, which may be too simple to 
capture the difference and connections between BIO tags. A pre-trained vector may improve the performance of FC-
BERT.  

The MIMIC FT-BERT model performed the best on both of these two datasets, but on the i2b2 dataset it was only 
slightly better than the uncased BERT model. It may be because the n2c2 dataset was a subset of the MIMIC III 
corpus, so that MIMIC BERT was trained on in-domain data. Both cased BERT and uncased BERT were pre-trained 
on corpora from the open domain, but the performance of the latter was better. It may be because the word shape 
feature doesn’t help for RE. The BERT model that pre-trained on biomedical literature only slightly improved the 
overall performance on two datasets. One possible reason for this was that it is pre-trained on BERT-base instead of 
BERT-large, and the language used in biomedical literature is different from the language used in clinical narratives. 

This is just the first attempt to apply BERT to clinical RE and there are different aspects that can be further improved. 
Our study followed the traditional framework of classifying candidate relation pairs, using the FT-BERT and FC-
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BERT models. Because the architecture of the JOINT method showed good performance on the n2c2 challenge, in 
the future, it’s possible to improve performance by combining BERT with JOINT. Moreover, we plan to further 
evaluate pre-trained language models from clinical corpora, e.g., supplement additional medical vocabulary and train 
uncased MIMIC III models.  

Conclusion 

In this study, we developed and evaluated BERT-based methods for clinical relation extraction. Our results show our 
RE methods based on pre-trained language models outperformed previous state-of-the-art RE systems in two shared 
tasks. In addition, our evaluation shows using clinical data to pre-train BERT models can benefit clinical RE.  
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