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Abstract

Introduction—Gross and microstructural changes in placental development can influence 

placental function and adversely impact fetal growth and well-being; however, there is a paucity of 

in-vivo tools available to reliably interrogate in vivo placental microstructural development. The 

objective of this study is to characterize in-vivo placental microstructural diffusion and perfusion 

in healthy and growth-restricted pregnancies (FGR) using non-invasive diffusion-weighted 

imaging (DWI).
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Methods—We prospectively enrolled healthy pregnant women and women whose pregnancies 

were complicated by FGR. Each woman underwent DWI-MRI between 18 and 40 weeks 

gestation. Placental measures of small (D) and large (D*) scale diffusion and perfusion (f) were 

estimated using the intra-voxel incoherent motion (IVIM) model.

Results—We studied 137 pregnant women (101 healthy; 36 FGR). . D and D* are increased in 

late-onset FGR, and the placental perfusion fraction, f, is decreased (p<0.05 for all).

Discussion—Placental DWI revealed microstructural alterations of the in-vivo placenta in FGR, 

particularly in late-onset FGR. Early and reliable identification of placental pathology in vivo may 

better guide future interventions.
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Introduction

Placental insufficiency deprives the developing fetus of essential metabolites necessary for 

normal growth and brain development, resulting in fetal growth restriction (FGR). FGR 

remains a leading cause of stillbirth and a major risk factor for premature birth, cerebral 

palsy and lifelong morbidity (1–3). Despite advances in fetal diagnostic techniques, there are 

few current clinical tools that directly and noninvasively assess placental function in utero, 

often presenting late in placental dysfunction (4, 5). Similarly, despite histopathology 

descriptions of altered placenta development in FGR, there are no current clinical tools to 

assess in vivo microstructural development of the placenta (6, 7).

Diffusion-weighted magnetic resonance imaging (DW-MRI, or DWI) measures the 

movement of water molecules in a given space. In the human body, the molecular diffusion 

of water is impacted by cell membranes, tissue cellularity and the extracellular space, 

resulting in decreased diffusion across areas of increased tissue cellularity (8). These 

principles have been used in biomedical imaging to provide clinical insight into local 

microstructural integrity, without the need for invasive measures or exogenous contrast (8). 

The intravoxel incoherent motion (IVIM) analysis approach of DWI capitalizes on 

differences in tissue organization and the vascular system to inform microstructural 

development, namely tissue cellularity and microcirculation of a given region (9). The 

primary metrics of IVIM include (a) the diffusion coefficient, D, an estimate of small-scale 

diffusion, reflective of tissue cellularity, (b) the pseudo-diffusion coefficient, D*, an estimate 

of large scale diffusion and microcirculation of regional capillary networks and (c) the 

perfusion fraction, f, the percent of moving blood volume in a given region.

DWI and IVIM analyses have also been applied to the study of the human placenta, and 

revealed regional abnormalities in the perfusion fraction in high-risk pregnancies (10–12). 

However much less is known about changes in placental water diffusion through-out 

pregnancy, either in healthy or pathologic states. The objective of this study was to delineate 

the in vivo diffusion properties of the human placenta in pregnancies with established fetal 

growth restriction (FGR) as well as healthy, uncomplicated pregnancies to explore in vivo 
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placental microstructure. We hypothesized that placental perfusion fraction and diffusion 

coefficients would be reduced in FGR compared to healthy controls due to microstructural 

alterations in the growth-restricted placenta, evidenced by postnatal histopathology that 

show inflammatory changes in villous development, as well as vascular changes including 

thrombosis and infarction in early- and late-onset FGR (7, 13). Furthermore, we 

hypothesized that diffusion properties would differ in distinct sub-groups of FGR, reflecting 

the pathologic differences in functional and microstructural placental development across 

high-risk populations (14).

Methods

Subjects

We recruited pregnant women with singleton pregnancies after 18 weeks gestation as part of 

a longitudinal prospective observational study at Children’s National Health Systems 

(CNHS) which includes up to two detailed fetal-placental evaluations through advanced 

MRI, neonatal evaluations and long-term follow-up of this cohort through early childhood. 

This study is designed as a cross-sectional analysis of placental development from the first 

fetal-placental evaluation using IVIM. A pregnancy was considered complicated by FGR if 

the estimated fetal weight was < 10th centile from standard sonographic measures (15) and 

there was no evidence of congenital anomalies or infections; FGR cases were excluded if 

there was evidence of congenital infections or dysmorphic features. Healthy controls had no 

significant past medical history, without chronic or pregnancy induced illnesses, including 

normal screening studies at the time of enrollment. Exclusion criteria for either group 

included any maternal contraindications to MRI for either group. The study was approved by 

the hospital’s Institutional Review Board and written informed consent was obtained from 

all participants.

Imaging: MRI acquisition

All women underwent the same MRI imaging protocol on a 1.5T Discovery MR450 scanner 

(GE Healthcare, Milwaukee, Wisconsin) using an 8-channel cardiac array (receive only) coil 

(USAI, Aurora, OH). Pregnant women were positioned in the left lateral or supine position, 

based on maternal preference for their comfort. The coil array was positioned covering the 

entire abdomen and pelvis to improve spatial resolution.

Dedicated anatomic single shot fast spin echo (SSFSE) fat suppressed T2-weighted images 

were acquired in the maternal axial or coronal plane for full placental coverage (TE=160ms, 

TR=1100ms, 4mm slice thickness). Pulsed gradient spin echo (PGSE) sequences were 

acquired (TE =53.8 ms, TR=8000 ms, data matrix size 96×96, filed of view (FOV) 

420×420mm2, 4mm slice thickness) with the following b-values: 0, 25, 50, 114, 243, 500, 

543, 800, 900 sec/mm2, diffusion time=25ms. Each MRI was reviewed by a pediatric 

radiologist to evaluate for placental malformations.

Imaging: Post-processing

Manual delineation of the region of interest (ROI) for the entire placenta was created on the 

b value of 25sec/mm2 of the PGSE sequence, using ITK-SNAP. The corresponding T2 
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weighted image was used as anatomical reference (Figure 1) using the amniotic space as the 

fetal boundary and the internal uterine wall as the maternal boundary. The diffusion 

weighted signals were averaged over the entire ROI and IVIM parameters were calculated 

from the averaged signals.

Motion correction between volumes was performed using the image registration toolkit 

(IRTK) (26). We then performed an intravoxel-incoherent motion (IVIM) analysis to 

measure the diffusion coefficient (D, estimate of small scale diffusion), pseudo-diffusion 

coefficient (D*, estimate of large scale diffusion) and the perfusion fraction (f, percent of 

moving blood volume).

Sonography

All pregnancies complicated by FGR underwent complete fetal sonographic assessment of 

both anatomy and Doppler evaluation as part of the study protocol on the same day as the 

MRI study using a LOGIQ E9 ultrasound scanner (GE Healthcare, WI). Abdominal 

circumference, head circumference, femur length and estimated fetal weight were measured 

and plotted according to gestational age GA (15). Fetal middle cerebral (MCA) and 

umbilical arterial (UA) flow velocities were measured using a pulse-wave Doppler, and 

pulsatility indices (PI) were calculated. The cerebroplacental ratio (CPR) was calculated by 

dividing the middle cerebral artery pulsatility index by the umbilical artery pulsatility index 

(27). Subjects were classified into the sub-group of abnormal Doppler studies if the CPR 

was less than 1 (28). All sonographic studies were reviewed by a single attending radiologist 

as per institutional protocol.

Healthy control pregnancies underwent complete fetal echocardiographic assessment using a 

Vivid 7 ultrasound scanner (GE Healthcare, Waukesha, WI) as part of an adjunct prospective 

study. Fetal middle cerebral and umbilical arterial flow velocities were measured using a 

pulse-wave Doppler; pulsatility indices, CPR and z-scores (derived from normal references) 

were calculated (28).

Clinical data

Clinical and demographic data were extracted from the maternal and neonatal charts, 

including race, ethnicity, maternal co-morbidities, fetal sex, and gestational age at study. 

Neonatal outcomes included gestational age and birthweight at delivery. Available placental 

pathology reports were also extracted from the medical record, and scored as normal or 

abnormal, based on pathology report.

Biostatistics

Group comparisons between FGR and controls were evaluated by independent samples t-test 

or independent chi-square as appropriate. Linear and non-linear associations between IVIM 

measures and GA at study, maternal age, birth weight and GA at birth, alone and by fetal 

sex, were evaluated using generalized linear regression; quadratic terms were included in 

models to evaluate non-linear associations. Additional adjustments for potential co-

morbidities were evaluated and subsequently accounted for in diffusion and perfusion 

fraction analyses, including maternal age, fetal gender and GA at MRI, using ANCOVA. 
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Least squares means estimates were used for pairwise comparisons. Categorical outcomes 

for normal-abnormal placental pathology reports within FGR cases were analyzed via 

independent samples t-test. Associations with neonatal outcomes were also investigated. 

SAS 9.4 software was used for all analyses (29); a two-tailed p-value of 0.05 was considered 

significant.

Results

Subjects

We studied 137 pregnant women, 101 recruited as normal controls and 36 with FGR. In the 

control group, 94 women delivered term, appropriate for gestational age (AGA) infants, 3 

(2.97%) delivered preterm, and 4(3.96%) delivered small for gestational age (SGA) infants, 

with birth weights < 10th centile. Only the 94 healthy women with term, AGA infants were 

included for the group analyses between controls and FGR cases in order to compare FGR to 

true healthy controls, while the full cohort of 101 healthy recruits were included in the 

neonatal outcomes analysis to fully evaluate associations with placental diffusion. Women 

diagnosed with FGR were further categorized into (1) early onset and late onset (diagnosed 

in second vs. third trimester), (2) those with or without abnormal Doppler studies of the fetal 

circulation (namely, CPR < or > 1), and (3) significant maternal comorbidities. Five FGR 

cases (14%) were noted to have maternal hypertensive disorders (chronic hypertension, 

gestational hypertension and preeclampsia) and there were no cases of FGR with maternal 

diabetes mellitus or autoimmune disorders. Of the five FGR cases with maternal 

hypertensive disorders, 3 also had a CPR <1.0 at the time of evaluation. Approximately one-

third (31%) of pregnancies were diagnosed early (in the second trimester) while the 

remainder were diagnosed in the third trimester and 41.6% of FGR cases overall had 

abnormal Doppler studies. Additional clinical characteristics are noted in Table 1.

Small-scale water diffusion (D) comparisons in healthy versus FGR pregnancies

Average small-scale water diffusion among healthy controls with normal birth outcomes was 

1.76 ×10−3 mm2/s, with a negative association between D and advancing gestational age (β=

−0.01, p=0.06) (Supplementary Figure 1). While there was no significant difference in D 

between controls and FGR cases overall, there was a significant increase in D in late-onset 

FGR compared to controls and to early-onset FGR (Table 2). D was associated with 

pregnancy outcome diffusion was associated with gestational age at birth (non-linear 

association, p=0.05 Figure 2)..

Large-scale water pseudo-diffusion (D*) comparisons in healthy versus FGR pregnancies

Average D* among healthy controls with normal birth outcomes was 36.80 ×10−3 mm2/s, 

with no significant association between D* and advancing gestational age). There was no 

significant difference in D* between controls and FGR cases overall,, however D* was 

greater in late-onset FGR compared to controls (Table 2).

D* was associated with pregnancy outcome with a similar non-linear association with 

gestation age at birth (p=0.05 Figure 3) as well as birth weight (p=0.15).
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Perfusion Fraction, f

The average perfusion fraction among healthy controls with normal birth outcomes was 

40.65%,. Overall, pregnancies complicated by FGR had lower perfusion fraction compared 

to controls, even when accounting for GA at the time of evaluation (p=0.19) (Table 2). 

Interestingly, late-onset FGR had the lowest perfusion fraction when compared to controls or 

early-onset FGR (Table 2). We did not detect any association with placental perfusion 

fraction and pregnancy outcomes, namely gestational age at birth weight, or birth weight.,

IVIM measures and placental pathology in FGR pregnancies

Placental pathology reports were available in the medical records for 22 subjects with FGR 

(61%). Eighty-two percent of the placentas were noted to weigh less than the 3rd centile for 

gestational age (30) and 68% had noted abnormalities in thrombi, fibrin deposition, 

inflammatory changes and accelerated villous maturation. However, there were no 

significant associations between IVIM measures of D, D* and f and pathology findings (p = 

0.59–0.80).

Discussion

Principal Findings

Despite several formative studies describing placental perfusion in the human pregnancy 

through DWI, the microstructural properties of the in vivo placenta remain poorly 

understood (10, 11, 31–35). In this work, we use DWI to report on microstructural 

development of the in vivo human placenta in a large cohort of healthy women with normal 

pregnancy outcomes, as well as pregnancies complicated by FGR. We show placental 

diffusion, pseudodiffusion and perfusion fraction are significantly different in late-onset 

FGR, which has not been previously reported. There were no significant differences in 

placental microstructure for pregnancies complicated by FGR with a CPR <1, though D, D* 

and f trended lower in this group. Similarly, pregnancies complicated by FGR with maternal 

hypertensive disorders trended lower in D and D*, with similar f, although again, these did 

not achieve statistical significance.

Principles of Diffusion Weighted Imaging and Placental Interpretations

Diffusion of water molecules in biologic tissues is primarily constrained by cell membranes 

and macromolecules (8). In biomedical imaging, decreased small-scale diffusion is largely 

interpreted to indicate increased cellular density or regional fibrosis (36), while large-scale 

pseudo-diffusion represents the diffusion of water molecules in blood, or the 

microcirculation (36). It is important to note that the application and interpretation of IVIM 

in the placenta has not been fully delineated or validated with ex vivo pathology. However, 

extending these basic principles of DWI and IVIM suggests that in the placenta, water 

movement would be most constrained within the highly cellular villi, and least constrained 

within the open intervillous space. Similarly, it is also worthwhile to note that there is likely 

significant correlation between pseudo-diffusion (D*) and the moving blood fraction (f) 

given the relatively open areas of the intervillous space. However, despite these limitations, 
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the in vivo findings of this study coupled with known pathological changes in placental 

insufficiency are in line with these interpretations.

Lessons from Placental Histopathology & Clinical Outcomes

Characterizing placental pathology has been challenging due to both variability in clinical 

and histopathologic definitions, as well as the wide variety of lesions described within a 

single clinical entity (37, 38). The pathology of late-onset FGR is not as well understood as 

other forms of FGR. Histologically, placental changes are much more variable and often 

time, unremarkable in late-onset FGR (39). If placental changes are noted, there is an 

increased incidence of vascular lesions, including infarction. In this study, late-onset FGR 

was significantly associated with increased small-scale and large-scale water diffusion of the 

placenta. In addition, late-onset FGR had the most significant reduction in f, or the percent 

of moving blood, which may result from such vascular lesions. However, further studies are 

needed to better understand the pathologic changes in the placenta of late-onset FGR and the 

relationship with these in vivo DWI findings.

Conversely, maternal vascular underperfusion, common in preeclampsia-eclampsia and 

FGR, is characterized by placental hypoplasia grossly, and by villous hypoplasia and 

accelerated villous maturation histologically (40–42). Conversely, there are reports of 

increased placental weight associated with decreased distal villous hypoplasia in 

preeclampsia (43). Likewise, villous hypoplasia has been described in both early-onset FGR 

and pregnancies with abnormalities of umbilical artery resistance, as seen with reduced CPR 

(39, 44). Interestingly, there is one report of 5 cases of maternal vascular underperfusion and 

retrospective analysis of placental DWI that revealed reduced diffusion compared to 

placental diffusion in normal pregnancies (45). Similarly, our data suggests reduced small-

scale diffusion through IVIM analysis in our cohort of FGR cases with maternal 

hypertensive disorders, including preeclampsia. There is a similar suggestion of decreased 

small-scale diffusion in early-onset FGR and FGR cases with decreased CPR.

While the cellular mechanisms that may explain these findings are unclear, our data suggests 

that IVIM may provide insight into in vivo microstructural and microvascular development. 

Furthermore, there appears to be an optimal range of diffusion and pseudo-diffusion 

parameters, as measure by IVIM analyses, associated with birth outcomes, including term 

birth with normal birth weights.

Strengths and Limitations

In this work, we show that DWI can detect important differences in the placenta of growth-

restricted pregnancies when compared to healthy controls, particularly in late-onset FGR, 

with notable trends in FGR with decreased CPR or FGR with MHD. Despite the many 

strengths of this work, there are important limitations that deserve mention. First, while 

IVIM analysis can distinguish differential diffusion properties across tissue classes, it is 

highly dependent on the number and range of b values acquired (9). While our MRI 

acquisition protocol was sensitive enough to detect important differences in healthy and 

high-risk pregnancies, the optimal sequences, correction methods and analysis models for 

placental diffusion remain to be determined (46). Secondly, the objective of this study was to 
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characterize placental diffusion and perfusion in high-risk pregnancies with established 

FGR.

However, as discussed throughout the manuscript, there are multiple pathologic pathways 

that can converge to result in fetal growth anomalies. While our data suggests that IVIM 

may be able to distinguish between early- and late-onset FGR, some of the sub-group 

analyses were limited by the smaller sample sizes – particularly pregnancies complicated by 

FGR with MHD. Nonetheless, these data present intriguing trends that should be further 

studied in larger cohorts of individual high-risk conditions. Similarly, we were unable to 

identify any significant relationships between in vivo placental development and ex vivo 

histopathology. The temporal evolution of placental development and disease from the point 

of imaging to the point of delivery and pathology evaluation may have confounded our 

findings. However, these analyses were further limited by the retrospective data collection of 

the pathology reports. Nonetheless, relating these findings prospectively with planned 

placental pathology evaluations is needed to validate these findings, as well as the proposed 

interpretations. Lastly, while we were able to identify important relationships between in 
vivo placental water diffusion and birth outcomes, the predictive validity and clinical 

relevance of these findings require confirmation in larger cohorts and with long-term 

neurodevelopmental outcome. These studies are currently underway.

Conclusions

While advances in prenatal care have improved pregnancy outcomes and fetal mortality, 

there remain significant limitations in identifying early and sensitive biomarkers of placental 

health (47–49). In this work, we proposed that in vivo placental microstructure can be 

assessed with diffusion weighted imaging, and identify potential markers of aberrant 

placental development in high-risk pregnancies. Once mechanisms of placental growth and 

function become better established, future screening, surveillance and treatment can be 

tailored to individual maternal-fetal dyads and improve short- and long-term pregnancy 

outcomes.
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FGR fetal growth restriction

MRI magnetic resonance imaging

DWI diffusion weighted imaging
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IVIM intra-voxel incoherent motion anlaysis

D diffusion coefficient

D* pseudo-diffusion coefficient

f perfusion fraction
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• Placental dysfunction can impact both maternal and fetal well-being

• Histologic changes in placental development have been described in fetal 

growth restriction

• Microstructural changes of the placenta remain difficult to identify in vivo

• Diffusion weighted magnetic resonance imaging is used to described in vivo 
microstructure

• Small scale diffusion and the perfusion fraction of the in vivo placenta is 

reduced in fetal growth restriction
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Figure 1: 
Example of magnetic resonance images (MRI), including the T2Weighted anatomic image 

of the placenta (A), and the corresponding Diffusion weighted image (DWI) (b0 acquisition) 

(B) at 25 weeks gestation.
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Figure 2: 
The diffusion coefficient (D) of the in vivo placenta through IVIM analyses of DWI and 

pregnancy outcomes; namely gestational age at birth.
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Figure 3: 
The pseudo-diffusion coefficient (D*) of the in vivo placenta through IVIM analyses of DWI 

and pregnancy outcome; namely gestational age at.
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