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Abstract

The complexity of biological interactions is driving force behind the need to increase system size 

in biophysical simulations, requiring not only powerful hardware but adaptable software that can 

accommodate a large number of atoms interacting through non-trivial forcefields. To address this, 

we developed and implemented strategies in the GENESIS molecular dynamics package for large 

numbers of processors. Long-range electrostatic interactions were parallelized by minimizing the 

number of processes involved in communication. A new algorithm was implemented for non-

bonded interactions to increase SIMD performance, reducing memory usage for ultra large 

systems. Memory usage for neighbor searches in real-space non-bonded interactions was reduced 

by one sixth, with significant speedup. Using experimental data describing physical 3D chromatin 

interactions, we constructed the first atomistic model of an entire gene locus (GATA4). Taken 

together, these developments enabled the first billion-atom simulation of an intact biomolecular 

complex, achieving scaling to 65,000 processes (500,000 processor cores).

I. Introduction

Molecular dynamics (MD) is a powerful tool to understand biological phenomena in 

atomistic detail. From the first MD simulation of a protein,1 the spatiotemporal scale has 

increased significantly due to various hardware and software developments: Taiji et al. 
accelerated MD by developing specialized hardware, MDGRAPE-3 for time-consuming 

non-bonded interactions.2 ANTON, which is also specialized to MD simulations, achieved 

more than 100 times speed-up compared to conventional computers, simulating 1 ms protein 

dynamics in explicit solvent.3–5 The Graphics Processing Unit (GPU) or Intel Xeon Phi have 

also become very promising in the context of extending the time scale of MD 

simulations6–14. As a result of recent developments in hardware and software, large systems 

consisting of 64 million and 100 million atoms can be simulated with MD.15,16
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Currently, the development of MD to extend the timescale and the system size is becoming 

more important due to novel experimental methodologies in biology. An example of such 

progress in this area is a better understanding of structural genomics and chromatin 

dynamics; chromatin is a biological DNA-protein complex that provides compaction of the 

genomic information in the nucleus of a cell. In this compact structure, DNA wraps around 

histone proteins – a functional unit known as the nucleosome – in a controlled and structured 

manner, due to interactions between DNA and proteins, and higher level of compaction is 

achieved through specific protein-protein and protein-DNA interactions. What exactly drives 

the compaction of chromatin and how it takes place is unclear. With recent advances in 

sequencing technology, a deluge of 3D cross-linking data (chromosome conformation 

capture, or single-cell Hi-C) has revealed new insights into chromatin structure. In Hi-C 

experiments the probability, Pij, that two genomic loci i and j are in contact can be inferred. 

From these data one may construct a contact map: a two-dimensional representation of a 

three-dimensional structure. Genome wide contact maps have revealed the existence of 

chromosome territories (also known as topologically associated domains or TADs), and have 

established the hierarchical nature of chromatin structure on the megabase scale. This 

complex hierarchical structure presumably results from the requirement of several meters of 

DNA to be compacted in a micron-sized nucleus in human cells. Most remarkably this 

compaction occurs in the crowded space of a nucleus without topological entanglement or 

knot formation. It is now widely believed that this is achieved by the chromatin adopting a 

fractal globule conformation. The hierarchical structure of chromatin is not just a by-product 

of compaction; it also plays a pivotal role in a range of genomic functions, most notably in 

gene transcription, DNA replication, and repair. Yet despite recent advancements in 

chromatin conformation capture and high-resolution direct imaging experiments (such as 

Fluorescence in situ hybridization or FISH), chromatin structure remains rather poorly 

understood. In part this is due to the dramatic changes in chromatin structure during the cell 

cycle, as well as the knowledge of cells which do not follow the established levels of 

chromatin organization.

In MD, the general protocol consists of (1) evaluation of potential energy and force, (2) 

integration of coordinates and momenta, and (3) thermostat or barostat calculations. For 

biological MD simulations with explicit water molecules, the potential energy function 

consists of bonded (bond, angle, proper and improper dihedral angle) and non-bonded terms 

(electrostatic and van der Waals). The computational cost of the bonded interactions is O(N) 

and takes part in a small fraction of the total simulation time. The main bottleneck in MD 

stems from the evaluation of the non-bonded interactions. The computational cost of the 

non-bonded interactions is O(N2). Because the van der Waals interactions decay rapidly 

according to the pairwise distance, they can be computed with O(N) computational cost by 

applying a cutoff value beyond which the interaction energy is zero. The electrostatic energy 

is decomposed into the real- and reciprocal-space interactions using the particle mesh Ewald 

(PME) scheme.17,18 The real-space interaction energy decays rapidly as the pairwise 

distance, so we can apply the same cutoff value as for the van der Waals interaction. Long-

range interactions are described in a reciprocal space using Fast Fourier Transform (FFT), 

improving the computational cost to O(NlogN). For small systems, the real-space non-

bonded interaction becomes the main computational challenge. Conversely, the main 

Jung et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bottleneck moves to evaluation of reciprocal space non-bonded interactions as we increase 

the number of computational processes or increase the target system size.

We have developed the GENESIS MD software to overcome current size limitations of MD.
19,20 The new domain decomposition scheme in GENESIS produces highly efficient 

parallelization in real-space calculation, enabling simulations of very large systems.21 

Efficient FFT parallelization schemes have been developed in GENESIS for high 

performance on the K computer.22 Due to DNA being a highly charged polymer, the 

accurate calculation of long-range electrostatic interactions is required, whereby the FFT 

becomes the main bottleneck of parallelization. Here, we discuss effective FFT 

parallelization schemes in GENESIS that can be used on Intel Xeon Phi processors for large-

scale MD simulations. We also discuss the new implementation of non-bonded interactions 

in GENESIS to increase SIMD performance on Intel Xeon Phi. Our new developments are 

tested on the second generation Intel Xeon Phi processors (code name: Knights Landing or 

KNL) on the Oakforest-PACS and Trinity Phase 2 platforms. We also constructed an atomic 

model of an entire gene locus (83 kilobases (kb) of DNA complexed with 427 nucleosomes, 

Figure 1) consisting of more than 1 billion atoms and performed simulations on Trinity 

Phase 2 platform.

II. METHODS

1. Atomistic model of GATA4 system

A. Modeling—We constructed a coarse-grained 3D scaffold using a coarse-grained 

mesoscale model of chromatin that led to the identification of a novel folding motif, 

hierarchical looping, where chromatin fibers undergo folding to produce layered networks of 

loops (citations to be added). By combining experimentally measured ultrastructural 

parameters with their previously verified mesoscale chromatin model, a detailed mesoscale 

model of the GATA4 gene locus was built (Figure 1) and used to derive atomic resolution 

coordinates. The model was equilibrated resulting in a compact globular structure exhibiting 

hierarchical looping, where the positions of the loops agree with 3C data, and local folding 

agrees in vivo experiments. Our mesoscale chromatin model consists of three particle types: 

linker DNA, nucleosome core particle pseudo-charges, and flexible histone tails.23 Linker 

DNA is treated as a modified worm-like chain. The nucleosome core particles are 

represented as electrostatic objects, with shape and surface derived from the Discrete 

Surface Charge Optimization (DiSCO) algorithm that approximates the electric field of the 

atomic nucleosome by Debye-Hückel pseudo-charges along the surface of the complex as a 

function of monovalent salt.24 Flexible histone tails are coarse grained so that 50 beads 

represent the 8 histone tails, where each bead represents about 5 amino acid residues.23 The 

mesoscale model allows the direct placement of all-atom nucleosomal DNA and protein 

molecular structures in space, resulting in the atomistic model of the GATA4 system.

B. Automated clash detection for model generation of macromolecular 
complexes—Techniques such as X-ray crystallography, NMR spectroscopy and electron 

microscopy are just some of the methods used to determine protein structure. However, such 

experimental data is typically insufficient to build a fully atomistic model – one must 
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combine experimental data with homology modeling techniques (a reconstruction of a 

protein structure based on its amino acid sequence and knowledge of the structure of a 

related homologous protein). The synthesis of homology techniques and experimental data 

is rarely flawless, and often steric clashes (which here we define as two atoms being 

separated by a distance less than 0.9Å) are introduced between atoms. This is highly 

undesirable as many molecular dynamics simulation packages are unable to correct for such 

clashes at the minimization stage and the high Van der Waals repulsion energy of the 

clashing atoms would lead to simulation failure. In light of this problem we develop a 

procedure to identify steric clashes in a general DNA-protein structure and automatically 

adjust atomic positions, without violating the known geometric constraints, such that all 

clashes are removed and corrected for. The DNA backbone is remarkably rigid. Besides the 

puckering behavior exhibited by the deoxyribose ring, the only other significant freedom of 

rotation lies in the phosphate group, about the O3’-C5’ axis. In principle this rotational 

freedom, denoted ɸ, can take on any value ɸ in [−180˚, 180˚), and this can be exploited for 

the purposes of clash correction (for geometric details see the work of Tung C.S. and Carter 

E.S.). Protein structures, unlike DNA, are generally more flexible, yielding more ways in 

which atomic positions can be modified to remove steric clashes. However, in practice we 

found that modifying just one torsion angle, denoted χ - where χ in [−180˚, 180˚), of the 

bond connecting the amino acid side-group to the residue was sufficient to remove all steric 

clashes in our models when combined with ɸ rotations. The clash correction program was 

predominantly written in Python, with calls to Fortran subroutines which calculate new atom 

positions upon changing ɸ or χ. Figure 2 shows a flow diagram of the program’s operation.

2. Major characteristic of GENESIS for large-scale MD

For large-scale MD, GENESIS has the following major innovative characteristics:

A. Inverse lookup table25—GENESIS makes use of a lookup table for energy and 

force evaluation of short-range non-bonded interactions instead of using direct calculations. 

The lookup table is based on the inverse distance squared calculation, which allows to 

perform accurate calculations for very short pairwise distances by assigning many table 

points, whereas fast evaluation of energy/force is available by reducing table points for 

longer pairwise distances.

B. Domain decomposition with midpoint cell method21—In the midpoint cell 

method, each rank has the data of cells in the corresponding subdomain and adjacent cells of 

the subdomains. It sends/receives data to/from the neighboring subdomains. The non-bonded 

interaction is parallelized by distributing the cell pair lists (or midpoint cell indices) over 

OpenMP threads. Integration and constraint evaluations are parallelized by distributing the 

cell indices in each subdomain over OpenMP threads. By adopting the midpoint cell method 

with the volumetric decomposition of FFT described below, we can assign the same domain 

decomposition between real- and reciprocal-spaces, skipping communications of charge grid 

data before FFT.

C. Volumetric decomposition of FFT22—GENESIS makes use of the volumetric 

decomposition FFT where the reciprocal space is decomposed in all three dimensions. This 
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requires more frequent MPI_Alltoall communications than slab or pencil decompositions. 

However, this scheme is more favorable for large systems on massively parallel 

supercomputers because the amount of data in each communication is much smaller than the 

other decompositions. Moreover, we can skip communication of charge data before FFT by 

assigning the same domain decompositions between real and reciprocal spaces. Specifically, 

let us assume that we decompose the overall space by P MPI processes. If P is factorized by 

P = Px × Py × Pz, we decompose the space by Px in x dimension, Py in y dimension, and Pz 

in z dimension. To perform the FFT in each dimension, we assign MPI_Alltoall 

communication such that each process has global data in the specified dimension. According 

to our volumetric decomposition FFT scheme (1d_Alltoall), forward FFT consists of eight 

computation/communication procedures outlined in Appendix.

In this scheme, we require five one-dimensional MPI_Alltoall communications. Intuitively, 

the procedure of the backward FFT (BFFT) is opposite to the forward FFT; this 

decomposition scheme has several advantages over other schemes from the scalability point 

of view despite of more frequent communications. On the one hand, the number of processes 

involved in communications is proportional to the cubic root of P. On the other hand, it is 

proportional to P or the square root of P in the case of slab or pencil decomposition FFT. 

When P is sufficiently large, the communication cost could be reduced by more frequent 

communication with small number of processes involved in the communication. We also 

utilize a volumetric decomposition scheme (see Appendix) with reduced frequency of 

communications while the number of processes involved in the communication is larger 

(2d_alltoall).

In this scheme, we require three one-dimensional MPI_Alltoall communications. The 

2d_Alltoall scheme is similar to pencil decomposition FFT if we neglect the first 

MPI_Alltoallx communication. According to our investigations of 1d_alltoall and 

2d_alltoall schemes, the performances are almost equivalent to each other on the K 

computer.

D. Parallel I/O for a large system19—For an MD simulation of a very large system, 

single restart/trajectory files cause several problems. First, there is a memory problem in 

reading single restart/trajectory files. In the case of a 1 billion atom system, we require a 24 

GB (6 (three coordinates and velocities) × 1 billion (number of particles) × 4 (byte for a real 

number)) file size for a single restart file. Consequently, each process needs at least 24 GB 

memory to read only the restart file. Because we require not only restart but also PDB 

(protein data bank) and force-field parameter files, the file size becomes even larger than 100 

GB, which can be prohibitively large. Writing a single restart/trajectory is even more 

problematic for a very large system. To write a single trajectory file, we need to accumulate 

12 GB size coordinates by communication among processes. Parallel I/O is designed to 

avoid these problems. With parallel I/O, each process requires data of the corresponding 

subdomain. As we increase the number of processes, the required amount of data in each 

process decreases accordingly. A parallel restart file is generated from the initial PDB and 

parameter files using a parallel restart setup tool (prst_setup). During MD simulations, each 

MPI process writes trajectory files that contain only the coordinates of the corresponding 

subdomain. The number of files is identical to the number of MPI processes. After finishing 
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the MD simulation, users can combine the trajectory files into a single file with atom 

selection option in order to only analyze the atoms/atom groups of interest.

3. Optimization of GENESIS for KNL Intel Xeon Phi processors

A. Hardware architecture of KNL in Trinity phase 2 and Oakforest-PACS—As 

the feature width of commodity chips approaches 10 nm, power consumption has increased 

substantially due to leakage currents. Many-core chips with fewer components per core and 

lower clock speeds therefore are being developed for future exascale computing. The 1.4 

GHz Intel Knights Landing (KNL) 7250 chip in Trinity Phase 2 and Oakforest-PACS has 34 

active tiles, each of which has two cores that share a single 1MB L2 cache. Each core 

supports four-fold simultaneous multithreading (SMT); thus, up to 272 hardware threads are 

available on a single node. They support AVX512 instructions including conflict detection, 

hardware gather/scatter prefetch, and exponential and reciprocal instructions. Each processor 

comes with 16 GB on-package High Bandwidth Memory (MCDRAM) and has access to an 

additional 96 GB memory via DDR4 channels. The MCDRAM and DDR support 400 

GB/sec and 90 GB/sec streaming, respectively; however, the latencies of MCDRAM and 

DDR access are comparable. The memory mode of the processor is configurable at boot 

time; simulations were performed using nodes booted in the quad cache mode, in which the 

MCDRAM is configured as L3 cache, and the DDR is configured as usual. In Oakforest-

PACS and Trinity Phase 2, Intel Omni-Path and Cray Aries interconnect are assigned, 

respectively.

B. Data Layout—In GENESIS 1.0–1.3 packages, coordinates, velocities and forces have 

an array-of-structures (AoS) type, in terms of source code organization. In other words, the 

x, y, and z components of coordinates, velocities, and forces are contiguous in memory. On 

KNL, the SIMD performance improves when making use of a structure-of-arrays (SoA) data 

type where x components of coordinates are contiguous in memory. To increase the SIMD 

performance, we changed the data layout from AoS to SoA in the module of real-space non-

bonded interactions.

C. New Algorithm for real space non-bonded interactions: Reduced memory 
neighbor search scheme with improved performance—For the efficient usage of 

memory on KNL, we generate a new neighbor search scheme, which reduces the memory 

size significantly. In GENESIS 1.0–1.3 packages, we make use of the neighbor search 

algorithm based on the midpoint cell scheme. In this scheme, we first check cell pair indices 

icel and jcel for a given cell pair. For each atom indices i in icel, we search for atom indices j 
in jcel and write the indices of j as neighbor lists (Algorithm 1). The required memory size 

for the process becomes MN2 for M cell pairs in a process and N atoms in a cell. The 

neighbor search is written every 10 or 20 steps, and the real space non-bonded interactions 

are performed based on this neighbor lists. For a very large system, this might make use of 

both MCDRAM and DDR, losing overall performance. Moreover, the algorithm does not 

allow contiguous memory access in force evaluation, preventing high SIMD performance 

(Figure 3(a)).
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To use only MCDRAM in MD simulations with better performance, we devise a new 

algorithm of a neighbor search with reduced memory usage. In the proposed algorithm, for 

each atom i in icel, we check if there is at least one atom index j in jcel to be considered as a 

neighbor. If there is at least one neighbor of i, we write neighbor(i.ij)=1 in the neighbor 

search module. In the nonbonded interaction module, we assign interactions between i in 

icel with all j indices in jcel if neighbor(i,ij)=1. For example, let us consider atom index 5 in 

icel, shown in Figure 3. In this case, four atoms (indices 2, 4, 5, and 7) are considered as the 

neighbor list. In the new interaction scheme, we write neighbor(5,ij)=1 and calculate all 

interactions between 5-th atom in icel and all atoms in jcel in the non-bonded interaction 

module. In this neighbor search scheme, the required memory size becomes MN, so we can 

reduce the memory usage. This neighbor search scheme and the non-bonded interaction 

algorithm with SoA data is written in Algorithm 2. With our new neighbor search scheme, 

contiguous memory access is available, optimizing the overall performance (Figure 3(b)). 

Therefore, the new neighbor search scheme not only decreases the overall memory usage, 

but also results in better performance. In addition, this reduces the computational time of 

neighbor list writing because we are not required to check all particle pairs.

D. Optimization of FFT with proper choice of the FFT decomposition scheme
—In our previous development of the parallelization scheme, the FFT is performed on the K 

computer with 6D mesh/torus interconnect network. On the K computer, 1d_Alltoall and 

2d_Alltoall schemes works almost equivalently by properly assigning the decomposition 

topology for the 10243 PME grid. However, we could not guarantee the same parallel 

efficiency on the KNL machine. Therefore, one needs to investigate the parallel performance 

of the two developed schemes and make a choice of suitable FFT scheme for the target 

hardware and the target system.

III. Results and Discussion

1. Performance results of GENESIS on KNL

Although there are 68 cores per node, we assign 64 cores per node for easier selection of 

MPI processes. In each core, 4 threads are available. We considered 256 threads per node for 

our benchmark test. In our hybrid (MPI+OpenMP) parallelization, we assigned 8 OpenMP 

threads, so the number of MPI ranks in a node is fixed to 32. Benchmark systems are created 

by placing multiple STMV (Satellite tobacco mosaic virus) systems in a single box, and also 

by preparing the GATA4 gene locus system. We used the CHARMM force field with 

modified TIP3P explicit water model.26,27 We used 12.0 Å cutoff thresholds, whereas van 

der Waals interactions were smoothed to zero from 10.0 Å to 12.0 Å using switch functions. 

We used the time step of 2 fs and neighbor list search and particle migrations were 

considered every 10 steps. Bonds related to hydrogen atoms were constrained by SHAKE/

RATTLE algorithms.28,29 The SETTLE constraint algorithm was used for the water.30 On 

Oakforest-PACS, we investigated the parallel efficiency of our FFT scheme, and the effect of 

the new algorithms of the real-space non-bonded interactions from a 92,224 atom system 

(apolipoprotein A-I (ApoA1), a component of high-density lipoprotein). We also performed 

benchmarks using 10243 and 20483 PME grids for a 230 million and 1 billion atom model 
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system. On Trinity Phase 2, we used a 20483 grid for the GATA4 gene locus (1 billion atom 

system), but a smaller time step of 1 fs. In all cases, we used the Intel Fortran Compiler 17.0.

A. FFT communication time on Oakforest-PACS—To study the performance of 

GENESIS on KNL, we investigated the communication costs using the volumetric 

decomposition FFT schemes. Our target PME grid numbers here are 10243 and 20483. In 

MD simulations, these grid numbers are usually used for a system consisting of 100 million 

to one billion atoms. FFT timing statistics are obtained by running MD simulations: the 

communication time includes time of waiting before communication and all MPI_Alltoall 

communications. Because the PME grid number in the x dimension is not divisible by the 

number of processes (if the input grid number in the x dimension is n, the grid number in the 

x dimension becomes n
2 + 1 after the FFT by considering real-to-complex FFTs), each 

process has a different communication time. In Figure 4, we depict the timing statistics of 

total FFT execution and communications in FFT by choosing the time of the most time-

consuming process. As mentioned in the previous section, we assigned 8 OpenMP threads, 

so the total number of threads used is obtained by multiplying 8 by the number of MPI 

processes. In the first step, the wait time could be large due to different starting setup times, 

so we measured the communicational time from 1001 to 2000 MD steps. This includes 

timing statistics of 1000 forward and backward FFTs. For both 10243 and 20483 PME grids, 

2d_alltoall scheme is better than 1d_alltoall if the number of processes is not sufficiently 

large. On the other hand, 1d_alltoall becomes better than 2d_Alltoall for larger number of 

processes. Therefore, more frequent communications with small number of processes 

involved in the communication is preferred if we want to make use of large number of KNL 

processors. For the MD simulation of 1 billion atom size system with 20483 PME grid sizes 

using more than 32768 MPI processes, 1d_Alltoall scheme is a better choice. This is 

different from the performance results of the K computer on which performances of 

1d_Alltoall and 2d_alltoall are almost equivalent to each other even using very large number 

of MPI processes. The main difference between two tests on KNL and K is the number of 

MPI processor in a node: we used one MPI per node in the case of K whereas on KNL, 32 

MPIs were assigned per node. We compared the FFT performance between our 1d_Alltoall 

and MKL FFT library used in GROMACS MD package version 2016.1, which makes use of 

the pencil decomposition FFT. Using MKL FFT, we observe that the lowest communication 

time of FFT for 20483 grids is 34.22 ms, which is slightly higher than 1d_alltoall scheme 

(27.70 ms). From this comparison, we expect that 1d_alltoall could be the most suitable FFT 

parallelization scheme for a very large system on a large number of KNL processors.

B. Effect of new non-bonded interaction scheme with reduced memory—To 

understand the effect of the new neighbor search scheme with SoA data, we performed four 

MD simulations of ApoA1 (92,224 atoms) system on Oakforest-PACS: Algorithm 1 with 

and without AoS data and Algorithm 2 with and without SoA data. For one node, we 

assigned 32 MPIs with 8 OpenMP threads. The CPU time for the real-space non-bonded 

interactions and neighbor search generations are obtained from the profile of 0-th thread of 

the MPI rank 0 by using VTune Amplifier. In TABLE I, we show the memory usage for the 

neighbor search and the total number of pairwise interactions in real-space non-bonded 

interactions. In TABLE II, we describe the timing statistics of neighbor search generation 
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and real-space non-boned interactions for 2000 MD steps. Here, we assigned the neighbor 

search list generation every ten steps. Our new algorithm (Algorithm 2 with SoA) has 1.5× 

better performance than that used in GENESIS 1.0–1.3 (Algorithm 1, AoS) although the 

number of interactions is 2.5 times larger and just one sixth of the memory is used for 

neighbor search. The higher speed of Algorithm 2 in the neighbor list is due to less 

computational cost. With Algorithm 1, we need to check all particle pairs. On the other 

hand, we can skip such a checking procedure frequently. The better performance of the real-

space nonbonded interactions is mainly due to less L2 HW prefetcher allocations. With 

Algorithm 2 with SoA, the L2 HW prefetcher allocations are around 42000000. With 

Algorithm 1, this becomes 1.5 times larger. The large HW prefetch problem is highly related 

to the indirect memory access. With Algorithm 1, the index of the most inner loop is k, but 

we evaluate all interactions using index j by converting from the index k to j using 

neighbor_list. This indirect memory access becomes the main problem for performance 

improvement and can be reduced with Algorithm 2. We found that Algorithm 1 can be 

accelerated by adopting SoA data, but still shows less performance than Algorithm 2 

because of the indirect memory access. Algorithm 2 with AoS data is 4x slower than the 

same algorithm with SoA, showing the importance of SoA data for performance. We also 

tested these algorithms on other CPU architecture: Intel’s Sandy bridge, Ivy bridge, Haswell, 

Broadwell, and Skylake micro-architectures, and SPARC64 VIIIfx on the K computer. For 

Haswell, Broadwell, and Skylake, Algorithm 2 works better than Algorithm 1. On the other 

hand, Algorithm 1 is better than Algorithm 2 for other processors. Even on Haswell, 

Broadwell, and Skylake, Algorithm 1 works better if we do not use INTEL compilers.

C. Benchmark of 230M and 1B system on Oakforest-PACS—Benchmarks of 230 

million and 1 billion atoms (230M and 1B system) are performed by creating a system of 

6×6×6 and 10×10×10 copies of STMV, respectively. As mentioned in Results Section 1 A-

B, we applied 10243 and 20483 PME grids, corresponding to 1.2 Å and 1.0 Å PME grid 

spacings. We used velocity Verlet integrator with NVE ensemble, where the reciprocal-space 

calculation with FFT is performed every step. As shown in Figure 5, GENESIS shows good 

scalability even though we calculate reciprocal-space calculation every time step. The most 

time-consuming process is the evaluation of the real-space interaction for small numbers of 

processes. As we increase the number of MPI processes, the main bottleneck moves from 

the real-space to reciprocal space interactions because there is no communication in the real-

space interaction while reciprocal-space interaction includes MPI_Alltoall communications 

in FFT. For example, in the case of 230M system using 2048 MPI ranks, the CPU time of 

real-space interaction is twice as large as the CPU time of reciprocal-space interaction. If we 

increase the number of MPI processes, the ratio of the CPU time becomes opposite: 

reciprocal-space interaction becomes twice of the real-space interaction. Due to our efficient 

FFT parallelization, we could reduce the CPU time of both real- and reciprocal-space non-

bonded interactions, and obtain the scaling as shown in Figure 5.

D. MD simulation of the GATA4 system on Trinity Phase 2—On Trinity Phase 2, 

we performed 4 ns MD simulations of the gene locus with 1 fs time step. Parallel restart files 

are generated by “prst_setup” tool in GENESIS to reduce the file size required in each MPI 

rank. Here, we assigned 65536 MPIs, so the number of files is also 65536. The system size 
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is 1907×2252×2485 Å3, and it is subdivided by 32×32×64 subdomains according to the 

number of MPIs. Table III shows the timing statistics of each evaluation used in MD. Here, 

time for integration includes the time of integration of coordinates and velocities and that of 

communication of coordinates and forces. Bonded interactions consist of energy/force 

evaluation of bonds, angles, and dihedral angles. As shown in the table, the evaluation of 

non-bonded interactions takes around 80 % of the overall simulation time. For non-bonded 

interactions, the evaluation of the reciprocal-space interaction takes more than twice of the 

real-space interaction, and it covers more than 50 % of the simulation time. Communication 

times of forces and coordinates among subdomains are almost negligible. This observation 

suggests that the main problem of MD simulations of large systems on a large number of 

processors is the evaluation of the FFT included in the reciprocal-space interaction. We 

believe that our parallelization scheme of FFT is most suitable for large-scale MD 

simulations on a large number of processors, considering the scalability of our FFT.

2. Implications for chromatin biophysics: electrostatics of the crowded environment 
inside compacted chromatin

We performed the first billion atom biomolecular MD simulation of a gene locus in explicit 

solvent. The achievement is notable considering the necessity of including long-range 

forces, as well as the large memory footprint typically associated with biomolecular 

complexes, in contrast to large MD simulations in materials science, which typically neglect 

long-range forces. Importantly, the study is not only the first simulation of an entire gene 

locus, but also the first simulation of a gene to examine DNA sequence level. We note that 

electrostatics plays an important role in certain biological systems, including DNA, RNA, 

ion channels and chromatin complexes. Typically, electrostatic potentials are computed 

using the Poisson-Boltzmann method.31 While this method is excellent at characterizing the 

general features of the overall complex, many important aspects of electrostatic effects occur 

on short length scales, within the Debye length. Explicit solvent simulations allow us to 

more accurately simulate nucleosome-nucleosome interactions and nucleosome interactions 

with linker DNA, where charges are not fully screened by the ionic environment. In these 

regimes, the finite size and discrete nature of charged side chains, nucleic acid phosphates 

and ions themselves make important contributions, which are not described by the Poisson-

Boltzmann approximation.32 In addition, the memory requirements of the Poisson-

Boltzmann method are prohibitively expensive for very large systems such as the chromatin 

system studied in this work. Our simulations provide, for the first time, an example of short 

time scale dynamics of an entire gene consistent with a realistic force field potential and 

experimental data.

IV. Conclusions

Fully atomistic simulations based on coarse-grained models play a vital role for the 

understanding of chromatin structure. It is the properties of the structure on the atomic scale, 

such as how the DNA wraps around histone proteins to form nucleosomes and how the 

multiple nucleosomes wrap into a 30nm fiber that ultimately dictate the megabase-scale 

hierarchy of chromatin. It is also known that electrostatic interactions between dissolved 

ions and the fibers strongly affect folding dynamics, a process which can only be modelled 

Jung et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on an atomistic level. Such studies enable the examination of histone tail dynamics, histone-

histone and nucleosome-nucleosome interactions in crowded environments, all of which are 

important unsolved issues in chromatin dynamics and chromatin compaction, key processes 

in cell division, development, cancer and neuropsychiatric disorders. Improved calculations 

of the electrostatic potential will allow us to investigate the mechanism of interaction 

between histone tails of nearby nucleosomes, be it ion-mediated, water-mediated, direct 

charge-charge or some other as yet unknown mechanism.

Biomolecular simulations are particularly challenging computationally since they require the 

inclusion of long-range forces, which are often neglected in MD calculations in materials 

science. Here, we optimized the most time consuming real-space non-bonded interactions by 

using a simple neighbor scheme with reduced memory, contiguous memory access and 

change of data type from array of structures (AoS) to structure of arrays (SoA), particularly 

useful for the Intel Xeon Phi processor. We found that the new algorithm accelerates the 

speed by increasing SIMD performance. Long-range electrostatic interactions with the FFT 

were optimized by minimizing the number of processes involved in communications by 

volumetric decomposition. Our developments have been tested for 230 million atom and 1 

billion atom systems with 10243 and 20483 PME grids, showing good parallel efficiency 

even when using more than 65,000 MPI proccesses, giving rise to the first billion atom 

simulation and also the first fully atomistic MD simulation of an entire gene.
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Appendix

Forward FFT with 1d_Alltoall scheme

1 MPI_Alltoall communication in x dimension (MPI_Alltoallx)

2 FFT in x dimension (FFTx)

3 MPI_Alltoall communication in x dimension (MPI_Alltoallx)

4 MPI_Alltoall communication in y dimension (MPI_Alltoally)

5 FFT in y dimension (FFTy)

6 MPI_Alltoall communication in y dimension (MPI_Alltoally)

7 MPI_Alltoall communication in z dimension (MPI_Alltoallz)

8 FFT in z dimension (FFTz).

Forward FFT with 2d_Alltoall scheme

1 MPI_Alltoall communication in x dimension (MPI_Alltoallx)
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2 FFT in x dimension (FFTx)

3 MPI_Alltoall communication in xy dimension (MPI_Alltoallxy)

4 FFT in y dimension (FFTy)

5 MPI_Alltoall communication in z dimension (MPI_Alltoallz)

6 FFT in z dimension (FFTz).
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Figure 1. 
Structure of GATA4 gene, consisting of 83 kilobases of double stranded helical DNA 

wrapped around 427 nucleosomes. Protein tails used for programming gene expression 

protrude from each nucleosome.

Jung et al. Page 14

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Automated clash detection: flow diagram of the operation of the clash correction script. 

Clashes correctable by a phosphate group rotation are those involving P, O5’, C5’, C4’, C3’, 

O3’ type atoms on the DNA backbone. All other clashes involve at least one atom in a 

protein side group, and can be corrected by a side group rotation. The vicinity of a clash is 

defined to be all atoms within a 6Å radius of the atoms involved in the clash.
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Figure 3. 
(a) Non-bonded interaction scheme used in GENESIS 1.0–1.3 and (b) new nonbonded 

interaction scheme for Intel Xeon Phi processors.
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Figure 4. 
FFT time of (a) 10243 and (b) 20483 PME grids using GENESIS on Oakforest-PACS
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Figure 5. 
Benchmark performance of 230M and 1B system on Oakforest-PACS
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Table I.

Memory usage (GiB) for the neighbor search and number of pairwise interactions evaluated in real space 

nonbonded interactions (32 MPI with 8 OpenMP case)

Memory usage Number of interactions

Algorithm 1 (AoS) 305.88 MiB 47364470

Algorithm 1 (SoA) 305.88 MiB 47364470

Algorithm 1 (AoS) 48.40 MiB 122404436

Algorithm 1 (SoA) 48.40 MiB 122404436
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Table II.

Calculation time (sec) of neighbor search + real-space nonbonded interaction for 2000 MD steps

Neighbor List Nonbond Total

Algorithm 1 (AoS) 9.95 36.42 46.37

Algorithm 1 (SoA) 6.60 33.71 40.31

Algorithm 2 (AoS) 4.91 102.46 107.37

Algorithm 2 (SoA) 4.15 27.86 32.01
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Table III.

Calculation time (sec) of each component for 50 ps MD simulation of gene locus (time step is 1 fs)

Total time (sec) Ratio (%)

Total 9936.63 100.00

Integration 520.03 13.68

Bonded 13.68 0.14

Non-bonded (real) 2272.25 22.87

Non-bonded (reciprocal) 5493.88 55.29
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Algorithm 1.

Neighbor search used for GENESIS 1.0–1.3

do ij = 1, M M: number of cell pairs

 icel = cell_index(1,ij) First cell index of the cell pair

 jcel = cell_index(2,ij) Second cell index of the cell pair

 do i = 1, N(icel) N(icel): Number of atoms in icel-th cell

  do j = 1, N(jcel)

   rij(1) = coord(1,i,icel)-coord(1,j,jcel)

   rij(2) = coord(2,i,icel)-coord(2,j,jcel)

   rij(3) = coord(3,i,icel)-coord(3,j,jcel)

   dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

   if (dij < pairlist cutoff) then

    Neighbor(i,ij) = Neighbor(i,ij) + 1

    k = Neighbor(i,ij)

    write Neighbor_list(k,i,ij)

   end if

  end do

 end do

 end do
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Algorithm 2.

Real-space non-bonded interaction kernel used for GENESIS 1.0–1.3

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 do i = 1, N(icel)

  force_temp(1:3) = 0.0

   do k = 1, Neighbor(i,ij) Number of neighbors of i-th atm in icel-th cell

    j = Neighbor_list(k,i,ij) Neighbor of i-th atom in icel-th cell

    rij(1) = coord(1,i,icel)-coord(1,j,jcel)

    rij(2) = coord(2,i,icel)-coord(2,j,jcel)

    rij(3) = coord(3,i,icel)-coord(3,j,jcel)

    dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

    calculate f (1:3):force component from given distance

    force_temp(1) = force_temp(1) – f (1)

    force_temp(2) = force_temp(2) – f (2)

    force_temp(3) = force_temp(3) – f (3)

    force(1,j,jcel) = force(1,j,jcel) + f (1)

    force(2,j,jcel) = force(2,j,jcel) + f (2)

    force(3,j,jcel) = force(3,j,jcel) + f (3)

   end do

   force(1,i,icel) = force(1,i,icel) + force_temp(1)

   force(2,i,icel) = force(2,i,icel) + force_temp(2)

   force(3,i,icel) = force(3,i,icel) + force_temp(3)

  end do

end do
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Algorithm 3.

New neighbor search algorithm

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 Neighbor(i,ij) = 0

 do i = 1, N(icel)

  do j = 1, N(jcel)

   rij(1) = coord(1,i,icel)-coord(1,j,jcel)

   rij(2) = coord(2,i,icel)-coord(2,j,jcel)

   rij(3) = coord(3,i,icel)-coord(3,j,jcel)

   dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

   if (dij < pairlist cutoff) then

    Neighbor(i,ij) = 1

    exit the do loop

   end if

  end do

 end do

end do
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Algorithm 4.

Real-space non-bonded interaction kernel used for KNL

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 do i = 1, N(icel)

  if (Neighbor(i,ij) == 0) cycle

  force_temp(1:3) = 0.0 do j = 1, N (jcel)

  rij(1) = coord(i,1,icel)-coord(j,1,jcel)

  rij(2) = coord(i,2,icel)-coord(j,2,jcel)

  rij(3) = coord(i,3,icel)-coord(j,3,jcel)

  calculate f (1:3):force component from given distance

  force_temp(1) = force_temp(1) – f (1)

  force_temp(2) = force_temp(2) – f (2)

  force_temp(3) = force_temp(3) – f (3)

  force(j,1,jcel) = force(j,1,jcel) + f (1)

  force(j,2,jcel) = force(j,2,jcel) + f (2)

  force(j,3,jcel) = force(j,3,jcel) + f (3)

 end do

 force(i,1,icel) = force(i,1,icel) + force_temp(1)

 force(i,2,icel) = force(i,2,icel) + force_temp(2)

 force(i,3,icel) = force(i,3,icel) + force_temp(3) end do

end do
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