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Abstract 

Liquid-based cytology (LBC) is a reliable automated technique for the screening of Papanicolaou (Pap) smear data. 

It is an effective technique for collecting a majority of the cervical cells and aiding cytopathologists in locating 

abnormal cells. Most methods published in the research literature rely on accurate cell segmentation as a prior, which 

remains challenging due to a variety of factors, e.g., stain consistency, presence of clustered cells, etc. We propose a 
method for automatic classification of cervical slide images through generation of labeled cervical patch data and 

extracting deep hierarchical features by fine-tuning convolution neural networks, as well as a novel graph-based cell 

detection approach for cellular level evaluation. The results show that the proposed pipeline can classify images of 

both single cell and overlapping cells. The VGG-19 model is found to be the best at classifying the cervical cytology 

patch data with 95 % accuracy under precision-recall curve.  

Introduction 

Cervical cancer is the second most common cancer in women living in under-developed regions. Nearly 570,000 new 

cases were recorded in 2018 and about 311,000 women died from cervical cancer worldwide1. In the United States 

(2019) it is estimated that about 13,170 cases will be diagnosed for invasive cervical cancer and about 4,250 women 

will die from cervical cancer2. Fortunately, cervical cancer can be treated successfully if detected at early stage. LBC3 

for Pap (Papanicolaou) test is the gold standard for cervical cancer screening and has significantly contributed to 
reducing mortality. However, manual examination for detecting abnormal cells in a cervical cytology slide is a tedious 

process even for an expert cytologist. Expedient secondary reviews are conducted in areas marked by the pathologist 

or cytotechnologist with an ink marker by hand. There is a need for automated and computer-assisted technique for 

fast and efficient screening. 

Though, generally abnormal cells have a relatively higher nuclei to cytoplasm ratio within a cell body4, it is very time 

consuming and requires significant training and expertise to manually locate these abnormal cells under a microscope. 

While there are some automated approaches such as Becton-Dickinson’s FocalPointa and Hologic’s ThinPrepb, both 

manual and automated cytology are challenged by the high variability in cell size, shape and color, and complex 

morphology due to overlapped or folded cells. In recent years, computer-assisted automatic approaches have shown 

promising results in cell classification5,6. The current deep learning era has vastly improved the performance and the 

classification accuracy in various biomedical applications. While some methods avoid pre-segmentation step, much 

work in the literature shows considerable research in the direction of cell segmentation of cervical cytology images 
and single cell classification. Segmentation using superpixel-wise convolutional neutral network with dynamic shape 

modelling was employed by Tareef et al.7 Watershed8 and contour-seed pairs learning-based framework9 were some 

of the successful approaches in segmenting overlapping cells. However, accurate segmentation of cervical cells is 

impeded by overlapped and clustered cells. Cell classification is the next step after segmentation. Pixel-level 

classification was employed by extracting traditional features and training an SVM classifier10. Similarly, block-level 

classification with SVM classifier was studied11. DeepPap6 proposes CNN based cell classification on cell image 

patches, which are handpicked, cropped and centered at nuclei. All these approaches consider images containing only 

single cell or slightly overlapped cells, which are far from the real-world conditions. Traditional and machine learning 

                                                        
a BD FocalPoint: https://www.bd.com/en-us/offerings/capabilities/cervical-cancer-screening/cytology-instruments---

page-name-field/focalpoint-gs-imaging-system---page-name 
b Hologic ThinPrep: https://www.hologic.com/hologic-products/diagnostic-solutions/aptimathinprep-cervical-health 
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methods were reviewed and discussed12 for automated cervical screening from the pap-smear images. Our work lays 

foundation based on the stages involved in automated pap-smear analysis as mentioned in the literature review12. The 

stages for analysis typically comprise of image acquisition, preprocessing, identifying abnormal regions, feature 

extraction and finally classification.  

   

Figure 1. Framework of the proposed approach 

The main objective of our study is to classify and locate the abnormal cervical cells. Understanding the challenges 

and limitations of the previous approaches, we aim to extract cell image patches from microscopic images under 

realistic conditions where cells may overlap; we evaluate different CNN models toward classifying the image patches.  

Materials and Methods 

The objective of the study is to generate clean labeled image data from the multi-level microscopic whole slide images 

to classify the cell image patches into normal and abnormal. First, raw cytology slide data (both clean and inked data) 

is preprocessed to obtain regions containing abnormal cells. The preprocessing comprises alignment of inked image 

data with respect to the clean image data through feature-based image registration. Lower resolution image levels 

(level 7) were used to speed up the process. Next, these lower resolution image levels were analyzed to obtain the ROI 

bounding box coordinates. This is accomplished by simple image processing techniques like image subtraction, 

thresholding, applying morphological operations and skeletonizing ink identified masks to detect and refine bounding 

boxes. Then, annotated image data is generated from the high resolution (level 1) images through accurately drawn 

abnormal cell boundaries on the ROIs. Finally, the labeled data was combined with Herlev Pap smear dataset13 to train 

and test various CNN architectures and later evaluate the results to choose the best CNN model that classifies cytology 
data. A novel graph-based cell detection model was also proposed to identify the cell boundaries even under 

overlapping cases in the high-resolution image regions. The approach includes over segmenting the image with 

superpixels and connecting the centroids to create a graph and then identifying sub-graphs (cell regions) with respect 

to nuclei nodes obtained by applying appropriate graph cuts in the graph. The flow of this proposed approach is 

illustrated in Figure 1. 

Datasets 

The study uses two datasets. The first set comprises 25 cervical liquid-based cytology slides provided by Becton-

Dickinson (BD) Corporation using their Sure Path technique14. In the case of abnormal slide data, there are a pair of 

slide images from each patient. One image contains only clean slide and the other image contains blue ink marks 

annotated by an expert cytotechnologist to indicate the regions containing abnormal cells (later, abnormal cells from 
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these regions are identified by an expert pathologist). The ink marks can be easily cleaned with an alcohol swab. The 

glass slides were scanned both with the marks, and after their removal, using a Hammamatsu NanoZoomer 2.0-HT 

whole-slide scanner, producing digitized slides in a pyramidal tiled format with the file extension ndpi. The NDPI 

files resulting from the scanning are large in size (100’s of megabytes of size data). The second dataset is the publicly 

available Herlev Pap Smear dataset (http://mde-lab.aegean.gr/downloads) where specimens are prepared via 
conventional Pap smear. The dataset contains 917 single cervical cell images. Table 1 shows the characteristics of the 

data used for the study. 

Table 1. Characteristics of the datasets used for the study 

 

 

 

 

 

 

ROI Detection 

While the entire cytology slide sample contains thousands of cells, just a few abnormal cells are sufficient indicators 

of abnormal screening. These abnormal cells may be surrounded by a large number of normal cells. Relative 

morphological, nucleic, or cytoplasmic appearance differences between cells helps pathologists to identify them. 
These regions are marked in ink on the glass slide. We use these markings on scanned slide image as region of interest 

(ROI) indicators. It is important to note that not all regions containing such abnormal cells were marked nor were 

individual abnormal cells identified within inked regions. 

The NDPI format is organized as a pyramid structure with multiple levels of down-sampled subimages. A low-

resolution image of level 7 is found suitable for easy preprocessing for detecting ROI bounding box coordinates. We 

correct any uniplanar misalignment problems between the blue ink-marked and ink-removed slides using image 

registration through feature based image alignment. The clean slide image is considered as a reference image, and 

stable ORB (Oriented FAST and Rotated BRIEF) feature points16 along with descriptors are obtained. These key point 

features are mapped with the features in the inked slide image (target) as shown in Figure 2. Homography is calculated 

based on the mapping information using Random Sample Consensus (RANSAC) estimation technique16. The 

transformation is finally applied on the target inked slide image to map it to the reference clean image.  

The preprocessing step also includes subtraction of blue (ROI ink) color space from red color space, which makes it 

easy to create a threshold ROI binary mask in lower resolution image. Skeletonizing and refining boundaries generated 

accurate ROIs. The coordinates of these ROIs were normalized and recorded. These ROIs are then cropped out from 

the high-resolution clean slide image (level 1) using the normalized bounding box coordinates data. Figure 3 shows 

the resultant intermediate output images.  

 

Figure 2. Matching keypoints in a low resolution image to align annotated slide image to the reference clean slide 

image 

Dataset Image type Pixel Size 
(in μm) 

#Normal #Abnormal File type Total Images 

BD Corp. 
Data 

Whole slide 
image 

0.228x0.228 6 19 NDPI 25 

Herlev 
Data 

Single 
cervical cell 

0.201x0.201 242 675 BMP 917 
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Figure 3. ROI detection from low resolution image 

Data Generation 

We propose two methods for cell data generation from the extracted ROIs: Graph-based cell detection and patch based 

data generation. 

Graph-Based Cell Detection:  

We chose this method to generate one cervical cell image (Herlev-like dataset). Initially the ROI image is over-

segmented by generating superpixels through QuickShift approach17. The pixel intensities are averaged over each 

superpixel region. The resultant image is converted into a graph with centroid of superpixels as nodes, line connecting 

the adjacent nodes as edges and absolute difference of L2 normalized color intensities at the respective adjacent nodes 

as edge weight. Graph cut is used at an empirically determined threshold of 59. The resultant image is a binary mask 

for the nuclei present in the ROI image which form the graph nodes. The novelty of the proposed approach lies in 

generation of subgraphs out of this graph structure to detect cell body boundary. Figure 4 shows the intermediate 

image outputs. This approach could, in the future, automate segmentation of single cell images even where cells 

overlap. 

 

Figure 4. (from left to right) Original image; Averaging pixel intensities over superpixel regions; Nuclei mask; Graph 

structure connecting cellular regions 

Patch Based Data Generation: 

This approach is used to create images with real-world conditions from the high-resolution ROI regions where each 

image may contain multiple cervical cells along with overlaps. We use sliding window technique with stride 64 to 

create 128x128 patch images. The cells in the slide data are widely dispersed and contain more background. The 
patches containing more than 75% of background are discarded so that we get images with more cell information. The 

ground truth labels for the patch data are generated using the abnormal cell mask that is accurately and manually 

created with the help of an expert pathologist. Figure 5 shows how the abnormal cells were manually located. A patch 

image is labeled as abnormal if the object area in the abnormal cell mask is greater than 20% of the patch area 

(128x128). All the remaining patches are labeled as normal. Figure 6 shows examples of the final 128x128 labeled 

patch data used for the classification task. 
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Figure 5. Manually locating abnormal cells in high resolution ROI regions. 

 

 

 

 

 

 

 

 

Figure 6. 128x128 patch image data from high resolution ROIs; Class labels:Abnormal (top-row) and Normal 

(bottom-row). 

Classification 

We consider images generated from patch based approach for the binary classification task. The patch data is 

completely randomized and split into train, validation and test data for training different CNN models. The abnormal 

patches are few in number compared to the normal patches. There were 2,060 abnormal cell patches generated, which 

are taken into the dataset and 2,060 normal cell patches were randomly selected to be a part of the dataset. The training 

and validation data sets consist of the entire Herlev Pap data and a part (75%) of the patches. The training and 
validation data split (65-10) with remainder of the patches forming the test data. This facilitates a balanced data 

distribution for image classification without any bias. Table 2 shows the data distribution among training, validation 

and testing datasets. 

Table 2. Data split for training, validating and testing CNN classifier. 

Input for CNN Classifier Total Patch data Herlev data 

Training Normal 1396 1200 196 

Abnormal 1760 1200 560 

Validation Normal 246 200 46 

Abnormal 315 200 115 

Testing Normal 660 660 - 

Abnormal 660 660 - 

Total 5037 4120 917 
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We used various well-established CNN classifiers in order to determine the best performing CNN model for the 

classification of cervical cytology patch data. Models VGG-1918, ResNet-5019, DenseNet-12120, and Inception_v321 

were fine-tuned whose weights are initialized with pre-trained ImageNet weights. In the training phase, all the layers 

are trained, and layer weights are updated for each epoch, and the model is trained with batch size of 32, learning rate 

0.005 and momentum 0.9 (chosen empirically). This is a bi-classification task, so we employ cross entropy loss along 
with stochastic gradient descent optimizer. Each model is targeted to train for 500 epochs and ultimately the best 

weights are saved. 

Results and Discussion 

A total of 5,037 images (4,120 patch data + 917 Herlev data) were considered for the study. 1,200 patch data (660 

normal, 660 abnormal) are utilized for testing and the CNN models are trained with remaining data. Pytorch deep 

learning platform is used to run the models on Nvidia DGX-1. The results tabulated are as shown in Table 3. 

Table 3. Performance of various CNN models. 

 
 
 
 
 
 
 
 
 

 

 

 

 

The results indicate that ResNet-50 and VGG-19 models performed better when compared to DenseNet-121 and 

Inception v3. DenseNet-121 has 0.9152 precision (PREC) value but has poor recall (REC) of 0.8015 with 131 false 

negatives. On the other hand, Inception_v3 has best recall (0.9136) compared to others, but poor at precision with 231 

false positives. F1-score which presents balance between precision and recall is the best measure to evaluate the model 

performance. The F1-score of VGG-19 being 0.8896 votes VGG-19 as better model compared to ResNet-50 (0.8865). 

ResNet-50 is better at precision and VGG-19 is better at recall. In the field of biomedical image analysis higher recall 

value is always preferable, that is, lower false negatives are always recommended. Matthews correlation coefficient 

(MCC) provides much balanced measure by considering true and false positives and negatives. MCC for VGG-19 at 
0.7773 makes it the best model compared to ResNet-50 (0.7742). Also, accuracy (ACC) wise VGG-19 is better than 

ResNet-50. The relatively small differences make both the models good competitors. To better understand the 

performance of the models at various classification thresholds, we plot the receiver operating characteristic (ROC) 

curve. Figure 7 shows the ROC plots for all the four models. 

The best operating Q-point for the models in the cervical cytology image classification is the point where the curve 

has high sensitivity (true positive rate) and high specificity (1 – false positive rate). VGG-19 and ResNet-50 performed 

similarly with their best Q-points compared to other models. The accuracy under the ROC curve (AUC) was found to 

be 0.95 for both the models. 

ResNet-50 and VGG-19 are good at generalizing the cervical cytology data with the pre-initialized ImageNet weights. 

VGG-19 is a shallow network compared to models under study and uses 3x3 convolutional layers stacked up along 

the depth of the network has proven to be a better model for the cervical cytology classification task in our study. 

ResNet-50 being a 50-layer deeper network, addresses its vanishing gradient problem through their residual learning 
blocks. This makes it a good competitor against VGG-19. Each layer in DenseNet-121 is fed with the outputs from 

the previous layers which improve the feature propagation and alleviate the vanishing gradient problem. Although 

DenseNet-121 is more efficient on some image classification tasks, it could not outperform the VGG-19 model on the 

cytology image classification. The 42-layer deep Inception v3 model factorizes convolutions and aggressively reduces 

dimensions which reduces the computational cost but could not maintain the quality in classifying the cytology image 

data.  

Model Confusion 

matrix 

[𝑻𝑵 𝑭𝑷
𝑭𝑵 𝑻𝑷

] 

ACC PREC REC F1-

Score 

 MCC 

Resnet-50 [589 71
78 582

] 0.8871 0.8913 0.8818 0.8865  0.7742 

VGG-19 [581 79
68 592

] 0.8886 0.8823 0.8970 0.8896  0.7773 

Densenet-121 [611 49
131 529

] 0.8636 0.9152 0.8015 0.8546  0.7329 

Inception_v3 [429 231
57 603

] 0.7818 0.7230 0.9136 0.8072  0.5843 
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Figure 7. ROC curve of the four CNN models 

We have further explored the performance of our best model, VGG-19, on the 128x128 abnormal cell patch data 

extracted with respect to the centroid of each object in the abnormal mask. 203 abnormal image patches were obtained 

and tested with VGG-19 model. We achieved an accuracy of 0.8778 upon prediction on these 203 abnormal image 

patches. This indicates that the VGG-19 model is better at classifying the cytology cell images, even under challenging 

cell-overlapping conditions.  

While this work is preliminary, it demonstrates the capability of deep learning to recognize abnormal cells in cervical 

cytology specimens. With further refinement this work could be incorporated into a production level tool to assist 

pathologists with pre-screening and quality assurance, thereby improving a pathologist’s efficiency and accuracy.  

Conclusion 

We have successfully developed and evaluated a prototype pipeline for the classification of cervical cytology slide 

images. The process automatically generated cleaner labeled patch image data for training and testing convolution 

neural networks. Our approach considers realistic conditions of overlapping cells which is superior to state-of-the-art 

classification techniques that rely on segmented cells. We investigated various CNN models for successful 

classification of cytology image data, and found VGG19 and ResNet-50 were similar best performers with our data. 

A novel graph-based cell detection technique was also proposed which may be used for developing cell analysis 

techniques. Our work represents a novel approach for classifying cytopathology image data, using real-world samples.  
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