
Scaling Molecular Dynamics Beyond 100,000 Processor Cores
for Large-Scale Biophysical Simulations

Jaewoon Jung*, Wataru Nishima†, Marcus Daniels†, Gavin Bascom‡, Chigusa Kobayashi*,
Adetokunbo Adedoyin†, Michael Wall†, Anna Lappala†, William Fischer†, Chang-Shung
Tung†, Tamar Schlick‡, Yuji Sugita*, Karissa Y. Sanbonmatsu†

*Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe
650-0047, Japan

†Los Alamos National Laboratory, Los Alamos, NM, USA

‡New York University, New York, NY, USA

Abstract

The complexity of biological interactions is driving force behind the need to increase system size

in biophysical simulations, requiring not only powerful hardware but adaptable software that can

accommodate a large number of atoms interacting through non-trivial forcefields. To address this,

we developed and implemented strategies in the GENESIS molecular dynamics package for large

numbers of processors. Long-range electrostatic interactions were parallelized by minimizing the

number of processes involved in communication. A new algorithm was implemented for non-

bonded interactions to increase SIMD performance, reducing memory usage for ultra large

systems. Memory usage for neighbor searches in real-space non-bonded interactions was reduced

by one sixth, with significant speedup. Using experimental data describing physical 3D chromatin

interactions, we constructed the first atomistic model of an entire gene locus (GATA4). Taken

together, these developments enabled the first billion-atom simulation of an intact biomolecular

complex, achieving scaling to 65,000 processes (500,000 processor cores).

I. Introduction

Molecular dynamics (MD) is a powerful tool to understand biological phenomena in

atomistic detail. From the first MD simulation of a protein,1 the spatiotemporal scale has

increased significantly due to various hardware and software developments: Taiji et al.
accelerated MD by developing specialized hardware, MDGRAPE-3 for time-consuming

non-bonded interactions.2 ANTON, which is also specialized to MD simulations, achieved

more than 100 times speed-up compared to conventional computers, simulating 1 ms protein

dynamics in explicit solvent.3–5 The Graphics Processing Unit (GPU) or Intel Xeon Phi have

also become very promising in the context of extending the time scale of MD

simulations6–14. As a result of recent developments in hardware and software, large systems

consisting of 64 million and 100 million atoms can be simulated with MD.15,16

jung@riken.jp (Jaewoon Jung).

HHS Public Access
Author manuscript
J Comput Chem. Author manuscript; available in PMC 2020 August 05.

Published in final edited form as:
J Comput Chem. 2019 August 05; 40(21): 1919–1930. doi:10.1002/jcc.25840.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Currently, the development of MD to extend the timescale and the system size is becoming

more important due to novel experimental methodologies in biology. An example of such

progress in this area is a better understanding of structural genomics and chromatin

dynamics; chromatin is a biological DNA-protein complex that provides compaction of the

genomic information in the nucleus of a cell. In this compact structure, DNA wraps around

histone proteins – a functional unit known as the nucleosome – in a controlled and structured

manner, due to interactions between DNA and proteins, and higher level of compaction is

achieved through specific protein-protein and protein-DNA interactions. What exactly drives

the compaction of chromatin and how it takes place is unclear. With recent advances in

sequencing technology, a deluge of 3D cross-linking data (chromosome conformation

capture, or single-cell Hi-C) has revealed new insights into chromatin structure. In Hi-C

experiments the probability, Pij, that two genomic loci i and j are in contact can be inferred.

From these data one may construct a contact map: a two-dimensional representation of a

three-dimensional structure. Genome wide contact maps have revealed the existence of

chromosome territories (also known as topologically associated domains or TADs), and have

established the hierarchical nature of chromatin structure on the megabase scale. This

complex hierarchical structure presumably results from the requirement of several meters of

DNA to be compacted in a micron-sized nucleus in human cells. Most remarkably this

compaction occurs in the crowded space of a nucleus without topological entanglement or

knot formation. It is now widely believed that this is achieved by the chromatin adopting a

fractal globule conformation. The hierarchical structure of chromatin is not just a by-product

of compaction; it also plays a pivotal role in a range of genomic functions, most notably in

gene transcription, DNA replication, and repair. Yet despite recent advancements in

chromatin conformation capture and high-resolution direct imaging experiments (such as

Fluorescence in situ hybridization or FISH), chromatin structure remains rather poorly

understood. In part this is due to the dramatic changes in chromatin structure during the cell

cycle, as well as the knowledge of cells which do not follow the established levels of

chromatin organization.

In MD, the general protocol consists of (1) evaluation of potential energy and force, (2)

integration of coordinates and momenta, and (3) thermostat or barostat calculations. For

biological MD simulations with explicit water molecules, the potential energy function

consists of bonded (bond, angle, proper and improper dihedral angle) and non-bonded terms

(electrostatic and van der Waals). The computational cost of the bonded interactions is O(N)

and takes part in a small fraction of the total simulation time. The main bottleneck in MD

stems from the evaluation of the non-bonded interactions. The computational cost of the

non-bonded interactions is O(N2). Because the van der Waals interactions decay rapidly

according to the pairwise distance, they can be computed with O(N) computational cost by

applying a cutoff value beyond which the interaction energy is zero. The electrostatic energy

is decomposed into the real- and reciprocal-space interactions using the particle mesh Ewald

(PME) scheme.17,18 The real-space interaction energy decays rapidly as the pairwise

distance, so we can apply the same cutoff value as for the van der Waals interaction. Long-

range interactions are described in a reciprocal space using Fast Fourier Transform (FFT),

improving the computational cost to O(NlogN). For small systems, the real-space non-

bonded interaction becomes the main computational challenge. Conversely, the main

Jung et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

bottleneck moves to evaluation of reciprocal space non-bonded interactions as we increase

the number of computational processes or increase the target system size.

We have developed the GENESIS MD software to overcome current size limitations of MD.
19,20 The new domain decomposition scheme in GENESIS produces highly efficient

parallelization in real-space calculation, enabling simulations of very large systems.21

Efficient FFT parallelization schemes have been developed in GENESIS for high

performance on the K computer.22 Due to DNA being a highly charged polymer, the

accurate calculation of long-range electrostatic interactions is required, whereby the FFT

becomes the main bottleneck of parallelization. Here, we discuss effective FFT

parallelization schemes in GENESIS that can be used on Intel Xeon Phi processors for large-

scale MD simulations. We also discuss the new implementation of non-bonded interactions

in GENESIS to increase SIMD performance on Intel Xeon Phi. Our new developments are

tested on the second generation Intel Xeon Phi processors (code name: Knights Landing or

KNL) on the Oakforest-PACS and Trinity Phase 2 platforms. We also constructed an atomic

model of an entire gene locus (83 kilobases (kb) of DNA complexed with 427 nucleosomes,

Figure 1) consisting of more than 1 billion atoms and performed simulations on Trinity

Phase 2 platform.

II. METHODS

1. Atomistic model of GATA4 system

A. Modeling—We constructed a coarse-grained 3D scaffold using a coarse-grained

mesoscale model of chromatin that led to the identification of a novel folding motif,

hierarchical looping, where chromatin fibers undergo folding to produce layered networks of

loops (citations to be added). By combining experimentally measured ultrastructural

parameters with their previously verified mesoscale chromatin model, a detailed mesoscale

model of the GATA4 gene locus was built (Figure 1) and used to derive atomic resolution

coordinates. The model was equilibrated resulting in a compact globular structure exhibiting

hierarchical looping, where the positions of the loops agree with 3C data, and local folding

agrees in vivo experiments. Our mesoscale chromatin model consists of three particle types:

linker DNA, nucleosome core particle pseudo-charges, and flexible histone tails.23 Linker

DNA is treated as a modified worm-like chain. The nucleosome core particles are

represented as electrostatic objects, with shape and surface derived from the Discrete

Surface Charge Optimization (DiSCO) algorithm that approximates the electric field of the

atomic nucleosome by Debye-Hückel pseudo-charges along the surface of the complex as a

function of monovalent salt.24 Flexible histone tails are coarse grained so that 50 beads

represent the 8 histone tails, where each bead represents about 5 amino acid residues.23 The

mesoscale model allows the direct placement of all-atom nucleosomal DNA and protein

molecular structures in space, resulting in the atomistic model of the GATA4 system.

B. Automated clash detection for model generation of macromolecular
complexes—Techniques such as X-ray crystallography, NMR spectroscopy and electron

microscopy are just some of the methods used to determine protein structure. However, such

experimental data is typically insufficient to build a fully atomistic model – one must

Jung et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

combine experimental data with homology modeling techniques (a reconstruction of a

protein structure based on its amino acid sequence and knowledge of the structure of a

related homologous protein). The synthesis of homology techniques and experimental data

is rarely flawless, and often steric clashes (which here we define as two atoms being

separated by a distance less than 0.9Å) are introduced between atoms. This is highly

undesirable as many molecular dynamics simulation packages are unable to correct for such

clashes at the minimization stage and the high Van der Waals repulsion energy of the

clashing atoms would lead to simulation failure. In light of this problem we develop a

procedure to identify steric clashes in a general DNA-protein structure and automatically

adjust atomic positions, without violating the known geometric constraints, such that all

clashes are removed and corrected for. The DNA backbone is remarkably rigid. Besides the

puckering behavior exhibited by the deoxyribose ring, the only other significant freedom of

rotation lies in the phosphate group, about the O3’-C5’ axis. In principle this rotational

freedom, denoted ɸ, can take on any value ɸ in [−180˚, 180˚), and this can be exploited for

the purposes of clash correction (for geometric details see the work of Tung C.S. and Carter

E.S.). Protein structures, unlike DNA, are generally more flexible, yielding more ways in

which atomic positions can be modified to remove steric clashes. However, in practice we

found that modifying just one torsion angle, denoted χ - where χ in [−180˚, 180˚), of the

bond connecting the amino acid side-group to the residue was sufficient to remove all steric

clashes in our models when combined with ɸ rotations. The clash correction program was

predominantly written in Python, with calls to Fortran subroutines which calculate new atom

positions upon changing ɸ or χ. Figure 2 shows a flow diagram of the program’s operation.

2. Major characteristic of GENESIS for large-scale MD

For large-scale MD, GENESIS has the following major innovative characteristics:

A. Inverse lookup table25—GENESIS makes use of a lookup table for energy and

force evaluation of short-range non-bonded interactions instead of using direct calculations.

The lookup table is based on the inverse distance squared calculation, which allows to

perform accurate calculations for very short pairwise distances by assigning many table

points, whereas fast evaluation of energy/force is available by reducing table points for

longer pairwise distances.

B. Domain decomposition with midpoint cell method21—In the midpoint cell

method, each rank has the data of cells in the corresponding subdomain and adjacent cells of

the subdomains. It sends/receives data to/from the neighboring subdomains. The non-bonded

interaction is parallelized by distributing the cell pair lists (or midpoint cell indices) over

OpenMP threads. Integration and constraint evaluations are parallelized by distributing the

cell indices in each subdomain over OpenMP threads. By adopting the midpoint cell method

with the volumetric decomposition of FFT described below, we can assign the same domain

decomposition between real- and reciprocal-spaces, skipping communications of charge grid

data before FFT.

C. Volumetric decomposition of FFT22—GENESIS makes use of the volumetric

decomposition FFT where the reciprocal space is decomposed in all three dimensions. This

Jung et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

requires more frequent MPI_Alltoall communications than slab or pencil decompositions.

However, this scheme is more favorable for large systems on massively parallel

supercomputers because the amount of data in each communication is much smaller than the

other decompositions. Moreover, we can skip communication of charge data before FFT by

assigning the same domain decompositions between real and reciprocal spaces. Specifically,

let us assume that we decompose the overall space by P MPI processes. If P is factorized by

P = Px × Py × Pz, we decompose the space by Px in x dimension, Py in y dimension, and Pz

in z dimension. To perform the FFT in each dimension, we assign MPI_Alltoall

communication such that each process has global data in the specified dimension. According

to our volumetric decomposition FFT scheme (1d_Alltoall), forward FFT consists of eight

computation/communication procedures outlined in Appendix.

In this scheme, we require five one-dimensional MPI_Alltoall communications. Intuitively,

the procedure of the backward FFT (BFFT) is opposite to the forward FFT; this

decomposition scheme has several advantages over other schemes from the scalability point

of view despite of more frequent communications. On the one hand, the number of processes

involved in communications is proportional to the cubic root of P. On the other hand, it is

proportional to P or the square root of P in the case of slab or pencil decomposition FFT.

When P is sufficiently large, the communication cost could be reduced by more frequent

communication with small number of processes involved in the communication. We also

utilize a volumetric decomposition scheme (see Appendix) with reduced frequency of

communications while the number of processes involved in the communication is larger

(2d_alltoall).

In this scheme, we require three one-dimensional MPI_Alltoall communications. The

2d_Alltoall scheme is similar to pencil decomposition FFT if we neglect the first

MPI_Alltoallx communication. According to our investigations of 1d_alltoall and

2d_alltoall schemes, the performances are almost equivalent to each other on the K

computer.

D. Parallel I/O for a large system19—For an MD simulation of a very large system,

single restart/trajectory files cause several problems. First, there is a memory problem in

reading single restart/trajectory files. In the case of a 1 billion atom system, we require a 24

GB (6 (three coordinates and velocities) × 1 billion (number of particles) × 4 (byte for a real

number)) file size for a single restart file. Consequently, each process needs at least 24 GB

memory to read only the restart file. Because we require not only restart but also PDB

(protein data bank) and force-field parameter files, the file size becomes even larger than 100

GB, which can be prohibitively large. Writing a single restart/trajectory is even more

problematic for a very large system. To write a single trajectory file, we need to accumulate

12 GB size coordinates by communication among processes. Parallel I/O is designed to

avoid these problems. With parallel I/O, each process requires data of the corresponding

subdomain. As we increase the number of processes, the required amount of data in each

process decreases accordingly. A parallel restart file is generated from the initial PDB and

parameter files using a parallel restart setup tool (prst_setup). During MD simulations, each

MPI process writes trajectory files that contain only the coordinates of the corresponding

subdomain. The number of files is identical to the number of MPI processes. After finishing

Jung et al. Page 5

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the MD simulation, users can combine the trajectory files into a single file with atom

selection option in order to only analyze the atoms/atom groups of interest.

3. Optimization of GENESIS for KNL Intel Xeon Phi processors

A. Hardware architecture of KNL in Trinity phase 2 and Oakforest-PACS—As

the feature width of commodity chips approaches 10 nm, power consumption has increased

substantially due to leakage currents. Many-core chips with fewer components per core and

lower clock speeds therefore are being developed for future exascale computing. The 1.4

GHz Intel Knights Landing (KNL) 7250 chip in Trinity Phase 2 and Oakforest-PACS has 34

active tiles, each of which has two cores that share a single 1MB L2 cache. Each core

supports four-fold simultaneous multithreading (SMT); thus, up to 272 hardware threads are

available on a single node. They support AVX512 instructions including conflict detection,

hardware gather/scatter prefetch, and exponential and reciprocal instructions. Each processor

comes with 16 GB on-package High Bandwidth Memory (MCDRAM) and has access to an

additional 96 GB memory via DDR4 channels. The MCDRAM and DDR support 400

GB/sec and 90 GB/sec streaming, respectively; however, the latencies of MCDRAM and

DDR access are comparable. The memory mode of the processor is configurable at boot

time; simulations were performed using nodes booted in the quad cache mode, in which the

MCDRAM is configured as L3 cache, and the DDR is configured as usual. In Oakforest-

PACS and Trinity Phase 2, Intel Omni-Path and Cray Aries interconnect are assigned,

respectively.

B. Data Layout—In GENESIS 1.0–1.3 packages, coordinates, velocities and forces have

an array-of-structures (AoS) type, in terms of source code organization. In other words, the

x, y, and z components of coordinates, velocities, and forces are contiguous in memory. On

KNL, the SIMD performance improves when making use of a structure-of-arrays (SoA) data

type where x components of coordinates are contiguous in memory. To increase the SIMD

performance, we changed the data layout from AoS to SoA in the module of real-space non-

bonded interactions.

C. New Algorithm for real space non-bonded interactions: Reduced memory
neighbor search scheme with improved performance—For the efficient usage of

memory on KNL, we generate a new neighbor search scheme, which reduces the memory

size significantly. In GENESIS 1.0–1.3 packages, we make use of the neighbor search

algorithm based on the midpoint cell scheme. In this scheme, we first check cell pair indices

icel and jcel for a given cell pair. For each atom indices i in icel, we search for atom indices j
in jcel and write the indices of j as neighbor lists (Algorithm 1). The required memory size

for the process becomes MN2 for M cell pairs in a process and N atoms in a cell. The

neighbor search is written every 10 or 20 steps, and the real space non-bonded interactions

are performed based on this neighbor lists. For a very large system, this might make use of

both MCDRAM and DDR, losing overall performance. Moreover, the algorithm does not

allow contiguous memory access in force evaluation, preventing high SIMD performance

(Figure 3(a)).

Jung et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To use only MCDRAM in MD simulations with better performance, we devise a new

algorithm of a neighbor search with reduced memory usage. In the proposed algorithm, for

each atom i in icel, we check if there is at least one atom index j in jcel to be considered as a

neighbor. If there is at least one neighbor of i, we write neighbor(i.ij)=1 in the neighbor

search module. In the nonbonded interaction module, we assign interactions between i in

icel with all j indices in jcel if neighbor(i,ij)=1. For example, let us consider atom index 5 in

icel, shown in Figure 3. In this case, four atoms (indices 2, 4, 5, and 7) are considered as the

neighbor list. In the new interaction scheme, we write neighbor(5,ij)=1 and calculate all

interactions between 5-th atom in icel and all atoms in jcel in the non-bonded interaction

module. In this neighbor search scheme, the required memory size becomes MN, so we can

reduce the memory usage. This neighbor search scheme and the non-bonded interaction

algorithm with SoA data is written in Algorithm 2. With our new neighbor search scheme,

contiguous memory access is available, optimizing the overall performance (Figure 3(b)).

Therefore, the new neighbor search scheme not only decreases the overall memory usage,

but also results in better performance. In addition, this reduces the computational time of

neighbor list writing because we are not required to check all particle pairs.

D. Optimization of FFT with proper choice of the FFT decomposition scheme
—In our previous development of the parallelization scheme, the FFT is performed on the K

computer with 6D mesh/torus interconnect network. On the K computer, 1d_Alltoall and

2d_Alltoall schemes works almost equivalently by properly assigning the decomposition

topology for the 10243 PME grid. However, we could not guarantee the same parallel

efficiency on the KNL machine. Therefore, one needs to investigate the parallel performance

of the two developed schemes and make a choice of suitable FFT scheme for the target

hardware and the target system.

III. Results and Discussion

1. Performance results of GENESIS on KNL

Although there are 68 cores per node, we assign 64 cores per node for easier selection of

MPI processes. In each core, 4 threads are available. We considered 256 threads per node for

our benchmark test. In our hybrid (MPI+OpenMP) parallelization, we assigned 8 OpenMP

threads, so the number of MPI ranks in a node is fixed to 32. Benchmark systems are created

by placing multiple STMV (Satellite tobacco mosaic virus) systems in a single box, and also

by preparing the GATA4 gene locus system. We used the CHARMM force field with

modified TIP3P explicit water model.26,27 We used 12.0 Å cutoff thresholds, whereas van

der Waals interactions were smoothed to zero from 10.0 Å to 12.0 Å using switch functions.

We used the time step of 2 fs and neighbor list search and particle migrations were

considered every 10 steps. Bonds related to hydrogen atoms were constrained by SHAKE/

RATTLE algorithms.28,29 The SETTLE constraint algorithm was used for the water.30 On

Oakforest-PACS, we investigated the parallel efficiency of our FFT scheme, and the effect of

the new algorithms of the real-space non-bonded interactions from a 92,224 atom system

(apolipoprotein A-I (ApoA1), a component of high-density lipoprotein). We also performed

benchmarks using 10243 and 20483 PME grids for a 230 million and 1 billion atom model

Jung et al. Page 7

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

system. On Trinity Phase 2, we used a 20483 grid for the GATA4 gene locus (1 billion atom

system), but a smaller time step of 1 fs. In all cases, we used the Intel Fortran Compiler 17.0.

A. FFT communication time on Oakforest-PACS—To study the performance of

GENESIS on KNL, we investigated the communication costs using the volumetric

decomposition FFT schemes. Our target PME grid numbers here are 10243 and 20483. In

MD simulations, these grid numbers are usually used for a system consisting of 100 million

to one billion atoms. FFT timing statistics are obtained by running MD simulations: the

communication time includes time of waiting before communication and all MPI_Alltoall

communications. Because the PME grid number in the x dimension is not divisible by the

number of processes (if the input grid number in the x dimension is n, the grid number in the

x dimension becomes n
2 + 1 after the FFT by considering real-to-complex FFTs), each

process has a different communication time. In Figure 4, we depict the timing statistics of

total FFT execution and communications in FFT by choosing the time of the most time-

consuming process. As mentioned in the previous section, we assigned 8 OpenMP threads,

so the total number of threads used is obtained by multiplying 8 by the number of MPI

processes. In the first step, the wait time could be large due to different starting setup times,

so we measured the communicational time from 1001 to 2000 MD steps. This includes

timing statistics of 1000 forward and backward FFTs. For both 10243 and 20483 PME grids,

2d_alltoall scheme is better than 1d_alltoall if the number of processes is not sufficiently

large. On the other hand, 1d_alltoall becomes better than 2d_Alltoall for larger number of

processes. Therefore, more frequent communications with small number of processes

involved in the communication is preferred if we want to make use of large number of KNL

processors. For the MD simulation of 1 billion atom size system with 20483 PME grid sizes

using more than 32768 MPI processes, 1d_Alltoall scheme is a better choice. This is

different from the performance results of the K computer on which performances of

1d_Alltoall and 2d_alltoall are almost equivalent to each other even using very large number

of MPI processes. The main difference between two tests on KNL and K is the number of

MPI processor in a node: we used one MPI per node in the case of K whereas on KNL, 32

MPIs were assigned per node. We compared the FFT performance between our 1d_Alltoall

and MKL FFT library used in GROMACS MD package version 2016.1, which makes use of

the pencil decomposition FFT. Using MKL FFT, we observe that the lowest communication

time of FFT for 20483 grids is 34.22 ms, which is slightly higher than 1d_alltoall scheme

(27.70 ms). From this comparison, we expect that 1d_alltoall could be the most suitable FFT

parallelization scheme for a very large system on a large number of KNL processors.

B. Effect of new non-bonded interaction scheme with reduced memory—To

understand the effect of the new neighbor search scheme with SoA data, we performed four

MD simulations of ApoA1 (92,224 atoms) system on Oakforest-PACS: Algorithm 1 with

and without AoS data and Algorithm 2 with and without SoA data. For one node, we

assigned 32 MPIs with 8 OpenMP threads. The CPU time for the real-space non-bonded

interactions and neighbor search generations are obtained from the profile of 0-th thread of

the MPI rank 0 by using VTune Amplifier. In TABLE I, we show the memory usage for the

neighbor search and the total number of pairwise interactions in real-space non-bonded

interactions. In TABLE II, we describe the timing statistics of neighbor search generation

Jung et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and real-space non-boned interactions for 2000 MD steps. Here, we assigned the neighbor

search list generation every ten steps. Our new algorithm (Algorithm 2 with SoA) has 1.5×

better performance than that used in GENESIS 1.0–1.3 (Algorithm 1, AoS) although the

number of interactions is 2.5 times larger and just one sixth of the memory is used for

neighbor search. The higher speed of Algorithm 2 in the neighbor list is due to less

computational cost. With Algorithm 1, we need to check all particle pairs. On the other

hand, we can skip such a checking procedure frequently. The better performance of the real-

space nonbonded interactions is mainly due to less L2 HW prefetcher allocations. With

Algorithm 2 with SoA, the L2 HW prefetcher allocations are around 42000000. With

Algorithm 1, this becomes 1.5 times larger. The large HW prefetch problem is highly related

to the indirect memory access. With Algorithm 1, the index of the most inner loop is k, but

we evaluate all interactions using index j by converting from the index k to j using

neighbor_list. This indirect memory access becomes the main problem for performance

improvement and can be reduced with Algorithm 2. We found that Algorithm 1 can be

accelerated by adopting SoA data, but still shows less performance than Algorithm 2

because of the indirect memory access. Algorithm 2 with AoS data is 4x slower than the

same algorithm with SoA, showing the importance of SoA data for performance. We also

tested these algorithms on other CPU architecture: Intel’s Sandy bridge, Ivy bridge, Haswell,

Broadwell, and Skylake micro-architectures, and SPARC64 VIIIfx on the K computer. For

Haswell, Broadwell, and Skylake, Algorithm 2 works better than Algorithm 1. On the other

hand, Algorithm 1 is better than Algorithm 2 for other processors. Even on Haswell,

Broadwell, and Skylake, Algorithm 1 works better if we do not use INTEL compilers.

C. Benchmark of 230M and 1B system on Oakforest-PACS—Benchmarks of 230

million and 1 billion atoms (230M and 1B system) are performed by creating a system of

6×6×6 and 10×10×10 copies of STMV, respectively. As mentioned in Results Section 1 A-

B, we applied 10243 and 20483 PME grids, corresponding to 1.2 Å and 1.0 Å PME grid

spacings. We used velocity Verlet integrator with NVE ensemble, where the reciprocal-space

calculation with FFT is performed every step. As shown in Figure 5, GENESIS shows good

scalability even though we calculate reciprocal-space calculation every time step. The most

time-consuming process is the evaluation of the real-space interaction for small numbers of

processes. As we increase the number of MPI processes, the main bottleneck moves from

the real-space to reciprocal space interactions because there is no communication in the real-

space interaction while reciprocal-space interaction includes MPI_Alltoall communications

in FFT. For example, in the case of 230M system using 2048 MPI ranks, the CPU time of

real-space interaction is twice as large as the CPU time of reciprocal-space interaction. If we

increase the number of MPI processes, the ratio of the CPU time becomes opposite:

reciprocal-space interaction becomes twice of the real-space interaction. Due to our efficient

FFT parallelization, we could reduce the CPU time of both real- and reciprocal-space non-

bonded interactions, and obtain the scaling as shown in Figure 5.

D. MD simulation of the GATA4 system on Trinity Phase 2—On Trinity Phase 2,

we performed 4 ns MD simulations of the gene locus with 1 fs time step. Parallel restart files

are generated by “prst_setup” tool in GENESIS to reduce the file size required in each MPI

rank. Here, we assigned 65536 MPIs, so the number of files is also 65536. The system size

Jung et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is 1907×2252×2485 Å3, and it is subdivided by 32×32×64 subdomains according to the

number of MPIs. Table III shows the timing statistics of each evaluation used in MD. Here,

time for integration includes the time of integration of coordinates and velocities and that of

communication of coordinates and forces. Bonded interactions consist of energy/force

evaluation of bonds, angles, and dihedral angles. As shown in the table, the evaluation of

non-bonded interactions takes around 80 % of the overall simulation time. For non-bonded

interactions, the evaluation of the reciprocal-space interaction takes more than twice of the

real-space interaction, and it covers more than 50 % of the simulation time. Communication

times of forces and coordinates among subdomains are almost negligible. This observation

suggests that the main problem of MD simulations of large systems on a large number of

processors is the evaluation of the FFT included in the reciprocal-space interaction. We

believe that our parallelization scheme of FFT is most suitable for large-scale MD

simulations on a large number of processors, considering the scalability of our FFT.

2. Implications for chromatin biophysics: electrostatics of the crowded environment
inside compacted chromatin

We performed the first billion atom biomolecular MD simulation of a gene locus in explicit

solvent. The achievement is notable considering the necessity of including long-range

forces, as well as the large memory footprint typically associated with biomolecular

complexes, in contrast to large MD simulations in materials science, which typically neglect

long-range forces. Importantly, the study is not only the first simulation of an entire gene

locus, but also the first simulation of a gene to examine DNA sequence level. We note that

electrostatics plays an important role in certain biological systems, including DNA, RNA,

ion channels and chromatin complexes. Typically, electrostatic potentials are computed

using the Poisson-Boltzmann method.31 While this method is excellent at characterizing the

general features of the overall complex, many important aspects of electrostatic effects occur

on short length scales, within the Debye length. Explicit solvent simulations allow us to

more accurately simulate nucleosome-nucleosome interactions and nucleosome interactions

with linker DNA, where charges are not fully screened by the ionic environment. In these

regimes, the finite size and discrete nature of charged side chains, nucleic acid phosphates

and ions themselves make important contributions, which are not described by the Poisson-

Boltzmann approximation.32 In addition, the memory requirements of the Poisson-

Boltzmann method are prohibitively expensive for very large systems such as the chromatin

system studied in this work. Our simulations provide, for the first time, an example of short

time scale dynamics of an entire gene consistent with a realistic force field potential and

experimental data.

IV. Conclusions

Fully atomistic simulations based on coarse-grained models play a vital role for the

understanding of chromatin structure. It is the properties of the structure on the atomic scale,

such as how the DNA wraps around histone proteins to form nucleosomes and how the

multiple nucleosomes wrap into a 30nm fiber that ultimately dictate the megabase-scale

hierarchy of chromatin. It is also known that electrostatic interactions between dissolved

ions and the fibers strongly affect folding dynamics, a process which can only be modelled

Jung et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

on an atomistic level. Such studies enable the examination of histone tail dynamics, histone-

histone and nucleosome-nucleosome interactions in crowded environments, all of which are

important unsolved issues in chromatin dynamics and chromatin compaction, key processes

in cell division, development, cancer and neuropsychiatric disorders. Improved calculations

of the electrostatic potential will allow us to investigate the mechanism of interaction

between histone tails of nearby nucleosomes, be it ion-mediated, water-mediated, direct

charge-charge or some other as yet unknown mechanism.

Biomolecular simulations are particularly challenging computationally since they require the

inclusion of long-range forces, which are often neglected in MD calculations in materials

science. Here, we optimized the most time consuming real-space non-bonded interactions by

using a simple neighbor scheme with reduced memory, contiguous memory access and

change of data type from array of structures (AoS) to structure of arrays (SoA), particularly

useful for the Intel Xeon Phi processor. We found that the new algorithm accelerates the

speed by increasing SIMD performance. Long-range electrostatic interactions with the FFT

were optimized by minimizing the number of processes involved in communications by

volumetric decomposition. Our developments have been tested for 230 million atom and 1

billion atom systems with 10243 and 20483 PME grids, showing good parallel efficiency

even when using more than 65,000 MPI proccesses, giving rise to the first billion atom

simulation and also the first fully atomistic MD simulation of an entire gene.

Acknowledgements

This research was conducted using the Fujitsu PRIMERGY CX600M1/CX1640M1 (OakforestPACS) in the
Information Technology Center of the University of Tokyo (project ID: gh50) and joint Center for Advanced HPC
by HPCI system research project (project ID: hp180155) and Los Alamos National Laboratory high performance
computing resources. This research was supported in part by a Grant-in-Aid for Scientific Research on Innovative
Areas (JSPS KAKENHI Grant no. 26119006) (to YS), a MEXT grant as “Priority Issue on Post-K computer
(Building Innovative Drug Discovery Infrastructure Through Functional Control of Biomolecular Systems)” (to
YS), a grant from JST CREST on “Structural Life Science and Advanced Core Technologies for Innovative Life
Science Research” (to YS). We thank RIKEN pioneering project on Integrated Lipidology and Dynamic Structural
Biology. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL LDRD
program as well as Los Alamos National Laboratory Institutional Computing.

Appendix

Forward FFT with 1d_Alltoall scheme

1 MPI_Alltoall communication in x dimension (MPI_Alltoallx)

2 FFT in x dimension (FFTx)

3 MPI_Alltoall communication in x dimension (MPI_Alltoallx)

4 MPI_Alltoall communication in y dimension (MPI_Alltoally)

5 FFT in y dimension (FFTy)

6 MPI_Alltoall communication in y dimension (MPI_Alltoally)

7 MPI_Alltoall communication in z dimension (MPI_Alltoallz)

8 FFT in z dimension (FFTz).

Forward FFT with 2d_Alltoall scheme

1 MPI_Alltoall communication in x dimension (MPI_Alltoallx)

Jung et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 FFT in x dimension (FFTx)

3 MPI_Alltoall communication in xy dimension (MPI_Alltoallxy)

4 FFT in y dimension (FFTy)

5 MPI_Alltoall communication in z dimension (MPI_Alltoallz)

6 FFT in z dimension (FFTz).

References

1. McCammon JA; Gelin BR; Karplus M Nature 1977, 267(5612), 585–590. [PubMed: 301613]

2. Narumi T; Ohno Y; Okimoto N; Koishi T; Suenaga A; Futatsugi N; Yanai R; Himeno R; Fujikawa S;
Taiji M Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 2006, pp 49.

3. Shaw DE; Deneroff MM; Dror RO; Kuskin JS; Larson RH; Salmon JK; Young C; Batson B; Bowers
KJ; Chao JC; Eastwood MP; J. G; Grossman JP; Ho CR; J. ID; Kolossvary I; Kelpeis JL; Layman
T; McLeavey MA; Moraes MA; Mueller R; Edward C; Shan Y; Spengler J; Theobald M; Towles B;
Wang SC 34th Annual International Symposium on Computer Architecture (ISCA ‘07), 2007, pp
91–97.

4. Shaw DE; Grossman J; Bank JA; Batson B; Butts JA; Chao JC; Deneroff MM; Dror RO; Even A;
Fenton CH Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014, pp 41–53.

5. Shaw DE; Maragakis P; Lindorff-Larsen K; Piana S; Dror RO; Eastwood MP; Bank JA; Jumper JM;
Salmon JK; Shan YB; Wriggers W Science 2010, 330(6002), 341–346. [PubMed: 20947758]

6. Harvey MJ; Giupponi G; De Fabritiis G J Chem Theory Comput 2009, 5(6), 1632–1639. [PubMed:
26609855]

7. Ruymgaart AP; Cardenas AE; Elber R J Chem Theory Comput 2011, 7(10), 3072–3082. [PubMed:
22328867]

8. Pierce LC; Salomon-Ferrer R; Augusto F. d. O. C.; McCammon JA; Walker RC J Chem Theory
Comput 2012, 8(9), 2997–3002. [PubMed: 22984356]

9. Phillips JC; Sun Y; Jain N; Bohm EJ; Kalé LV Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2014, pp 81–91.

10. Abraham MJ; Murtola T; Schulz R; Pali S; Smith JC; Hess B; Lindahl E Software X 2015, 1–2,
19–25.

11. Brown WM; Carrillo JMY; Gavhane N; Thakkar FM; Plimpton SJ Comput Phys Commun 2015,
195, 95–101.

12. Jung J; Naurse A; Kobayashi C; Sugita Y J Chem Theory Comput 2016, 12(10), 4947–4958.
[PubMed: 27631425]

13. Needham PJ; Bhuiyan A; Walker RC Comput Phys Commun 2016, 201, 95–105.

14. Eastman P; Swails J; Chodera JD; McGibbon RT; Zhao YT; Beauchamp KA; Wang LP;
Simmonett AC; Harrigan MP; Stern CD; Wiewiora RP; Brooks BR; Pande VS PLoS Comput Biol
2017, 13(7).

15. Zhao GP; Perilla JR; Yufenyuy EL; Meng X; Chen B; Ning JY; Ahn J; Gronenborn AM; Schulten
K; Aiken C; Zhang PJ Nature 2013, 497(7451), 643–646. [PubMed: 23719463]

16. Yu I; Mori T; Ando T; Harada R; Jung J; Sugita Y; Feig M Elife 2016, 5, e19274. [PubMed:
27801646]

17. Darden T; York D; Pedersen L J Chem Phys 1993, 98(12), 10089–10092.

18. Essmann U; Perera L; Berkowitz ML; Darden T; Lee H; Pedersen LG J Chem Phys 1995, 103(19),
8577–8593.

19. Jung J; Mori T; Kobayashi C; Matsunaga Y; Yoda T; Feig M; Sugita Y Wires Comput Mol Sci
2015, 5(4), 310–323.

20. Kobayashi C; Jung J; Matsunaga Y; Mori T; Ando T; Tamura K; Kamiya M; Sugita Y J Comput
Chem 2017, 38(25), 2193–2206. [PubMed: 28718930]

Jung et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

21. Jung J; Mori T; Sugita Y J Comput Chem 2014, 35(14), 1064–1072. [PubMed: 24659253]

22. Jung J; Kobayashi C; Imamura T; Sugita Y Comput Phys Commun 2016, 200, 57–65.

23. Bascom GD; Sanbonmatsu KY; Schlick T J Phys Chem B 2016, 120(33), 8642–8653. [PubMed:
27218881]

24. Zhang Q; Beard DA; Schlick T J Comput Chem 2003, 24(16), 2063–2074. [PubMed: 14531059]

25. Jung J; Mori T; Sugita Y J Comput Chem 2013, 34(28), 2412–2420. [PubMed: 23934755]

26. Huang J; MacKerell AD J Comput Chem 2013, 34(25), 2135–2145. [PubMed: 23832629]

27. Price DJ; Brooks CL J Chem Phys 2004, 121(20), 10096–10103. [PubMed: 15549884]

28. Ryckaert JP; Ciccotti G; Berendsen HJ C. J Comput Phys 1977, 23(3), 327–341.

29. Andersen HC J Comput Phys 1983, 52(1), 24–34.

30. Miyamoto S; Kollman PA J Comput Chem 1992, 13(8), 952–962.

31. Baker NA; Sept D; Joseph S; Holst MJ; McCammon JA Proc Natl Acad Sci U S A 2001, 98(18),
10037–10041. [PubMed: 11517324]

32. Hayes RL; Noel JK; Mohanty U; Whitford PC; Hennelly SP; Onuchic JN; Sanbonmatsu KY J Am
Chem Soc 2012, 134(29), 12043–12053. [PubMed: 22612276]

Jung et al. Page 13

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Structure of GATA4 gene, consisting of 83 kilobases of double stranded helical DNA

wrapped around 427 nucleosomes. Protein tails used for programming gene expression

protrude from each nucleosome.

Jung et al. Page 14

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Automated clash detection: flow diagram of the operation of the clash correction script.

Clashes correctable by a phosphate group rotation are those involving P, O5’, C5’, C4’, C3’,

O3’ type atoms on the DNA backbone. All other clashes involve at least one atom in a

protein side group, and can be corrected by a side group rotation. The vicinity of a clash is

defined to be all atoms within a 6Å radius of the atoms involved in the clash.

Jung et al. Page 15

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
(a) Non-bonded interaction scheme used in GENESIS 1.0–1.3 and (b) new nonbonded

interaction scheme for Intel Xeon Phi processors.

Jung et al. Page 16

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
FFT time of (a) 10243 and (b) 20483 PME grids using GENESIS on Oakforest-PACS

Jung et al. Page 17

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Benchmark performance of 230M and 1B system on Oakforest-PACS

Jung et al. Page 18

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 19

Table I.

Memory usage (GiB) for the neighbor search and number of pairwise interactions evaluated in real space

nonbonded interactions (32 MPI with 8 OpenMP case)

Memory usage Number of interactions

Algorithm 1 (AoS) 305.88 MiB 47364470

Algorithm 1 (SoA) 305.88 MiB 47364470

Algorithm 1 (AoS) 48.40 MiB 122404436

Algorithm 1 (SoA) 48.40 MiB 122404436

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 20

Table II.

Calculation time (sec) of neighbor search + real-space nonbonded interaction for 2000 MD steps

Neighbor List Nonbond Total

Algorithm 1 (AoS) 9.95 36.42 46.37

Algorithm 1 (SoA) 6.60 33.71 40.31

Algorithm 2 (AoS) 4.91 102.46 107.37

Algorithm 2 (SoA) 4.15 27.86 32.01

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 21

Table III.

Calculation time (sec) of each component for 50 ps MD simulation of gene locus (time step is 1 fs)

Total time (sec) Ratio (%)

Total 9936.63 100.00

Integration 520.03 13.68

Bonded 13.68 0.14

Non-bonded (real) 2272.25 22.87

Non-bonded (reciprocal) 5493.88 55.29

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 22

Algorithm 1.

Neighbor search used for GENESIS 1.0–1.3

do ij = 1, M M: number of cell pairs

 icel = cell_index(1,ij) First cell index of the cell pair

 jcel = cell_index(2,ij) Second cell index of the cell pair

 do i = 1, N(icel) N(icel): Number of atoms in icel-th cell

 do j = 1, N(jcel)

 rij(1) = coord(1,i,icel)-coord(1,j,jcel)

 rij(2) = coord(2,i,icel)-coord(2,j,jcel)

 rij(3) = coord(3,i,icel)-coord(3,j,jcel)

 dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

 if (dij < pairlist cutoff) then

 Neighbor(i,ij) = Neighbor(i,ij) + 1

 k = Neighbor(i,ij)

 write Neighbor_list(k,i,ij)

 end if

 end do

 end do

 end do

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 23

Algorithm 2.

Real-space non-bonded interaction kernel used for GENESIS 1.0–1.3

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 do i = 1, N(icel)

 force_temp(1:3) = 0.0

 do k = 1, Neighbor(i,ij) Number of neighbors of i-th atm in icel-th cell

 j = Neighbor_list(k,i,ij) Neighbor of i-th atom in icel-th cell

 rij(1) = coord(1,i,icel)-coord(1,j,jcel)

 rij(2) = coord(2,i,icel)-coord(2,j,jcel)

 rij(3) = coord(3,i,icel)-coord(3,j,jcel)

 dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

 calculate f (1:3):force component from given distance

 force_temp(1) = force_temp(1) – f (1)

 force_temp(2) = force_temp(2) – f (2)

 force_temp(3) = force_temp(3) – f (3)

 force(1,j,jcel) = force(1,j,jcel) + f (1)

 force(2,j,jcel) = force(2,j,jcel) + f (2)

 force(3,j,jcel) = force(3,j,jcel) + f (3)

 end do

 force(1,i,icel) = force(1,i,icel) + force_temp(1)

 force(2,i,icel) = force(2,i,icel) + force_temp(2)

 force(3,i,icel) = force(3,i,icel) + force_temp(3)

 end do

end do

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 24

Algorithm 3.

New neighbor search algorithm

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 Neighbor(i,ij) = 0

 do i = 1, N(icel)

 do j = 1, N(jcel)

 rij(1) = coord(1,i,icel)-coord(1,j,jcel)

 rij(2) = coord(2,i,icel)-coord(2,j,jcel)

 rij(3) = coord(3,i,icel)-coord(3,j,jcel)

 dij = sqrt(rij(1)2+rij(1)2+rij(1)3)

 if (dij < pairlist cutoff) then

 Neighbor(i,ij) = 1

 exit the do loop

 end if

 end do

 end do

end do

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 25

Algorithm 4.

Real-space non-bonded interaction kernel used for KNL

do ij = 1, M

 icel = cell_index(1,ij)

 jcel = cell_index(2,ij)

 do i = 1, N(icel)

 if (Neighbor(i,ij) == 0) cycle

 force_temp(1:3) = 0.0 do j = 1, N (jcel)

 rij(1) = coord(i,1,icel)-coord(j,1,jcel)

 rij(2) = coord(i,2,icel)-coord(j,2,jcel)

 rij(3) = coord(i,3,icel)-coord(j,3,jcel)

 calculate f (1:3):force component from given distance

 force_temp(1) = force_temp(1) – f (1)

 force_temp(2) = force_temp(2) – f (2)

 force_temp(3) = force_temp(3) – f (3)

 force(j,1,jcel) = force(j,1,jcel) + f (1)

 force(j,2,jcel) = force(j,2,jcel) + f (2)

 force(j,3,jcel) = force(j,3,jcel) + f (3)

 end do

 force(i,1,icel) = force(i,1,icel) + force_temp(1)

 force(i,2,icel) = force(i,2,icel) + force_temp(2)

 force(i,3,icel) = force(i,3,icel) + force_temp(3) end do

end do

J Comput Chem. Author manuscript; available in PMC 2020 August 05.

	Abstract
	Introduction
	METHODS
	Atomistic model of GATA4 system
	Modeling
	Automated clash detection for model generation of macromolecular complexes

	Major characteristic of GENESIS for large-scale MD
	Inverse lookup table25
	Domain decomposition with midpoint cell method21
	Volumetric decomposition of FFT22
	Parallel I/O for a large system19

	Optimization of GENESIS for KNL Intel Xeon Phi processors
	Hardware architecture of KNL in Trinity phase 2 and Oakforest-PACS
	Data Layout
	New Algorithm for real space non-bonded interactions: Reduced memory neighbor search scheme with improved performance
	Optimization of FFT with proper choice of the FFT decomposition scheme

	Results and Discussion
	Performance results of GENESIS on KNL
	FFT communication time on Oakforest-PACS
	Effect of new non-bonded interaction scheme with reduced memory
	Benchmark of 230M and 1B system on Oakforest-PACS
	MD simulation of the GATA4 system on Trinity Phase 2

	Implications for chromatin biophysics: electrostatics of the crowded environment inside compacted chromatin

	Conclusions
	Appendix
	Table T8
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table I.
	Table II.
	Table III.
	Algorithm 1.
	Algorithm 2.
	Algorithm 3.
	Algorithm 4.

