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Abstract 

With advances in Machine Learning (ML), neural network-based methods, such as Convolutional/Recurrent Neural 

Networks, have been proposed to assist terminology curators in the development and maintenance of terminologies. 

Bidirectional Encoder Representations from Transformers (BERT), a new language representation model, obtains 

state-of-the-art results on a wide array of general English NLP tasks. We explore BERT’s applicability to medical 

terminology-related tasks. Utilizing the “next sentence prediction” capability of BERT, we show that the Fine-tuning 

strategy of Transfer Learning (TL) from the BERTBASE model can address a challenging problem in automatic 

terminology enrichment – insertion of new concepts. Adding a pre-training strategy enhances the results. We apply 

our strategies to the two largest hierarchies of SNOMED CT, with one release as training data and the following 

release as test data. The performance of the combined two proposed TL models achieves an average F1 score of 0.85 

and 0.86 for the two hierarchies, respectively. 

Introduction 

Insertion of new concepts into their proper positions in a terminology is a challenging problem in automatic enrichment 

of terminologies. Traditionally, for terminologies based on a Description Logic, curators tend to use a reasoner such 

as Snorocket [1] or HermiT [2] to insert a new concept into a terminology’s hierarchy. Recently, researchers have 

proposed to use Deep Learning models such as Convolutional/Recurrent Neural Network models [3] to verify an IS-

A relationship between a new concept and an existing concept, which will recommend the location of the new concept 

in the hierarchy. In such an approach, concepts are represented by various language embeddings from Natural 

Language Processing (NLP) [4-6]. 

However, training such an ML model from scratch is expensive and time-consuming, as it requires large data sets and 

extensive computing resources. Instead, it is common and efficient to conduct Transfer Learning from pre-trained 

language representation models to the task of interest. In this paper, we utilize a new general language representation 

model called Bidirectional Encoder Representations from Transformers (BERT) [7]. BERT is a pre-trained model 

which obtains state-of-the-art results on a wide range of NLP tasks. It has been integrated into applications [8, 9] for 

clinical tasks in biomedical domain. We experiment with two Transfer Learning (TL) strategies, Fine-tuning and Pre-

training, from the pre-trained BERTBASE model to address the terminology enrichment problem. In Fine-tuning, we 

train a classifier on top of a BERTBASE network with IS-A relationships as training data. This training fine-tunes the 

weights of the pre-trained BERTBASE network to enable it to classify relationships between new concepts and existing 

concepts. The fine-tuning strategy innovatively utilizes the “next sentence prediction” of BERT, to train BERT to 

distinguish which pairs of concepts should be connected by IS-A relationships. In Pre-training, we accommodate 

BERT to medical data, by training it from scratch using terminology data from SNOMED CT.  

To measure the performance of the two proposed strategies, we use the two largest hierarchies of the SNOMED CT 

[10] terminology, the Clinical Finding and the Procedure hierarchies, as our testbed. The SNOMED CT release of 

July 2017 is used as training data. For testing, we use 911 and 2005 new concepts from the Procedure and Clinical 

Finding hierarchies of the January 2018 release, respectively. The results of this experiment for the Fine-tuning 

strategy and for the combined strategy starting with Pre-training and continuing with Fine-tuning are reported. 

Background 

SNOMED CT is an internationally leading clinical terminology, managed by SNOMED International. The Clinical 

Finding and the Procedure hierarchy of the January 2018 release of SNOMED CT consist of 111,081 and 57,806 

active concepts, respectively. SNOMED CT is released twice every year on January and July. All the content for a 

given release of SNOMED CT terminology is defined in a “snapshot” file. In addition, a “delta” file identifies the 

individual changes that occurred between the previous release and the current release. A full history of concepts and 

relationships that are added, changed, or removed is also provided. By comparing the Procedure and Clinical Finding 

hierarchies of January 2018 with the previous July 2017 release, we found that 911 new concepts were added into the 

Procedure hierarchy and 2005 new concepts were added into the Clinical Finding hierarchy and placed in the proper 
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positions in the hierarchy by SNOMED CT’s curators, based on their structural and semantic definitions stated in 

Description Logic. Liu et al. [11] proposed a methodology to automatically determine the placement of a new concept 

in the ontology’s hierarchy if a new concept’s name and one of the concept’s parents is given. The solution is based 

on training a Convolutional Neural Network (CNN) model to distinguish between those pairs of concepts that are 

connected by IS-A links and those pairs that are not. 

For the language representation model, there are two main research streams: Context-free and Contextual 

representations. Traditional word embeddings such as word2vec [12], GloVe [13], or fastText [14], are Context-free 

embeddings, which generate a single "word embedding" representation for each token in the vocabulary. Therefore, 

they are not likely to capture any word meaning changes caused by surrounding context changes. Contextual models, 

instead, generate a representation of each word that is based on the other words in the context. Contextual 

representations can further be categorized into unidirectional or bidirectional.  

BERT is the first unsupervised, deeply bidirectional system that outperforms previous methods. BERT is a general-

purpose "language understanding" model trained on a large text corpus (like Wikipedia), which can be used for various 

downstream NLP tasks without heavy task-specific engineering. BERT’s model architecture is a multi-layer 

bidirectional transformer encoder, based on the original implementation proposed by Vaswani et al. [15]. BERT has 

advanced the state-of-the-art for several major NLP benchmarks, including named entity recognition on CoNLL-2003 

[16], question answering  on SQuAD [17], and sentiment analysis on SST-2 [18].  

Methods  

The main contribution of this paper is suggesting a way to harness the high performance of BERT for a critical task 

in medical terminology enrichment, in spite of the fact that BERT was not trained with medical literature. One 

approach is to add medical knowledge to the general knowledge learning of BERT. For this we use the SNOMED CT 

knowledge, providing a “document” for each concept of SNOMED CT. The second approach is to train BERT to be 

able to distinguish between concept pairs which should be connected by IS-A relationships and pairs that shouldn’t. 

This kind of learning utilizes the “next sentence prediction” feature of BERT. In the following we describe the 

technical issues and the details involved in implementing these ideas. 

We experimented with two strategies of using BERT. 1) Fine-tuning BERTBASE by supervised training a relationship 

classifier on top of BERT with concept pairs connected by IS-A relationships and pairs not connected (non-IS-A pairs) 

taken from SNOMED CT. 2) Pre-training BERTBASE with unsupervised concept-based “documents” from SNOMED 

CT, and then fine-tuning it as an IS-A relationship classifier. We implemented the experiments with Tensorflow [19] 

and ran the testcases on a computer with two Intel Xeon E5-2630-v4 CPUs with processor speed 2.2 GHz; 128 GB 

memory per CPU and two Nvidia Tesla P100 “Pascal” video cards with 16 GB RAM per GPU. 

BERTBASE (12 Transformer layers) and BERTLARGE (24 Transformer layers) are two models trained on English 

Wikipedia (2,500M words) and BooksCorpus [20] (800M words) for one million update steps. Due to limited GPU 

resources, we only used BERTBASE in this experiment, since BERTLARGE requires resources currently beyond our high-

performance hardware. The configuration parameters of the pre-trained BERTBASE model are L=12, H=768, A=12, 

total Parameters=110M, where L is the number of layers (i.e., Transformer blocks), H is the hidden size, and A is the 

number of self-attention heads. The feed-forward/filter size is set to 4H, i.e., 3072 for H = 768. 

The two strategies of our research are as follows: 

Strategy 1 

Step 1. Fine-tuning the BERTBASE model (Figure 1): We extracted IS-A linked and not linked concept pairs as 

supervised fine-tuning data from the SNOMED CT July 2017 release. We will refer to these pairs as IS-A and non-

IS-A pairs. Then we trained a relationship classifier on top of BERTBASE with the IS-A and non-IS-A pairs to obtain 

the BERTBASE+CLF model. 

Step 2. Prediction on new release data (illustrated in the rightmost process of Figure 1): We tested the trained 

BERTBASE+CLF model to verify IS-A links and the absence of IS-A links for newly added concepts in the SNOMED 

CT January 2018 release. 

Strategy 2 

Step 1. Pre-training the BERTBASE model (Figure 2): We preprocessed concept-related information from the July 2017 

release to generate documents that were used as unsupervised pre-training data. Then we trained BERTBASE with 

unsupervised concept level data so that the trained BERTBASE+SNO model integrated terminology information. Then 
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we applied the fine-tuning process (of Strategy 1) to train a classifier on top of BERTBASE+SNO to derive the 

BERTBASE+SNO+CLF model. 

Step 2. Prediction on new release data (illustrated in the rightmost process of Figure 2): We tested the trained 

BERTBASE+SNO+CLF model to verify IS-A links and non-IS-A pairs for newly added concepts in the SNOMED CT 2018 

January release. 

 

Figure 1: The pipeline for Strategy 1 Fine-tuning. CLF is short for Classifier. 

Figure 2: The pipeline for Strategy 2 combining Fine-tuning with Pre-training. SNO is short for SNOMED CT. 

Details of the specific stages of the two strategies are discussed in the following: 

Fine-tuning strategy 

Data preparation: The training samples passed to the Fine-tuning process are a set of IS-A and non-IS-A concept 

pairs. In SNOMED CT, the IS-A concept pairs are given. Thus, we can use them as a positive sample. On the other 

hand, the negative sample could be all the non-IS-A pairs of concepts. This creates an imbalance between the positive 

and negative samples, because there are many more pairs not connected by IS-A links. Thus, we pick non-IS-A pairs 

for the negative sample as follows. For each IS-A pair (A, B) we look for the siblings C1, C2, …Ck of B. Then we 

choose non-IS-A pairs (A, Ci) with i=1, 2, ... k. The advantage of such pairs is that they are closely related to the 

corresponding IS-A pair. This will sharpen the distinction between IS-A and non-IS-A pairs in training. For example, 

(Crushing injury of back, Crushing Injury) defines an IS-A link, while (Crushing injury of back, Shear injury) is a 

similar pair that should not be connected by an IS-A link. The reason is that Shear injury is a sibling of Crushing 

Injury, with the same parent Injury by mechanism.  
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In the data preparation for Fine-tuning, we first extracted the positive and negative samples, and randomly 

downsampled the negative sample to the size of the positive sample, at the beginning of each training round. We 

shuffled our dataset and then used 90% of it for training and kept 10% as the test set. The samples went through three 

preprocessing steps: Text normalization (E.g., Excision of Reinke's edema, →  excision of reinke's edema), 

Punctuation splitting (E.g., excision of reinke's edema, → excision of reinke ' s edema), and WordPiece tokenization 

(excision of reinke ' s edema, → ex ##cision of rein ##ke ' s ed ##ema). Then the samples were processed by 

BERTBASE, which performed its own preprocessing, including input embeddings, segment masking, labeling, etc. [7]. 

The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position 

embeddings. Due to space limitations, we concentrate on the operations that are essential for Fine-tuning.  

For example, Urine xanthine level is the child of Evaluation of urine specimen in the SNOMED CT Procedure 

hierarchy. The input sequence will be “1 Evaluation of urine specimen (\t) Urine xanthine level (\t)”. This input will 

be converted as one training instance to “[CLS] evaluation of urine specimen [SEP] urine x ##ant ##hine level [SEP]” 

as shown in Figure 3(a).  The first token of the sequence is the classification embedding ([CLS]), representing a 

classification label. A special token ([SEP]) is used to separate sentences. Out-of-vocabulary words are split into word 

pieces and denoted with ##. For example, “xanthine” is denoted as three items “x”, “##ant”, and “##hine.” Similarly, 

Rubella screening is not a child of Down’s screening – blood test. The input sequence “0  Rubella screening (\t) 

Down's screening - blood test (\t)” will be converted to “[CLS] rub ##ella screening [SEP] down ' s screening - blood 

test [SEP]” in Figure 3(b). 

 

Figure 3: Fine-tuning data: Preprocessing (a) IS-A and (b) non-IS-A concept pairs 

Fine-tuning the BERTBASE model: We fine-tuned the BERTBASE model to predict the IS-A and non-IS-A linking for 

the concept pairs in the test data. This is similar to a binary sentence-pair classification task. We used the sentence 

prediction capability of BERTBASE, trained as BERTBASE+CLF, to predict IS-A links between concept pairs of a

 

Figure 4: Fine-tuning the BERTBASE model with concept pairs to obtain BERTBASE+CLF model.   
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Figure 5: Pre-training data: Serializing (a) the hierarchical structure of one concept into (b) one document 

terminology. We employed a classifier using softmax with categorical cross-entropy on top of BERTBASE. The 

parameters of BERTBASE were fine-tuned to maximize the log-probability of the correct label (IS-A or non-IS-A). 

Given two concepts A and B, described as two “sentences,” the classifier learned to determine whether B is the next 

“sentence” following A. This was modeled as equivalent to classifying whether the concept B should be a child of A, 

i.e., B is-a A (Figure 4). The input “1 Evaluation of urine specimen (\t) Urine xanthine level (\t)” was converted as 

one training instance to “[CLS] evaluation of urine specimen [SEP] urine x ##ant ##hine level [SEP]” with Class label 

= 1. Class 1 means that there should be an IS-A link between the two concepts, and Class 0 means that there shouldn’t 

be such a link. The BERTBASE model computed the probabilities for Class 0 and Class 1, and recorded the result as a 

2 × 1 vector. The classifier reported the class label with the higher probability. The error between the true label and 

the label predicted by the model was back-propagated through the model to improve the network’s parameters. The 

obtained model is denoted as BERTBASE+CLF (CLF = classifier), the model after Fine-tuning. For this we used the 

default model hyperparameters in pre-trained BERTBASE, with the exception of the sequence length (=128), batch size 

(=64), learning rate (=2e-5), and number of training epochs (=3). 

Pre-training and fine-tuning strategy 

Data Preparation: In our setup of unsupervised Pre-training, BERTBASE is not trained for a specific task, but the 

purpose is integrating medical knowledge into its representation. This is done by training with non-task related samples 

taken from SNOMED CT. BERT was originally trained with millions of documents that are composed of sentences. 

Similarly, we generated a list of terminology-oriented documents by creating one “document” per focus concept F 

(Figure 5), with related concept(s) as “sentences” of such documents. The ID for a document is the corresponding 

SNOMED CT concept ID. The content of this document consists of the concepts that are hierarchically related to F 

(Figure 5(a)). Specifically, we chose F’s parents (targets of IS-A links from F), F itself, and its children (sources of 

IS-A links to F). Thus, the whole document text is: Parent(s) – Focus concept – Child(ren) (Figure 5(b)). The concept 

groups are separated into lines, e.g., “(Parents) finding of abnormal level of heavy metals in blood, finding of trace 

element level –NEW LINE– (Focus concept) blood copper abnormal –NEW LINE– (Children) raised blood copper 

level, serum copper level abnormal” is the document for the focus concept blood copper abnormal. This construction 

is based on the idea that a concept is the topic of a document and that the closely related concepts are descriptions of 

the meaning of this concept in the terminology hierarchy. To feed sentences into the BERTBASE model, all the 

documents are concatenated in one text file, separated by empty lines.  

Pre-training the BERTBASE model: To utilize BERT’s powerful language representation, we started with BERTBASE 

and embedded terminology knowledge with new training data. BERT was originally trained for two unsupervised 

prediction tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) on an arbitrary text corpus. 

We adopted the same two training tasks and objective with concept-based documents from SNOMED CT. In the 

MLM phase, the training objective is to predict only the masked words. We randomly masked out 15% of the words 

across all the concept-based documents, and then trained the complete BERTBASE model to output the masked words. 

In the NSP phase, the objective is to learn relationships between concepts: Given two concepts A and B, is B a child 

of A, or not (Figure 6). We extracted two “sentences” Colitis and Phlegmonous colitis from the document for the focus 

concept Colitis. After preprocessing these two concepts (treated as two “sentences”) as shown in the middle level, we 

masked out two token – “##mon” and “##tis”. The BERTBASE model was trained to raise the probabilities of two 

correct tokens “##mon” and “##tis” over other tokens in the vocabulary. In addition, as Phlegmonous colitis IS-A 

Colitis, the BERTBASE model was also trained to output the correct classification label “IsNext.” The obtained model 

(b) (a) 

Parent 1 

Focus Concept 

Parent 2 

Sibling 1 

...  

...  

Child 1 Child 2 Child 3 

Parent 1 

Focus Concept 

Parent 2 

Child 1 Child 2 Child 3 

 

One document ...  
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is denoted as BERTBASE+SNO (SNO=SNOMED CT). Then we applied the Fine-tuning process (see above) to the 

BERTBASE+SNO model to get the BERTBASE+SNO+CLF model. 

The training parameters used for Pre-training are as follows: batch size = 64, sequence length =128, training steps = 

15,000 for Procedure and 200,000 for Clinical Finding. learning rate =2e-5, dropout rate = 0.1, and activation function 

= gelu (Gaussian error linear unit). 

 

Figure 6: Pre-training the BERTBASE model with concept-based documents to obtain BERTBASE+SNO model. 

FFNN is short for Feedforward neural network. 

 

Figure 7: Data flow for testing the trained BERTBASE+CLF or BERTBASE+SNO+CLF models with unseen data 
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Testing the prediction on new release data  

To evaluate the BERTBASE+CLF and the BERTBASE+SNO+CLF models on previously unseen data, we created separate test 

tasks, using new concepts from the Procedure and the Clinical finding hierarchy of the January 2018 release (Figure 

7). This description will focus on the Procedure hierarchy. For each new concept that was added to the Procedure 

hierarchy in this release, we extracted it and its parents as positive sample pairs. For example, Local excision of lesion 

of kidney has two parents Local excision and Excision of lesion of kidney. The corresponding positive testing samples 

are “Local excision (\t) Local excision of lesion of kidney” and “Excision of lesion of kidney (\t) Local excision of 

lesion of kidney” with the true Class label = 1. For the negative sample, we paired each new concept with a randomly 

chosen concept from the other new concepts’ parents. For example, we randomly select Ultrasonography of left lower 

limb, which is the parent of Ultrasonography of left knee region, and paired it with Local excision of lesion of kidney 

to form the instance “Ultrasonography of left lower limb (\t) Local excision of lesion of kidney” with the label = 0. 

The concept pairs were randomly arranged into a sequence and sent to the trained BERTBASE+CLF and 

BERTBASE+SNO+CLF models. The tested model processed each input pair, using the weights that it had learned before, 

returning a class label (0 or 1) as prediction result. For negative samples, label 0 is correct, indicating that there is no 

IS-A link between these two concepts in the new SNOMED CT release. Label 1 is correct for positive samples, 

indicating the existence of an IS-A link. The predicted result labels were compared with the true labels to calculate 

prediction accuracy in terms of Precision, Recall, and F1 score. 

Results 

We first report the prediction results of the Fine-tuning model and Pre-training & Fine-tuning model with samples 

extracted from the Procedure hierarchy of the SNOMED CT 2018 January release, with 15,000 training steps. The 

Precision, Recall, and F1 scores for ten tests are presented in Table 1. For the Procedure hierarchy, the model was 

tested against 3,908 pairs (1,954 positives and 1,954 negatives). For example, in Test 7 for IS-A classification, the 

Precision is 0.69, Recall is 0.98, and F1 score is 0.81 for Fine-tuning. When adding Pre-training, Precision is 0.73, 

Recall is 0.98, and F1 score is 0.84. The F1 score improved by about 3.7%. Similarly, for Non-IS-A tests, the F1 score 

increased from 0.71 to 0.77, an 8.5% improvement. On average, by adding Pre-training, there are 6.3% (from 0.80 to 

0.85) and 14.5% (from 0.69 to 0.79) improvements of F1 for IS-A and Non-IS-A classifications, respectively. 

Table 1. Precision, Recall, and F1 score for ten tests of Procedure hierarchy (training steps = 15,000). 

Procedure 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training &  

Fine-tuning 
Fine-tuning 

Pre-training &  

Fine-tuning 

No. Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

1 0.67 0.98 0.79 0.75 0.98 0.85 0.96 0.51 0.67 0.97 0.68 0.80 

2 0.66 0.98 0.79 0.77 0.98 0.86 0.97 0.48 0.64 0.98 0.70 0.82 

3 0.70 0.98 0.81 0.75 0.98 0.85 0.96 0.58 0.72 0.97 0.68 0.80 

4 0.66 0.98 0.79 0.74 0.98 0.84 0.97 0.50 0.66 0.97 0.66 0.79 

5 0.69 0.98 0.81 0.74 0.98 0.84 0.96 0.56 0.70 0.97 0.66 0.79 

6 0.71 0.97 0.82 0.74 0.98 0.85 0.96 0.59 0.73 0.97 0.66 0.79 

7 0.69 0.98 0.81 0.73 0.98 0.84 0.97 0.56 0.71 0.97 0.64 0.77 

8 0.67 0.98 0.80 0.71 0.98 0.82 0.96 0.52 0.68 0.97 0.59 0.73 

9 0.69 0.98 0.81 0.73 0.98 0.84 0.96 0.56 0.71 0.97 0.63 0.77 

10 0.66 0.98 0.79 0.76 0.98 0.86 0.96 0.49 0.65 0.97 0.69 0.81 

Average 0.68 0.98 0.80 0.74 0.98 0.85 0.96 0.54 0.69 0.97 0.66 0.79 

Standard Deviation 0.02 0.00 0.01 0.02 0.00 0.01 0.00 0.04 0.03 0.00 0.03 0.03 

Due to space limitations, we only report the summary of the Precision, Recall, and F1 scores from ten tests for the 

Procedure hierarchy with 10,000 training steps (Table 2). In each test, the model was tested against 3,908 pairs (1,954 

positives and 1,954 negatives). On average, by adding Pre-training to Fine-tuning, the improvements are 3.75% (from 

0.80 to 0.83) and 10.1% (from 0.69 to 0.76) for IS-A and Non-IS-A classifications, respectively. 
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Table 2. Precision, Recall, and F1 score for ten tests of Procedure hierarchy (training steps = 10,000). 

Procedure 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training &  

Fine-tuning 
Fine-tuning 

Pre-training &  

Fine-tuning 

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

Average 0.68 0.98 0.80 0.72 0.98 0.83 0.96 0.54 0.69 0.97 0.62 0.76 

Max 0.71 0.98 0.82 0.75 0.99 0.85 0.97 0.59 0.73 0.98 0.67 0.79 

Min 0.66 0.97 0.79 0.71 0.98 0.82 0.96 0.48 0.64 0.96 0.59 0.73 

Standard Deviation 0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.04 0.03 0.01 0.02 0.02 

For the Clinical finding hierarchy, the summary of ten tests results with training steps = 200,000 is reported in Table 

3. In each test, the model was tested against 8,574 pairs (4,287 positives and 4,287 negatives). On average, by adding 

Pre-training, the improvements are 7.5% (from 0.80 to 0.86) and 15.3% (from 0.72 to 0.83) for IS-A and Non-IS-A 

classifications, respectively. 

Table 3. Precision, Recall, and F1 score for ten tests of Clinical Finding hierarchy (training steps = 200,000). 

Clinical Finding 

IS-A Classification Non-IS-A Classification 

Fine-tuning 
Pre-training&  

Fine-tuning 
Fine-tuning 

Pre-training&  

Fine-tuning 

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

Average 0.70 0.94 0.80 0.79 0.94 0.86 0.90 0.60 0.72 0.93 0.76 0.83 

Max 0.72 0.94 0.82 0.82 0.95 0.88 0.91 0.64 0.75 0.94 0.80 0.86 

Min 0.69 0.93 0.79 0.77 0.94 0.85 0.89 0.58 0.70 0.92 0.73 0.81 

Standard Deviation 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.02 0.01 

Table 4. Prediction results of two models on five IS-A & five non-IS-A examples from Clinical Finding hierarchy. 

Index Test Concept New Concept  
True 

Label 

Fine-

tuning 

Pre-

training 

1 Injury of trachea Crushing injury of trachea 1 1 1 

2 Arthropathy of knee joint 
Aseptic necrosis of right lateral femoral 

condyle 
1 1 1 

3 Lesion of neck Stenosis of right vertebral artery 1 1 1 

4 
Persistent pain following 

procedure 
Chronic pain following radiotherapy 1 0 1 

5 Joint injury Traumatic rupture of ligament of wrist 1 1 1 

6 Bursitis of shoulder Injury of toenail 0 0 0 

7 Atherosclerosis of artery Crushing injury of trachea 0 0 0 

8 Finding of employment status Social isolation in parenthood 0 0 0 

9 Soft tissue injury Injury of bilateral optic tracts 0 1 1 

10 Injury of wrist Injury of peripheral nerve of abdomen 0 1 0 

Regarding the prediction of IS-A links for new concepts, we show ten examples of our two models’ prediction results 

(Table 4) for ten pairs for which the second concept was newly added to SNOMED CT’s Clinical finding hierarchy 

in the 2018 January release. For each test, we paired one Test Concept with one New Concept as one test instance, 
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then we let the model predict IS-A links between them. For instance, for Example 2, we chose Arthropathy of knee 

joint as the first concept and paired it with Aseptic necrosis of right lateral femoral condyle. Then the task became to 

predict whether there is an IS-A link between the two concepts. Both the Fine-tuning and Pre-training & Fine-tuning 

models returned the correct label (=1). For Example 4, the Fine-tuning model is wrong, and the combined model is 

correct that Chronic pain following radiotherapy IS-A Persistent pain following procedure. Both models are wrong 

about Injury of bilateral optic tracts, because it is not a Soft tissue injury (Example 9).  

Discussion 

In this paper we set out to investigate whether the “next sentence prediction” capability of BERT can be fine-tuned to 

verify the parent(s) of new concepts added to a terminology. Such a capability can be utilized in automatic enrichment 

of terminologies. The results for the Procedure and Clinical finding hierarchy confirm that our technique, which 

utilizes this capability of BERT, is indeed able to verify the IS-A relationships from new concepts to their parents with 

a 0.80 F1 average value. When enhancing Fine-tuning of BERT with Pre-training the average F1 score grows to 0.85 

(0.86). 

However, looking at the details we see that the recall to identify IS-A relationships is very high (0.98) while the 

precision is only 0.74. The outcome for identifying the Non-IS-A pairs of concepts is the opposite, with high (0.97) 

precision and low (0.66) recall, yielding an F1 value of 0.79. These results indicate that our technique verifies almost 

all the IS-A relationships, but wrongly identifies some Non-IS-A pairs as having IS-A relationships. 

Thus, the challenge for future research is to improve the precision. In previous research [11, 21], we have shown that 

using summarization techniques of terminologies [22] can improve the training of ML techniques to better distinguish 

between IS-A relationships and pairs that are not connected by IS-A relationships. In future research, we will 

investigate whether utilizing summarization techniques can improve the precision and thus the F1 value.  

Another issue is the number of training steps required for Pre-training. For the Procedure hierarchy 15,000 training 

steps provided the best results for enhancing the process by Pre-training. The enhancement was about double than for 

10,000 training steps. Experiments with 20,000 and 25,000 training steps showed a leveling off of F1 at 20,000 and a 

lower F1 value at 25,000. However more research is needed to confirm this behavior beyond 15,000 training steps. 

For the Clinical finding hierarchy, which is about twice the size of the Procedure hierarchy, 200,000 training steps 

were required to obtain the same enhancement as for the Procedure hierarchy, which had required just 15,000 training 

steps. Hence, much more pre-training steps are required when the hierarchy is larger. The two transfer learning models 

using BERT are superior to our previously proposed CNN model [11], which was trained with the whole SNOMED 

CT consisting of 473,756 concepts. That CNN model achieved an average F1 score of 0.70, and could only verify IS-

A links for new concepts with multiple parents. As a consequence of this observation, it is preferable to perform 

automatic enrichment for each hierarchy of SNOMED CT separately, rather than for the whole SNOMED CT. Another 

reason for enriching each hierarchy separately is that the content of each hierarchy is different, and ML is likely more 

effective by modularizing the learning into uniform hierarchies than learning a large, non-uniform body of knowledge 

in one process.  

In the BERTBASE model, features are more generic/linguistic in the early network layers and more dataset-specific in 

the later layers. Thus, fine-tuning is normally inexpensive, because one only needs to modify the later layers or train 

one or two task-specific layers on top. All of the results in the paper can be replicated in at most 3 to 5 hours on a 

single GPU, starting from the same pre-trained BERTBASE model. Pre-training is more expensive than Fine-tuning. 

For example, it took about four days to run 200,000 steps to pre-train the model with the Clinical finding hierarchy 

data on a single GPU. However, this is a one-time procedure for each hierarchy. We plan to release the two pre-trained 

models of this paper for future research work, to save other researchers the effort and time to pre-train their own 

models from scratch. 

Limitations: The BERTBASE model was trained with the concatenation of the BooksCorpus (800M words) [20] and 

English Wikipedia (2,500M words). It employs the WordPiece embeddings [23] with a 30,522 tokens vocabulary, 

which does not include most medical terms. Thus, medical terms that are not in the WordPiece vocabulary are split 

into word pieces denoted by ##. For example, “adenoid” is split into “aden” and “##oid.” The lack of medical terms 

in BERT’s vocabulary limited its applicability to support insertion of new concepts into a medical terminology such 

as SNOMED CT, and would probably impair other NLP tasks within the medical domain. In future work, we will 

expand the vocabulary to include common medical terms selected from terminologies such as SNOMED CT. We will 

investigate whether pre-training BERT with medical terms can help improve its performance in some common NLP 

tasks in the medical domain, such as tagging and named entity recognition in EHRs.  
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Conclusion 

We have shown that one can fine-tune the BERT model and obtain an effective technique for correctly placing new 

concepts in the right positions of a terminology. Furthermore, by pre-training BERT with SNOMED CT content, we 

improved the precision while preserving the high recall and thus we improved the F1 value. 
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