Table 3:
Machine learning models’ performances (average scores) on the test sets without balancing
Models | Feature sets* | Sensitivity (p-value)# | Specificity (p-value)# | PPV | NPV | F0.5 (p-value)# |
Random | NO NLP | 0.70 | 0.95 | 0.46 | 0.98 | 0.47 |
Forest | ND BIN | 0.58 (<0.001) | 0.97 (<0.001) | 0.54 | 0.98 | 0.54 (<0.001) |
ND FRE | 0.59 (<0.001) | 0.97 (<0.001) | 0.53 | 0.98 | 0.53 (<0.001) | |
ND NOR | 0.59 (<0.001) | 0.97 (<0.001) | 0.53 | 0.98 | 0.52 (<0.001) | |
ND ALL | 0.57 (<0.001) | 0.97 (<0.001) | 0.53 | 0.98 | 0.52 (<0.001) | |
NM BIN | 0.59 (<0.001) | 0.96 (<0.001) | 0.51 | 0.98 | 0.50 (0.99) | |
NM FRE | 0.70 (0.56) | 0.94 (0.02) | 0.45 | 0.98 | 0.46 (0.08) | |
NM NOR | 0.69 (0.65) | 0.95 (0.81) | 0.46 | 0.98 | 0.47 (0.93) | |
NM ALL | 0.58 (<0.001) | 0.96 (<0.001) | 0.51 | 0.98 | 0.50 (0.73) | |
ND NM | 0.59 (<0.001) | 0.96 (<0.001) | 0.52 | 0.98 | 0.51 (0.14) | |
KW BIN | 0.58 (<0.001) | 0.96 (<0.001) | 0.51 | 0.98 | 0.50 (0.63) | |
KW FRE | 0.70 (0.32) | 0.95 (0.29) | 0.45 | 0.98 | 0.47 (0.57) | |
KW NOR | 0.60 (<0.001) | 0.96 (<0.001) | 0.52 | 0.98 | 0.51 (0.06) | |
KW ALL | 0.59 (<0.001) | 0.96 (<0.001) | 0.51 | 0.98 | 0.50 (0.84) | |
SVM | NO NLP | 0.80 | 0.91 | 0.32 | 0.99 | 0.37 |
ND BIN | 0.80 (0.48) | 0.91 (0.61) | 0.33 | 0.99 | 0.37 (0.63) | |
ND FRE | 0.79 (0.65) | 0.91 (0.04) | 0.33 | 0.99 | 0.38 (0.11) | |
ND NOR | 0.80 (1.00) | 0.91 (0.09) | 0.32 | 0.99 | 0.36 (1.00) | |
ND ALL | 0.80 (1.00) | 0.91 (0.68) | 0.32 | 0.99 | 0.37 (0.01) | |
NM BIN | 0.81 (0.53) | 0.91 (0.60) | 0.33 | 0.99 | 0.37 (0.01) | |
NM FRE | 0.78 (0.06) | 0.91 (0.10) | 0.33 | 0.99 | 0.37 (0.15) | |
NM NOR | 0.80 (1.00) | 0.92 (<0.001) | 0.34 | 0.99 | 0.38 (1.00) | |
NM ALL | 0.81 (0.39) | 0.92 (0.16) | 0.34 | 0.99 | 0.38 (0.01) | |
ND NM | 0.81 (0.49) | 0.91 (0.21) | 0.34 | 0.99 | 0.38 (0.01) | |
KW BIN | 0.80 (0.81) | 0.91 (0.48) | 0.32 | 0.99 | 0.36 (0.62) | |
KW FRE | 0.79 (0.26) | 0.92 (<0.001) | 0.35 | 0.99 | 0.39 (0.01) | |
KW NOR | 0.79 (0.26) | 0.91 (0.05) | 0.33 | 0.99 | 0.38 (0.34) | |
KW ALL | 0.80 (1.00) | 0.91 (0.86) | 0.32 | 0.99 | 0.36 (0.86) | |
Logistic | NO NLP | 0.77 | 0.95 | 0.43 | 0.99 | 0.48 |
Regression | ND BIN | 0.78 (0.18) | 0.95 (1.00) | 0.44 | 0.99 | 0.48 (0.92) |
ND FRE | 0.77 (0.32) | 0.95 (0.04) | 0.45 | 0.99 | 0.49 (0.15) | |
ND NOR | 0.77 (1.00) | 0.95 (1.00) | 0.43 | 0.99 | 0.48 (0.15) | |
ND ALL | 0.79 (0.10) | 0.94 (<0.001) | 0.40 | 0.99 | 0.45 (0.70) | |
NM BIN | 0.79 (0.18) | 0.94 (<0.001) | 0.40 | 0.99 | 0.44 (0.47) | |
NM FRE | 0.78 (0.65) | 0.95 (<0.001) | 0.45 | 0.99 | 0.49 (0.60) | |
NM NOR | 0.77 (1.00) | 0.95 (1.00) | 0.43 | 0.99 | 0.48 (0.01) | |
NM ALL | 0.79 (0.18) | 0.94 (<0.001) | 0.40 | 0.99 | 0.44 (0.11) | |
ND NM | 0.79 (0.11) | 0.94 (<0.001) | 0.40 | 0.99 | 0.44 (0.17) | |
KW BIN | 0.79 (0.17) | 0.93 (<0.001) | 0.39 | 0.99 | 0.43 (<0.001) | |
KW FRE | 0.77 (1.00) | 0.95 (1.00) | 0.43 | 0.99 | 0.48 (1.00) | |
KW NOR | 0.77 (1.00) | 0.95 (1.00) | 0.43 | 0.99 | 0.48 (1.00) | |
KW ALL | 0.79 (0.17) | 0.93 (<0.001) | 0.39 | 0.99 | 0.43 (<0.001) |
* The abbreviations of feature sets are explained in Table 2. NO NLP, structured data features alone.
ND, NLP document-level features; NM, NLP mention-level features; BIN, binary features;
FRE, frequency features; NOR, normalized frequency features; ALL, use all document or mention features.
# Computed against the models using structured data alone.