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Abstract

Magnetic resonance elastography (MRE) is emerging as a new tool for studying viscoelastic 

changes in the brain resulting from functional processes. Here, we demonstrate a novel time series 

method to generate robust functional magnetic resonance elastography (fMRE) activation maps in 

response to a visual task with a flashing checkerboard stimulus. Using a single-shot spin-echo (SS-

SE) pulse sequence, the underlying raw images inherently contain blood-oxygen-level dependent 

(BOLD) contrast, allowing simultaneous generation of functional magnetic resonance imaging 

(fMRI) activation maps from the magnitude and functional magnetic resonance elastography 

(fMRE) maps from the phase. This allows an accurate comparison of the spatially localized 

stiffness (fMRE) and BOLD (fMRI) changes within a single scan, eliminating confounds inherent 

in separately acquired scans. Results indicate that tissue stiffness within the visual cortex increases 

6–11% with visual stimuli, whereas the BOLD signal change was 1–2%. Furthermore, the fMRE 

and fMRI activation maps have strong spatial overlap within the visual cortex, providing 

convincing evidence that fMRE is possible in the brain. However, the fMRE temporal SNR 

(tSNRfMRE) maps are heterogeneous across the brain. Using a dictionary matching approach to 

characterize the time series, the viscoelastic changes are consistent with a viscoelastic response 

function (VRF) time constant of 12.1 s ± 3.0 s for a first-order exponential decay, or a shape 

parameter of 8.1 s ± 1.4 s for a gamma-variate.
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1 | INTRODUCTION

Modern functional neuroimaging techniques have greatly advanced the field of 

neuroscience, with different modalities targeting distinctive aspects of brain physiology, 

functional architecture, and dynamics. Specifically, functional magnetic resonance imaging 

(fMRI) uses blood-oxygen-level dependent (BOLD) contrast [1] to study the underlying 

neurovascular coupling, which links neuronal activity to an increase in local blood 

oxygenation. In this study, we introduce a novel method for functional magnetic resonance 

elastography (fMRE) to observe a different coupling mechanism—neuromechanical 

coupling, where neuronal activity is linked to an increase in local brain tissue stiffness. The 

novelty in our approach comes from utilizing a time series acquisition, similar in concept to 

that employed in fMRI, where the magnitude and phase information from the time series can 

be submitted to separate processing and analysis to arrive at fMRI and fMRE activation 

maps, or statistical parametric maps (SPMs). Since our simultaneous fMRI-fMRE method is 

both multi-modal and concurrent, it allows us to compare the spatially localized BOLD and 

stiffness changes within the same scan, eliminating confounds inherent in separately 

acquired scans.

1.1 | Magnetic Resonance Elastography

Brain tissues are viscoelastic (VE), and their shear modulus (“stiffness”) properties can be 

measured via magnetic resonance elastography (MRE), a noninvasive imaging technique 

that uses phase-contrast MRI to quantitatively assess tissue mechanical properties [2, 3]. The 

technique involves three steps: (1) generating shear waves in the tissue of interest; (2) 

imaging the wave propagation with MRI; (3) processing the shear wave images to generate 

quantitative stiffness maps, also referred to as elastograms. A gradient-echo (GRE) or spin-

echo (SE) MRI sequence is used with added motion-encoding gradients (MEGs) that are 

switched in polarity and phase to match the tissue vibration frequency. This causes any 

cyclic motion in the direction of the MEGs to yield a measurable phase shift in the MR 

signal. The phase shift can be used to derive the tissue displacement at each voxel to 

generate images of the shear wave propagation. These wave images are then processed with 

a reconstruction algorithm (either direct or iterative) that solves the inverse problem of the 

wave equation to compute the complex shear modulus, G* = G′ + iG″, where G′ is the 

shear storage modulus and G″ is the shear loss modulus [4, 5]. The calculated complex 

shear modulus map is a quantification of the tissue viscoelastic properties. In our study, the 

absolute value of the complex shear modulus is utilized, which corresponds to the “stiffness” 

parameter perceived in palpation exams. These viscoelastic parameters are used by 

physicians and researchers to assess tissue properties and to diagnose diseases in organs 

including the liver [6, 7, 8], kidney [9, 10], breast [11, 12, 13], skeletal muscle [14], and 

brain [15, 16].

Lan et al. Page 2

Neuroimage. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Developments in the brain MRE techniques have mainly focused on deriving the shear 

stiffness of global brain tissue and specific neuroanatomical regions (e.g., deep gray matter 

[17]). An increasing number of studies have been conducted to understand how brain 

stiffness changes as a function of healthy aging [18, 19], gender differences [18, 19], and 

neurodegeneration (e.g., multiple sclerosis and Alzheimer’s disease [20, 21, 22]). In general, 

the brain softens with age and neurodegeneration, with specific changes depending on the 

region, and occipital and temporal lobes are stiffer in females than in males.

1.2 | Previous Functional MRE

Recently, MRE has been applied to functional studies in the brain to explore whether there 

are mechanical changes in localized regions modulated by cognitive processes in an attempt 

to uncover a new functional contrast mechanism in the brain. The first human fMRE study 

used a serial sequence design to look at the correlation between the stiffness and visual 

stimulus at different mechanical driving frequencies in 57 volunteers. They found a diffuse 

decrease in viscoelastic response due to visual stimulation that is not localized to the visual 

cortex [23]. In the 2015 single-subject studies, the stimuli were presented on minute-long 

time scales, with the human motor cortex decreasing in stiffness with finger tapping [24] and 

the mouse sensory cortex increasing in stiffness with a 1-kHz auditory stimulus [25]. As the 

authors described, the difference in the sign of the stiffness changes could be due to 

differences in habituation, imaging vibration frequencies, cortical regions imaged, and 

influence of anesthesia. In 2017, these investigators introduced an interleaved paradigm of 

10-s experimental stimulus ON/OFF and a control OFF/OFF scan so that 4 elasticity maps, 

one for each condition, were obtained for each subject [26]. They reported a regional 

stiffness increase of 14% when averaged across 7 mice with hind-limb electric stimulation. 

In the most recent studies [27, 28, 29], different interleaving stimulus frequencies were used 

in mice and human brains. The results still indicated a 10–20% increase in shear modulus, 

and they observed an additional increase in stiffness when the visual stimulus was switched 

off. In these studies, the statistical estimation of fMRE changes was performed by averaging 

across the subjects, since each ON or OFF condition only resulted in a single elastogram. In 

our study, we used block trials, similar to [23], and time series analysis in a single scan to 

enhance the statistics on a single-subject basis.

1.3 | Time Series

The time series method has been used in fMRI since its inception as a way to detect the 

small signal changes characteristic of BOLD contrast. Treating fMRI data in a time series 

manner allows for the use of general linear model (GLM) analysis, an efficient method to 

perform statistical analysis, the aim of which is to determine which voxels have a time 

course that correlates with the applied pattern of stimulation or experimental manipulation.

In order to acquire a functional time series in a reasonable amount of time, a fast single-shot 

imaging sequence with a short repetition time (TR) is used, such as a spiral or echo-planar 

imaging (EPI) acquisition. In addition to the resulting GLM statistics that estimate the 

viscoelastic tissue activation changes, other parameters can be derived as quality indicators 

from the time series, including temporal signal-to-noise ratio (tSNR), contrast-to-noise ratio 

(CNR), percent signal change, average signal, standard deviation, and autocorrelation of the 
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static spatial noise. In addition, we introduce a dictionary matching approach [30] to 

characterize a heuristic model of fMRE dynamics.

1.3.1 | General Linear Model—In the general linear model (GLM) approach, the signal 

time-course of each voxel is modeled as a weighted sum of one or more known predictor 

variables, also referred to as regressors, plus an error term. The GLM can be written in the 

following matrix form:

y = Xβ + ε

where y is the time series signal associated with a single voxel, X is the design matrix in 

which each column is a predictor variable, β is the parameter vector or regressor, and ϵ is the 

error vector in which each value is the error associated with each observation/measurement 

[31]. For a simple task fMRI analysis, the regressor usually consists of the block design 

convolved with a hemodynamic response function (HRF), e.g. [32]. The HRF represents the 

BOLD response to a short (impulsive) stimulus. In this work, we introduce the analogous 

quantity in fMRE, the viscoelastic response function (VRF) to characterize the stiffness 

changes resulting from a short cognitive stimulus.

The goal of the analysis is to describe the variability in the time series data in terms of 

experimental parameters, confounding effects, and residual noise. Statistical tests are then 

performed on a voxel-by-voxel basis, where the model parameters β are compared to the 

standard error. When β is large compared to the standard error, defined as when the t-score is 

above a certain preset significance threshold, the null hypothesis is rejected, and the voxel is 

“activated.” The collection of these univariate analyses over all voxels of the volume then 

paints what is commonly called an activation map.

2 | MATERIALS & METHODS

2.1 | Subjects

Eleven healthy right-handed volunteers (8 males and 3 females, age range: 22–35 years old) 

recruited from the Stanford community were scanned on a 3T scanner (Discovery MR 750, 

GE Healthcare, Waukesha, WI, USA) after granting written informed consent under a 

protocol approved by the Stanford Institutional Review Board.

2.2 | Visual Task

The functional scans were acquired using a block-design paradigm, alternating between a 

visual task (ON block) and rest (OFF block). Each subject underwent 3 runs of functional 

task scans with block durations of 18 seconds (20 blocks), 24 seconds (16 blocks), and 36 

seconds (10 blocks), in randomized order (Fig. 1a). The ON or task block consists of a 

contrast-reversing checkerboard visual stimulus flickering at 10 Hz; the OFF or rest block is 

a fixation cross (Fig. 1b). Stimuli were presented using E-Prime software (Psychology 

Software Tools, Pittsburgh, PA, USA).
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2.3 | Data Acquisition

Shear waves at 60 Hz were induced in the brain using a pneumatic actuator connected to a 

soft, pillow-like passive driver placed under the subject’s head (Resoundant, Mayo Clinic, 

Rochester, MN, USA) inside a standard 8-channel receive-only coil as described by Murphy 

et al. [22]. The resulting tissue motion was imaged with a single-shot, spin-echo echo-planar 

imaging (SS-SE-EPI) sequence with the following parameters: 12 oblique-axial slices, 

TR/TE = 1000/64.5 ms, FOV = 22 cm, BW = ±250 kHz, 72 × 72 imaging matrix 

reconstructed to 128 × 128, 2x ASSET acceleration, 3.5 mm thick slices with zero slice gap, 

one 0th- and 1st-order moment nulled motion-encoding gradient lobe on each side of the 

refocusing radiofrequency (RF) pulse synchronized to the motion, Hadamard motion-

encoding (4 directions of motion-encoding gradients (MEGs)) [33], and 3 phase-offsets 

sampled over one period of motion at 60 Hz (16.67 ms). The sequence of 4 MEGs × 3 

phases resulted in a 12 s fMRE repetition time (TRfMRE) to acquire a single time frame of 

fMRE data (Fig 1c and 1d), which was repeated 30 or 32 times for a total acquisition time of 

360 s or 384 s, respectively, depending on the block duration (30 time frames for 18 s and 36 

s block duration; 32 time frames for 24 s block duration) (Fig 1a). The slice prescription 

spanned each subject’s primary visual cortex (V1), where the bottom-most slice begins at 

the calcarine sulcus.

T2-weighted fast spin echo structural images were acquired for anatomical reference using 

the same slice prescription as the functional scans and the following parameters: TR/TE = 

3000/68 ms, ETL = 12, 192 × 256 matrix size.

2.4 | Data Processing and Analysis

Image processing and analysis were performed using FMRIB Software Library (FSL, 

V5.0.10) [34] FMRI Expert Analysis Tool (FEAT) procedures [35] and MATLAB 

(Mathworks, Natick, MA, USA).

2.4.1 | fMRI

Preprocessing: The fMRI time series was generated by taking the magnitude of the T2-

weighted raw spin-echo images (TRfMRI = 1 s; total of 360 or 384 time frames). The 

following preprocessing was conducted using FSL FEAT: motion correction via MCFLIRT 

[36], slice timing correction, brain extraction via BET [37], and 0.01 Hz high-pass filtering. 

No spatial or temporal smoothing was performed.

Analysis: The preprocessed T2-weighted fMRI time series was submitted to FILM GLM 

analysis. FILM prewhitening was conducted to account for temporal autocorrelation. The 

task regressor was a boxcar function, corresponding to the block design stimulus, convolved 

with a double-gamma HRF [32] (Fig. 2a).

2.4.2 | fMRE

Stiffness Reconstruction: Complex-valued images containing the motion in the X, Y, and Z 

directions were calculated from the 4 MEG directions for each phase. These volumes were 

smoothed in the Z direction using a 1D, 4th-order, Butterworth, low-pass filter with a cut-off 

frequency of 3 cycles per FOVz to reduce potential slice-to-slice phase jitter. The curl of the 
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smoothed vector wave field was calculated using 3×3×3-element, central-difference, 

derivative kernels for each MRE time point. Each MRE data set then contained curl wave 

images at each of 3 MRE phase offsets evenly spaced over 1 period of the vibration and the 

temporal Fourier transform was used to isolate the wave information at the fundamental 

frequency of vibration (often called the complex-valued “first-harmonic” wave field in the 

MRE literature). The first-harmonic wave images were further smoothed using a 5×5×3 

quartic smoothing kernel. The filter is defined in 3D as (1 − x2)2(1 − y2)2(1 − z2)2, where x, 

y, and z are linearly spaced from −1 to 1 over the chosen window size. The filter was 

constructed as a 7×7×5-voxel convolution kernel, which has a net size of 5×5×3 voxels since 

the filter goes to zero at the edge voxels of the kernel. Each component of the smoothed 

first-harmonic curl wave field was then used to perform a direct inversion of the Helmholtz 

wave equation modelling a linear, isotropic, locally homogeneous, viscoelastic tissue using 

3-element Laplacian kernels (e.g., the Laplacian in the X direction was calculated using a 

1D convolution kernel of the form [1,−2,1]/(dx2), where “dx” is the pixel size in the X 

direction) and a fixed regularization value of 10−6. The estimates of the complex shear 

modulus (G*) from each component i of the curl vector (Gi) were then combined by 

constructing a weighted average of 1/Gi* using the squared amplitude of each component of 

the curl. The inverse of the weighted average of 1/Gi* (the penultimate estimate of G*) then 

had its real and imaginary parts filtered using a 3×3×3-voxel median filter to produce the 

final estimate of G* = G′ + iG″. The real part, or shear storage modulus, is a measure of the 

material’s ability to store energy elastically, and the imaginary part, or shear loss modulus, 

relates to the viscosity of the material. The final stiffness images were generated as the 

absolute value of the complex shear modulus, |G* | [5, 22].

Preprocessing: The fMRE time series consisted of the 30 or 32 time frames of stiffness 

images as described in section 2.3. Transformation matrices estimated by MCFLIRT from 

the fMRI time series were downsampled and applied to the fMRE time series for motion 

correction. Slice timing correction, temporal filtering, and spatial smoothing were not 

performed. The brain mask generated from BET when processing the fMRI time series was 

applied to the fMRE time series.

Analysis: Similar to the fMRI analysis reported above, the preprocessed fMRE time series 

was submitted to FILM GLM analysis. To develop a corresponding regressor for VE 

processing in the brain, we introduce the viscoelastic response function (VRF) and tested 

two models. The first model was inspired by Parker’s microchannel flow model [38, 39], 

which derives tissue stiffness as a function of the vasculature, fluid network, and 

surrounding elastic matrix within the brain. Our first VRF approximates the response model 

with a first-order exponential decay function with time constant τ (Fig. 2b). Our second 

VRF model is the gamma variate function, often used in previous fMRI analysis, with shape 

parameter α (Fig. 2c).

Dictionary Matching: Estimating Model Parameters: In order to characterize the time 

constant τ and shape parameter α for the stiffness changes, we generated fMRE regressors 

for τ between 1 s and 30 s and α between 1 s and 16 s for each block duration. After GLM 

analysis with the two types of regressors, we quantified the activation for each τ and α 
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model. In this study, activation was defined as the sum of the t-scores thresholded at p < 

0.001 (area under the t-score histogram above the significance threshold). This definition of 

activation takes into account both the strength and volumetric extent of the activated region. 

We then recorded the arg max of activation (τ* and α* as shown in the following equations).

τ * = argmax
τ

∑
n = 1

# voxels
t(τ, n) and α * = argmax

α
∑

n = 1

# voxels
t(α, n)

This is similar in concept to what is employed in MR fingerprinting [30], where tissue and 

other parameters are estimated based on matching the signal evolution to a dictionary of 

models. Essentially, the fMRE time series resulting from activated voxels is cross correlated 

with each model to find the model with maximum correlation, i.e. the model that best 

describes the measured data, which is then repeated to give the empirically determined τ* 

and α* for each block duration.

2.4.3 | Measures of Image Quality—Multiple measures of image quality can be 

derived from a time series data set, including temporal signal-to-noise ratio (tSNR), contrast-

to-noise ratio (CNR), and percent signal fluctuation. The tSNR is the ratio of average time 

series stiffness amplitude to the standard deviation of the stiffness time series, voxel by 

voxel across all the time frames after regressing out the modeled fluctuations. It gives 

information on the quality of the time series data. The CNR is the amplitude of the 

fluctuations divided by the noise and provides knowledge on how easy or difficult it is to 

detect experimentally induced signal fluctuations. The percent signal fluctuations is the 

contrast amplitude divided by the average signal multiplied by 100, and gives insight to how 

large the induced effect is.

In pilot experiments using the magnitude data to generate BOLD activation maps as above, 

we observed that the activation was reduced when the MEGs and passive pillow driver were 

turned on as needed for fMRE. To further investigate the effects of these MRE elements on 

the tSNR of the magnitude time series (tSNRfMRI), 3 healthy volunteers’ brains along with a 

phantom comprising a block of firm tofu (Vitasoy Inc., Ayer, MA, USA) were scanned with 

the parameters described in section 2.3. Two conditions were tested: (1) MEGs on, driver on 

(as for normal fMRE), and (2) MEGs off, driver off (as for normal spin-echo acquisitions). 

The region of interest (ROI) for the volunteers is the visual cortex as determined by the 

fMRI activation for each subject. The ROI in the tofu was at the center as it was very 

homogeneous.

3 | RESULTS

Initially, we analyzed the data with a one-sample t-test, essentially using a boxcar, or square 

wave, function as the regressor in a GLM analysis expecting rapid response [29]. However, 

the time series of the activated region of interest (ROI) followed more of a sawtooth pattern 

(Fig. 3, gray dashed curve), suggesting that the observed viscoelastic responses are 

occurring on a slower time scale. In Fig. 3, the ROI VE signal time course follows the 

regressor with a longer exponential time constant of τ = 15 s than it does the regressor with a 
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shorter time constant of τ = 1 s. It also follows the regressor with the larger shape parameter 

α = 8 s than it does the regressor with a smaller α = 1 s. Plotting the activation maps as a 

function of model parameters τ and α demonstrates qualitatively greater activation, as 

defined in our previous methods section, when τ ≈ 12 s and when α ≈ 8 s (Fig. 4).

To further quantify the viscoelastic time constant, we plotted the activation versus the τ and 

α used in the first-order exponential decay model and gamma-variate model, respectively 

(Fig. 5). The τ* and α* for each run with valid model fits are recorded in Table 1, where the 

τ* values ranged from 7 s to 18 s and the α* values ranged from 6 s to 11 s. The estimated 

parameter values for runs where the activation did not have a maximum (continuously 

increases with the model parameter) were not recorded. These runs tend to have lower 

activation and contributes noise to the model parameter estimation. Averaging across all 

subjects for each block duration, we obtain τ* = 13.5 s, 12.9 s, 10.3 s for block durations 18 

s, 24 s, and 36 s, respectively. The same averaging for the gamma-variate model results in 

α* = 8.4 s, 8.4 s, and 7.5 s for the three block durations. Pooling all runs and averaging the 

model parameter estimates yields τ* = 12.1 ± 3.0 s and α* = 8.1 ± 1.4 s.

When averaged across all subjects, the fMRI activation ROI within the visual cortex had a 

stiffness value of 2.1±0.2 kPa. We were able to robustly detect significant stiffness changes 

in all 11 subjects’ V1 primary visual cortex region (Fig. 6). The increase in tissue stiffness 

due to visual activation was 6–11%, much larger than the increase in BOLD signal of 1–2% 

(Supplementary Table S1). The average percent signal change is 7.57±1.31% (Cohen’s d = 

5.78) and 1.44±0.19% (Cohen’s d = 7.58) for fMRE and fMRI, respectively. The fMRE 

activation maps show spatially localized stiffness changes in the visual cortex, similar to the 

BOLD activation maps (Fig. 6). By overlaying the two activation maps, it is seen that the 

stiffness activation greatly colocalizes with the BOLD activation in the visual cortex. 

However, they are not exactly the same; a voxel-wise scatter plot of the fMRE t-scores 

versus fMRI t-scores also revealed no obvious relationship or trend (Supplementary Figure 

S1). While each point was considered activated in both fMRI and fMRE domains, the 

highest BOLD t-score did not necessarily correspond to the highest viscoelastic t-score. This 

is an interesting finding deserving further study beyond the scope of this paper.

The average stiffness and temporal signal-to-noise ratio (tSNRfMRE) maps derived from a 

subject’s fMRE time series are shown in Fig. 7. The average stiffness map depicts relatively 

uniform stiffness across the 12 brain slices, with a slight decrease in stiffness within the edge 

slices due to edge or boundary limitations of the stiffness calculations. The stiffness values 

are within the range of reported values in the literature [15]. However, the tSNRfMRE maps 

are substantially more nonuniform than the stiffness, with the visual cortex having 

significantly higher tSNRfMRE compared to other regions such as the auditory cortex. This is 

the result of spatially heterogeneous noise in the VE reconstruction, which could be caused 

by regional differences in the shear wave amplitude.

The effects of the MRE sequence and mechanical driver on the tSNR of the magnitude time 

series (tSNRfMRI) in both the brain and the tofu phantom are shown in Fig. 8. Having both 

the MEGs and driver on (as during fMRE) results in more noise and lower tSNRfMRI 

compared to having both turned off (as in during a conventional spin-echo sequence).
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4 | DISCUSSION

Our results provide convincing evidence that robust functional magnetic resonance 

elastography (fMRE) is possible in the human brain. Instead of performing a sham-

controlled study like Patz et al., we used a time series method with alternating task and 

control blocks. As widely used in fMRI, this dynamical functional imaging method helps 

control for the effects of drift and changes in cognition over time. The incorporation of the 

time series method into fMRE allows firstly for robust activation maps on an individual 

basis, compared to previous methods that require the averaging over several individuals for 

significance [29]. Secondly, it also allows an estimate of the temporal characteristics of the 

VE changes, using a dictionary matching approach. The simultaneity of acquiring both 

BOLD and stiffness contrast is a third novel aspect introduced in this study. Both fMRE and 

fMRI detected regions with high effect sizes (Cohen’s d > 0.8), where dfMRE = 5.78 and 

dfMRI = 7.58. With simultaneous BOLD and stiffness activation maps, one can compare and 

contrast the neuromechanical and neurovascular coupling, which may provide richer 

understanding of the underlying neurobiology, especially while modulating other 

characteristics including physiological states such as vigilance.

Even though previous studies have indicated that MR elastography in the cortex is 

susceptible to partial-volume artifacts [40, 17], the partial-volume effects remain constant 

between frames in this study. However, the smoothness of the elastograms due to filtering 

could potentially affect the spatial localization of the fMRE activation.

The magnitude and phase of the time series of the experiments yield mostly separate 

information —the magnitude information is indicative of T2-weighted BOLD signal 

changes, whereas the phase information is used to generate the wave images and reconstruct 

the stiffness images. Because the MRE sequence used is a spin-echo EPI sequence, the 

BOLD contrast is localized to microvasculature and sensitive to dynamic averaging effects 

from water diffusion, thus more closely reflecting the venous microvascular changes in 

capillaries. Such acquisitions do not incur BOLD-related phase changes when averaged on 

the voxel scale. To further verify this, we looked at the spectrum of the magnitude and phase 

time series of an activated ROI versus a non-activated ROI (Fig. 9). As expected, the task 

frequency peak (0.021 Hz) only appears in the magnitude time series of the activated voxel 

and does not affect the phase information. Furthermore, the imaging sequence is both 0th- 

and 1st- gradient-moment-nulled; hence, it is flow-compensated and further prohibits fMRI 

BOLD effects from contaminating the MRE reconstructions.

Similar to Patz et al.’s study, stiffness changes in the visual cortex were more significant in 

the real part of the complex shear modulus (G′ or storage modulus) than in the imaginary 

part (G″ or loss modulus) as shown in Supplementary Figure S2. This suggests that 

potential mechanisms for the observed neuromechanical coupling must affect mainly the 

elastic and less so the viscous processes. However, this could also be due to the fact that G″ 
has a proportionally larger variance compared to G′ due to its smaller magnitude. As shown 

in Supplementary Table S2, the storage modulus is much larger than the loss modulus in all 

subjects, meaning that the human brain is more elastic than dissipative.
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The focus of our study was to achieve robust fMRE activation statistics on an individual 

subject basis per experiment, rather than to look for rapid mechanical changes that surpass 

BOLD frequencies as in [29]. The block durations we used —18 s, 24 s, and 36 s —were 

chosen due to our fMRE TR of 12 s per volume. Therefore, we observed temporal dynamics 

with first order time constants of 7 to 18 seconds and gamma-variate shape parameter of 6 to 

11 seconds. At these slow time scales, the task ON states are stiffer than the task OFF states, 

unlike in the fast temporal dynamics regime as shown in Patz et al.’s study [29]. A potential 

explanation for the temporal increase in human brain stiffness while conducting functional 

tasks in this slow regime is the “garden hose effect,” where the increased perfusion pressure 

could stiffen the tissue, just as increased water pressure in a hose stiffens the flexible hose 

[41]. This is supported by the small but present increase in the loss modulus during task, as 

shown in Supplementary Figure S2. Another explanation for the observed increase in 

viscosity with task is the Fåhræus-Lindqvist effect, which describes how blood viscosity 

increases with an increase in capillary radius. As reported by Hetzer et al., hypercapnia-

induced vasodilation and perfusion yields an increase in brain viscoelasticity (both stiffness 

and viscosity). Furthermore, cerebral blood flow (CBF) changes are correlated with 

viscosity changes but not stiffness changes [42].

Considering fMRI and fMRE contrast mechanisms, BOLD response is the result of coupling 

between cerebral blood flow (CBF), cerebral blood volume (CBV) and oxygen metabolism 

(CMRO2) [43]. The local deoxyhemoglobin concentration, which determines BOLD 

contrast, decreases in response to an increase in cerebral blood flow (CBF), but increases in 

response to an increase in venous blood volume (CBVv) or oxygen metabolism (CMRO2). 

Recent advances in arterial spin labeling (ASL) methods have allowed for the untangling of 

these physiolgoical processes that link neuronal signaling to the BOLD signal. Results from 

Simon et al. suggest relatively close coupling between metabolic and blood flow response 

and a much slower venous blood volume response [44]. This increase in blood flow with a 

lag in blood volume response can lead to an increase in perfusion pressure. Previous MRE 

studies have shown that an increase in perfusion pressure can lead to an increase in effective 

stiffness of in vivo brain [17, 42] and liver [45], whereas an occlusion of the renal artery that 

leads to decreased perfusion can lead to decreased tissue stiffness in the kidney [45]. Hence, 

in a way, the neuromechanical coupling effect we see may be tightly linked to the 

neurovascular coupling effect, just observed with changes in mechanical properties rather 

than blood oxygenation levels.

The two MRE elements (MEGs, passive driver) added to a spin-echo sequence were found 

to both contribute to a reduction in the tSNR of the magnitude time series (tSNRfMRI, Fig. 

8), most likely because of added subtle head motion or intravoxel phase dispersion from the 

shear wave motion [46]. Further study of this phenomenon is warranted.

Since the subjects of our study were healthy volunteers with minimal head motion 

(significantly less than the voxel size of 3 mm), separate motion correction on the 

reconstructed stiffness time series using downsampled motion parameters estimated by 

MCFLIRT from the fMRI magnitude time series was sufficient. For future studies, a more 

complete approach to motion correction for the fMRE time series would be to apply the 
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transformation matrices estimated by MCFLIRT from the magnitude time series directly to 

the raw complex time series, preceding stiffness reconstruction.

Using an fMRE time series method opens the door to more robust fMRE studies and allows 

for characterization of various aspects of MRE signal and noise properties, such as in Figs. 7 

and 8. Further work can explore whether tSNRfMRE is adequate to allow fMRE in other 

regions of the brain, perhaps by modification of the wave generation methods. We have 

attempted fMRE with an auditory stimulus but were unable to detect significant activation 

(Supplementary Figure S3). This could be due to the large amount of time series noise in the 

auditory cortex during MRE. Furthermore, the fMRI activation itself was not very strong, 

perhaps due to the very loud motion encoding gradients from the background, which 

decreases the contrast between the ON and OFF blocks of auditory stimulus. In our sensory-

motor task, there was also a passive motor task using plungers that move the fingers. 

Interestingly, weak fMRE activation was observed in the cerebellum, where the tSNRfMRE is 

comparable to that in the primary visual cortex. Further work needs to be done for robust 

detection of sensory-motor activation.

Another interesting direction for future study would be to combine this method with the 

interleaved paradigm method, such that higher temporal dynamics of mechanical changes 

can be observed while also recording the BOLD signal evolution. This could potentially lead 

to deeper understanding of the separate contributions of stiffness changes due to functional 

tasks, e.g. nerve fibers swelling [47], aquaporins transporting water [48], and dendritic 

spines contracting [49] in response to stimulation.

In this study, the exponential model time constant τ*s demonstrate a trend towards reduction 

with longer block durations, although the variation is within standard deviation for the 

different block durations used in the visual task paradigm (Table 1). This trend suggested 

that the exponential VRF was not an optimal fit for the corpus of measurements, and we 

sought a better model. It was found that the gamma-variate model with a single parameter 

value fit measured activation results with less dependence on the block durations, which is 

therefore preferable. However, higher sampling rates (shorter TRfMRE) might lead to a more 

complex model than our gamma-variate VRF.

Finally, the intersubject variation in stiffness values and percent fMRE signal fluctuation, 

along with the intersubject variation in τ* and α*, reflects biodiversity. As summarized by 

the brain MRE review by Hiscox et al., there is growing evidence in the literature relating 

individual differences in age, sex, cognition, etc. to brain stiffness. Whether factors such as 

age, sex, brain stiffness, cognition, etc. can affect fMRE activation should be a subject of 

further study.

5 | CONCLUSION

In this study, we demonstrated that (1) very robust fMRE activation can be obtained using a 

novel time series method; (2) there are stiffness changes within the brain occurring on a slow 

time scale; (3) concurrent fMRE and fMRI is possible; (4) fMRE and fMRI activation maps 

strongly overlap within the visual cortex, and (5) the tSNRfMRE is highly heterogenous in 
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our study. This opens up the possibility of a new form of multi-modal brain mapping in the 

human cortex using two widely different contrast mechanisms. The integration of both 

hemodynamic and viscoelastic signals may provide complementary information useful for a 

deeper understanding of the underlying cognitive neurobiology mechanisms. Currently, our 

conclusions are limited to a visual task and a relatively small sample size; however, we hope 

these results will stimulate further exploration of fMRE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(a) Each subject underwent 3 runs of the visual task with different block durations (BD). (b) 

The ON block is a contrast-reversing checkerboard flickering at 10 Hz, and the OFF block is 

a fixation cross. (c) The MRE sequence consists of 4 motion-encoding gradient (MEG) 

directions (red, orange, yellow, green) and 3 phase offsets (varying tints) to generate one 

stiffness map. (d) Depending on the block duration, 30/32 stiffness time frames and 360/384 

fMRI time frames were simultaneously acquired for a total acquisition time of 360/384 s. 

GLM analysis was performed to generate fMRE and fMRI activation maps.
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FIGURE 2. 
Schematic for the generation of fMRI and fMRE task regressors. (a) The fMRI task 

regressor is a boxcar function (corresponding to the task ON and OFF blocks) convolved 

with a canonical hemodynamic response function (HRF). (b & c) The fMRE task regressors 

for a first-order exponential decay model and gamma-variate model is a boxcar function 

convolved with an exponential viscoelastic response function (VRF) and a gamma-variate 

VRF, respectively.
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FIGURE 3. 
(Top) Example of fMRE task regressors with varying time constants τ (Left) and shape 

parameters α (Right). (Bottom) Regressors downsampled to 12-s resolution, together with 

an empirically measured ROI time series (gray-dashed curve). Heuristically, the 

measurement correlates more with the regressors with the longer τ = 15 s and α = 8 s than 

with the shorter τ and α regressors.
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FIGURE 4. 
Example of a subject’s fMRE activation (p < 0.001) as a function of time constant τ (a) and 

gamma-variate shape parameter α (b). Notice that activation peaks near τ ≈ 12 s and α ≈ 8 

s.
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FIGURE 5. 
Quantification of fMRE activation versus the regressor’s time constant τ (a) and shape 

parameter α (b) for each of the three block durations. The τ at which the peak of each curve 

occurs is the arg max of activation, τ*; similarly the α at which the peak of each curve 

occurs is recorded as the α*.
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FIGURE 6. 
fMRE and fMRI t-score activation maps (p < 0.001) of the visual cortex for all 11 subjects; 

(top) stiffness-fMRE activation; (middle) BOLD-fMRI activation; (bottom) both fMRE 

(orange-yellow) and fMRI (blue-green) activation maps overlaid.
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FIGURE 7. 
The average stiffness (left) and temporal signal-to-noise ratio (tSNRfMRE) (right) maps 

derived from a subject’s fMRE time series.
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FIGURE 8. 
Average tSNRfMRI in the visual cortex for 3 subjects and a tofu phantom under 2 different 

conditions: (1) MEGs and driver, as in our MRE sequence; and (2) neither MEGs nor driver, 

as in a conventional spin echo sequence. The error bars indicate the standard deviation 

within the visual cortex. In all cases, the tSNRfMRI of the SE sequence is greater than that of 

the MRE sequence (p < 0.001).
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FIGURE 9. 
Frequency spectrum plots calculated from the magnitude (Top) and phase (Bottom) 

information of the spin-echo time series, with the DC term removed. (Left) Spectrum of an 

activated ROI (visual cortex) from an experiment with a 24-s block duration. (Right) 

Spectrum of a non-activated ROI from the same experiment. Notice that there is a peak at 

the task frequency of 0.021 Hz (48 s period) in the spectrum of the magnitude time series, 

but in none of the other panels. The peaks at other frequencies are due to the interaction 

between the motion-encoding gradients and phase offsets.
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TABLE 1

Table of τ* and α* values for each subject, thresholded at p < 0.001.

Model Parameter 1st-order Exponential τ* (s) Gamma-variate α* (s)

Subjects BD = 18 s BD = 24 s BD = 36 s BD = 18 s BD = 24 s BD = 36 s

Subject 1 13 12 8 8 7 6

Subject 2 14 10 7 9 7 7

Subject 3 15 14 12 9 9 9

Subject 4 15 15 8 9 9 8

Subject 5 12 12 11 7 8 8

Subject 6 15 18 9 9 11 7

Subject 7 10 8 13 7 6 8

Subject 8 - - 7 8 8 6

Subject 9 14 14 16 9 9 11

Subject 10 - - 12 9 10 7

Subject 11 - - - - - 6

Mean 13.5 12.9 10.3 8.4 8.4 7.5

SD 1.8 3.1 3.0 0.8 1.5 1.5

Total 12.1±3.0 8.1±1.4

BD, block duration; SD, standard deviation.
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