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ABSTRACT Genetic variance of a phenotypic trait can originate from direct genetic effects, or from indirect effects, i.e., through
genetic effects on other traits, affecting the trait of interest. This distinction is often of great importance, for example, when trying to
improve crop yield and simultaneously control plant height. As suggested by Sewall Wright, assessing contributions of direct and
indirect effects requires knowledge of (1) the presence or absence of direct genetic effects on each trait, and (2) the functional
relationships between the traits. Because experimental validation of such relationships is often unfeasible, it is increasingly common to
reconstruct them using causal inference methods. However, most current methods require all genetic variance to be explained by a
small number of quantitative trait loci (QTL) with fixed effects. Only a few authors have considered the “missing heritability” case,
where contributions of many undetectable QTL are modeled with random effects. Usually, these are treated as nuisance terms that
need to be eliminated by taking residuals from a multi-trait mixed model (MTM). But fitting such an MTM is challenging, and it is
impossible to infer the presence of direct genetic effects. Here, we propose an alternative strategy, where genetic effects are formally
included in the graph. This has important advantages: (1) genetic effects can be directly incorporated in causal inference, implemented
via our PCgen algorithm, which can analyze many more traits; and (2) we can test the existence of direct genetic effects, and improve
the orientation of edges between traits. Finally, we show that reconstruction is much more accurate if individual plant or plot data are
used, instead of genotypic means. We have implemented the PCgen-algorithm in the R-package pcgen.
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TO attain higher genetic gains, modern plant and animal
breeders increasingly scale up their programs via the im-

plementationof genomic prediction technologies (Cooper et al.
2014). Most genomic prediction applications are based on
linear mixed- or Bayesian models that predict the phenotype
for the target trait (yield) as a function of a multivariate dis-
tribution for single nucleotide polymorphism (SNP) effects. In
these models, the physiological mechanisms and traits that
modulate the genotypic response to the environment over time

aremodeled implicitly via the SNP effects directly affecting the
target trait (Calus and Veerkamp 2011; Zhou and Stephens
2014). The availability of high throughput phenotyping tech-
nologies has enabled breeders to characterize additional traits,
and to monitor growth and development during the season.
This opens new opportunities in breeding strategies, in which
better-adapted genotypes result from combining loci that reg-
ulate complementary physiological mechanisms. This kind of
breeding strategy is called physiological breeding (Reynolds
and Langridge 2016).

In physiological breeding, prediction accuracy for the tar-
get trait potentially benefits from a joint model for all un-
derlying traits. This is partly because of the physiological
knowledge that can be incorporated, but also because the
use of genetically correlated traits with sufficiently large
heritability increases accuracy (Thompson and Meyer 1986;
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van Eeuwijk et al. 2019). Often, however, a realistic model
should account for at least some of the causal relations be-
tween traits, which is difficult with the regressionmodels that
are used in most genomic prediction literature. Structural
equation models (SEMs), proposed by Wright (1921), and
extended with random genetic effects in Gianola and
Sorensen (2004), are a promising approach to deal with this
problem (Rosa et al. 2011). In SEMs, each trait is modeled
explicitly as a function of the other traits and a noise term.
Therefore, SEMs are a useful tool to identify which are the
key traits that could be selection targets, or be incorporated in
multi-trait genomic prediction models to improve the predic-
tion accuracy for the target trait.

A first advantage of SEMs, compared to regressionmodels,
is that one can predict the behavior of the systemwhen one or
more of the structural equations aremodified by some kind of
intervention. Figure 1 shows an illustration of an interven-
tion. For example, a question that could be of interest to plant
breeders is: which would be the contribution of a trait (say,
radiation use efficiency) to yield, if flowering time is fixed for
all genotypes at a particular value?

Second, SEMsmake possible to distinguish between direct
and indirect effects of one trait on another, and, similarly,
between direct and indirect genetic effects. For example, let
plant height (traitY1) bemodeled asY1 ¼ G1 þ E1, i.e., as the
sum of a random genetic and residual effect, where all terms
are n3 1 vectors, containing the values for a population of n
individuals. Suppose plant height has a linear effect on yield
(Y2), with additional random effects G2 and E2:

Y2 ¼ lY1 þ G2 þ E2 ¼ ðlG1 þ G2Þ þ lE1 þ E2;

where l is the path (or structural) coefficient associated with
the effect of Y1 on Y2. On the one hand, we have the direct
genetic effects G1 and G2; on the other, we have the total (or
marginal) genetic effects U1 ¼ G1 and U2 ¼ lG1 þ G2, the
indirect effects being U1 2G1 ¼ 0 and U2 2G2 ¼ lG1. Simi-
larly, we can distinguish between the 23 2 matrices SG, con-
taining the (co) variances of G1 and G2, and VG, with the (co)
variances of U1 and U2. The latter is the matrix of genetic (co)
variances, appearing in the usual MTM (multi-trait mixed
model) for Y1 and Y2; here, it is a function of SG and l.

Knowledge of the direct genetic effects is often of great
interest to breeders (Valente et al. 2013, 2015). However,
routine use of these models is currently difficult for two rea-
sons. First, for a given SEM, not all parameters may be iden-
tifiable, i.e., because of overparameterization, different sets
of parameter values can lead to the same model, making
estimation infeasible. Gianola and Sorensen (2004) provided
criteria for identifiability, and suggested putting constraints
on some parameters, although automatic generation of in-
terpretable and meaningful constraints remains difficult, es-
pecially in high-dimensional settings.

A second (and more fundamental) obstacle for the use of
SEMs with genetic effects is that the underlying structure is
often unknown. In such cases, causal inference methods
(Spirtes et al. 2001; Pearl 2009; Maathuis and Nandy

2016) can be used, which reconstruct causal models that
are, in some sense, most compatible with the observed data.
Most causal inference methods, however, require indepen-
dent samples, and cannot account for genetic relatedness.
For this reason, genotypic differences aremost oftenmodeled
using a small number of quantitative trait loci (QTL) with
fixed effects (Chaibub Neto et al. 2008, 2013; Scutari et al.
2014), but when part of the genetic variance is not explained
by QTL (missing heritability), the use of random genetic ef-
fects seems inevitable. Only a few works have studied recon-
struction in the presence of such effects. Valente et al. (2010)
and Töpner et al. (2017) proposed to perform causal infer-
ence after subtracting genomic predictions obtained from an
MTM. Similarly, Gao and Cui (2015) applied the PC algo-
rithm (Spirtes et al. 2001) to the residuals of multi-single
nucleotide polymorphism (SNP) models. The difficulty with
these approaches is that the MTM is limited to small numbers
of traits, and that the existence of direct genetic effects can-
not be tested. For example, if the causal graph among three
traits is Y1/Y2)Y3, and there are direct genetic effects on
Y1 and Y3, then the absence of a direct genetic effect on Y2
cannot be inferred from MTM residuals.

Inspired by these problems, we define a framework in
which direct genetic effects are part of the causal graph, and
a single node G represents all direct genetic effects. For
each trait Yj; an arrow G/Yj is present if and only if the
direct genetic effect on Yj is nonzero, i.e., if the jth diagonal
element of SG is positive. See Figure 3 below for an exam-
ple. Although our causal interpretation of genetic effects is
not new (Stephens 2013; Valente et al. 2013, 2015), this
work appears to be the first to formalize it. In particular, we
show that the Markov property holds for the graph ex-
tended with genetic effects (Theorem 1 below). Informally
speaking, thismeans that there is a one-to-one correspondence
between edges in the causal graph and conditional dependen-
cies in the distribution of the traits and genetic effects. This
means that edges (either between two traits, or between a trait
and G) can be inferred from multi-trait data. Consequently,
while some of the covariances between direct genetic effects
(contained in SG) may still be unidentifiable, we can at least
identify which rows and columns in SG are zero.

Building on the Markov-property, we propose the PCgen
algorithm. PCgen stands for PC with genetic effects, and is an
adaptation of the general PC-algorithm (named after its
inventors Peter Spirtes and Clark Glymour). Briefly, PCgen
assesses the existence of a direct genetic effect on a given trait
by testing whether its genetic variance is zero, conditional on
various sets of other traits. For the existence of an edge
between traits Y1 and Y2; we test whether, in a bivariate
MTM, the residual covariance between Y1 and Y2 is zero,
again conditional on sets of other traits. Under the usual
assumptions of independent errors, recursiveness, and faith-
fulness, we show that PCgen can recover the underlying par-
tially directed graph (Theorem 2). Because fitting an MTM
for all traits simultaneously is no longer necessary, PCgen can
handle a considerably larger number of traits.
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While our approach is generally applicable to any species and
relatedness matrix, our implementation of PCgen is currently
limited to the specific (but important) case of populationswhere
observations on genetically identical replicates are available,
assuming independent genetic effects (i.e., as in the classical
estimation of broad-sense heritability). This is partly for prag-
matic reasons (e.g., lower computational requirements), and
partly for statistical reasons. In particular, successful reconstruc-
tion requires sufficient power in the tests for direct genetic
effects ðG/YjÞ; and those for the between traits relations
ðYj/YkÞ. Given the availability of replicates, this power is likely
to be highestwhen the original observations are used, instead of
genotypicmeans and amarker-based genetic relatednessmatrix
(GRM), modeling additive effects (Kruijer et al. 2015). Al-
though mixed models with both replicates and a GRM may
further increase power, the increase is often modest, and statis-
tical inference can become biased under model misspecification
(e.g., when the GRM models additive effects, and the true ar-
chitecture is partly epistatic; see Kruijer 2016). By contrast,
using only replicates, unbiased estimation of broad-sense heri-
tability is always possible, regardless of the population structure
and genetic architecture. The downside is that the contributions
of different types of genetic effects cannot be distinguished. On
the positive side, PCgen appears to be the first algorithm that
can infer the presence of direct genetic effects based on pheno-
typic data alone.

Our approach is related to that of Stephens (2013), who
inferred the sets of traits being affected directly and indirectly
by a given locus, assuming unrelated individuals and using only
summary statistics. Here, we instead consider sums of individ-
ual locus effects, for possibly related individuals. Moreover,
PCgen also aims to reconstruct structural relations among the
traits themselves, and can deal with larger numbers of traits.

The paper is organized as follows. After introducing
SEMs with genetic effects, we define their graphical struc-
ture, and, from this perspective, review existing ap-
proaches. We then describe the general form of the
PCgen-algorithm for estimation of the graphical structure,
followed by various proposals for the required conditional
independence tests. Next, we test PCgen performance in data
simulated with both statistical and crop-growth models, and
analyze a maize and a rice dataset. Finally, we state several
results regarding PCgen’s statistical properties. Supplemental
Material, Table S1 provides an overview of the notation, and
Appendix A.1 contains the necessary graph-theoretic defini-
tions. Figure 2 provides a graphical summary of our theory
and methodology.

Materials and Methods

Structural equation models

To introduce structural models, we first consider a simple
linear SEM without genetic effects:

yi ¼ xiBþ yiLþ ei; (1)

where yi is a 13 p vector of phenotypic values for p
traits measured on the ith individual, ei is a vector of
random errors, and L is a p3 p matrix of structural co-
efficients. The q3 p matrix B ¼ ½bð1Þ � � � bðpÞ� contains in-
tercepts and trait-specific fixed effects of (exogenous)
covariates, whose values are contained in the 13 q
vector xi.

To write Equation 1 in matrix-form, we define the n3 q
design matrix X with rows xi. Similarly, we define n3 p ma-
trices Y ¼ ½Y1 � � � Yp� and E ¼ ½E1 � � � Ep�, with rows yi and ei,
and columns Yj and Ej. We can then write

Y ¼ XBþ YLþ E: (2)

L has zeros on the diagonal, and defines a directed graph GY
over the traits Y1; . . . ; Yp, containing the edge Yj/Yk if and
only if the ð j; kÞth entry of L is nonzero. The columns in
Equation 2 correspond to p linear structural equations, one
for each trait. These are determined by the path coefficients,
the nonzero elements inL. For example, in Figure 1, ifX ¼ 1n
is the n3 1 vector of ones and B ¼ ½m1 m2 m3�, the third trait
has values Y3 ¼ m31n þ l13Y1 þ l23Y2 þ E3. The equality
sign here should be understood as an assignment, i.e., Y3 is
determined by the values of Y1 and Y2 (its parents in the
graph GY) and an error. If the directed graph does not contain
any cycle (i.e., a directed path from a trait to itself), it is a
directed acyclic graph (DAG), and the SEM is said to be
recursive. In the notation, we will distinguish between the
nodes Y1; . . . ; Yp in the graph GY (normal type), and the ran-
dom vectors Y1; . . . ;Yp that these nodes represent (bold
face).

As mentioned above, SEMs can be used to predict the
effects of interventions, which mathematically correspond
to changes in the structural equations. For example, sup-
pose that, in Figure 1, Y1, Y2; and Y3 are the expression
levels of three genes, and Y4 is plant height. Then, after
forcing Y2 to be zero (e.g., by knocking out the gene), the
total effect of Y1 on Y4 changes from ðl13l34 þ l12l23l34Þ
to l13l34 (File S7.3 and File S7.4 provide other exam-
ples, involving genomic prediction). More generally, the
new joint distribution of Y1; . . . ;Yp after an intervention
can be obtained from the manipulation or truncated fac-
torization theorem (Pearl 2009), without observations
from the new distribution. For the consequences for ge-
nomic prediction, see Valente et al. (2013) and the
Discussion section below.

GSEM: structural equation models with genetic effects

Gianola and Sorensen (2004) extended model (1) with ran-
dom genetic effects gi: for individuals i ¼ 1; . . . ; n, it is then
assumed that

yi ¼ xiBþ yiLþ gi þ ei; (3)

where the 13 p vectors, gi; contain the direct genetic effects
for individuals i ¼ 1; . . . ; n. We will refer to model (3) as a
linear genetic structural equation model (GSEM). While the
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genetic effects introduce relatedness between individuals,
there is no form of social interaction [as in Moore et al.
(1997) and Bijma (2014)]. Each gti follows a Nð0;SGÞ distri-
bution, where SG is a p3 p matrix of genetic variances and
covariances. The vectors gi are independent of the ei’s, but
not independent among themselves. Defining a n3 p matrix
G ¼ ½G1 � � � Gp�; with rows gi and columns Gj ðj ¼ 1; . . . ; pÞ,
we can extend Equation 2 as follows:

Y ¼ �
Y1 � � � Yp

� ¼ XBþ YLþ Gþ E: (4)

Each vector Gj contains the direct genetic effects on the jth
trait. We make the following assumptions about the GSEM
defined by (4), which are summarized in Figure 2:

1. All traits are measured in the same experiment: the rows yi of
Y may be either observations at plot or plant level or geno-
typic means across plots or plants, but the observations
should always come from the same experiment. In addition,
the residual errors originate from biological variation, i.e.,
measurement errors are negligible [this in contrast to related
work on Mendelian randomization (Hemani et al. 2017)].

2. Recursiveness: the graph GY defined by L is a DAG. Con-
sequently, there should be no feedback loops.

3. Causal sufficiency: the covariance matrix SE of the error
vectors ei is diagonal, i.e., there are no latent variables.
This means that all nonzero (nongenetic) correlations be-
tween traits must be the consequence of causal relations
between the traits. We also assume the diagonal elements
of SE to be strictly positive.

4. Genetic relatedness among individuals: G is independent of
E, and has a matrix-variate normal distribution with row-
covariance K and column covariance SG, where K is a n3 n

relatedness matrix, which we describe in more detail below
(see the section Genetic relatedness). Equivalent to this, the
np3 1 vector vecðGÞ ¼ ðGt

1; . . . ;G
t
pÞt is multivariate nor-

mal with covariance SG5K, where vec denotes the opera-
tion of creating a column vector by stacking the columns of
a matrix. Consequently, eachGj is multivariate normal with
covariance s2

G;jK, where the variances s2
G;j form the diago-

nal of SG. Using the same notation, we can write that E is
matrix-variate normal with row-covariance In and column
covariance SE, and that vecðEÞ � Nð0;SE5InÞ.

5. No collinear genetic effects: the diagonal elements of SG do
not need to be strictly positive, but, for all nonzero ele-
ments, the corresponding correlation should not be 1 or21.

Assumptions 1–4 were also made in related work on struc-
tural models with random genetic effects (Valente et al. 2010;
Töpner et al. 2017), and 1–3 are commonly made for structural
models without such effects. Assumption 1 is implicit in the
GSEMmodel (4) itself, as it is assumed that the structural equa-
tions propagate all errors to traits further down in the graph.
Network reconstruction with traits from different experiments
would rely completely on the genetic effects, requiring SG to
be diagonal, which is a rather unrealistic assumption (see the
Discussion, section Data from different experiments). A small
amount of measurement error does not seem to pose problems
for our PCgen algorithm. Larger amounts of measurement error
will decrease power, which can, however, be avoided by increas-
ing the number of genotypes or replicates (see Table S4, dis-
cussed below). Assumption 1 does not require traits to be
measured at the same time. In particular, it is possible to include
the same trait measured at different time-points, which, of
course, puts constraints on causality. Such constraints can, in
principle, be incorporated in our model, just as other biological
constraints (see e.g., Peters et al. 2017), although we will not
explore this here. What is also implicit in Equation 4 is that all
causal relations between traits are linear. Our PCgen algorithm
relies on this rather heavily, and we discuss the consequences of
nonlinearity in the Results below (specifically, in the APSIM
simulations, and the example just before the Discussion). In
specific cases, it may be possible to obtain linearity by certain
transformations of the data, but this requires prior knowledge
that is typically unavailable. In the Discussion, we suggest vari-
ous directions of future work to deal with nonlinear relation-
ships, as well as non-Gaussian errors. In any case, as long as the
other assumptions hold, the core of our framework (the graph-
ical representation of genetic effects with a single node G, and
the Markov property in Theorem 1 below) is still valid for non-
linear GSEMs.

Assumption 2 (no cycles) is essential given the type of
data considered here, as the reconstruction of feedback loops
requires time-course data (Peters et al. 2017), typically with
high-resolution. Without such data (or only a few time-
points), it is impossible to verify this assumption, but
Maathuis et al. (2010) provide examples of interventions in
yeast data, where cycles are likely to exist, but structural
models still outperform nonstructural models.

Figure 1 An example of a linear SEM. The SEM can be represented by a
graph (middle), which is defined by the nonzero elements of L, the matrix
containing the path coefficients (top). The total effect of Y1 on Y4 can be
obtained by summing the contributions of the directed paths
Y1/Y3/Y4 and Y1/Y2/Y3/Y4, where each contribution is the
product of the corresponding path coefficients. After the intervention
Y2 :¼ 0 (bottom), the effect changes from ðl13l34 þ l12l23l34Þ to
l13l34.
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Assumption 3 (no latent variables) is important for orien-
tation of the edges, and has been studied in detail by many
authors. In particular, Spirtes et al. (2001) and Colombo et al.
(2012) proposed the FCI and RFCI algorithms, which are
extensions of the PC-algorithm, and allow for latent vari-
ables. These algorithms could be extended with genetic ef-
fects, as we do here for the PC-algorithm (see the Discussion).
Apart from nonlinear trait-to-trait relations, the APSIM sim-
ulations below also contain latent variables.

As in related work (Valente et al. 2010; Töpner et al. 2017),
as well as in much of the literature on multi-trait genomic pre-
diction and genome-wide association studies (GWAS), the re-
latedness matrix K is the same for all traits (Assumption 4). This
may not hold if traits have very different genetic architectures,
but seems a good approximation if most of the underlying QTL
are small. Large QTL may be added as additional fixed effects.

Assumption 5 implies that, for each pair of traitswith direct
genetic effects, these effects should not be the result of exactly
the same set of QTL, with exactly the same effect sizes. This
seems a reasonable assumption whenever the underlying
biological structures or processes are really different; see

the section Dealing with derived traits in the Discussion. Of course,
reconstruction of direct genetic effects will be more diffi-
cult under strong correlations, similar to, for example, the re-
duced power in GWAS when two causal loci are in strong LD.

Finally, there are a few additional assumptions which are
required for thePCgen-algorithm, andarenot essential for the
definition of GSEM; see the overview in Figure 2 and the
section Statistical properties of PCgen in the Results. In partic-
ular, we require the faithfulness assumptions defined by ex-
pressions 9 and 10 below, and assumptions about the
conditional distributions. Appendices A.5 and A.6 provide
additional examples and results regarding faithfulness.

Graphical representation of GSEM: extending GY with
genetic effects

In contrast to previouswork,wewill explicitly take into account
the possibility that there are no direct genetic effects on some of
thetraits. Inthiscase, thecorrespondingrowsandcolumns inSG

are zero. Following the notation of Stephens (2013), we use
D4f1; . . . ; pg to denote the index set of traits with direct ge-
netic effects, and write SG½D;D� for the submatrix with rows

Figure 2 Graphical summary of the theory and methodology. The Markov property on the right (green; for the residuals) is well known from the
literature, while the Markov property on the left (blue, for the conditional distributions of Y1; . . . ;Yp;G) is established in Theorem 1. Table S1 contains
an overview of the notation, and Appendix A.1 provides the necessary graph-theoretic definitions.
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and columns restricted to D. From Assumption 5 above, it fol-
lows that SG½D;D� is nonsingular, i.e., there can be no perfect
correlations between direct genetic effects.

We graphically represent model (4) by a graph G with
nodes Y1; . . . ; Yp; and a node G, which represent, respec-
tively, Y1; . . . ;Yp and the matrix G ¼ ½G1⋯Gp�. G contains
an edge Yj/Yk if the ðj; kÞth entry of L is nonzero, and an
edge G/Yj if Gj is nonzero with probability 1, i.e., if
s2
G; j . 0. See Figure 3 for an example. In words, G is defined

as the original graph GY over the traits, extended with the
node G and arrows G/Yj for traits with a direct genetic
effect, i.e., for all j 2 D. Consequently, our main objective
of reconstructing trait-to-trait relationships and direct ge-
netic effects translates as reconstructing G.

As for the Yj’s, we distinguish between the node G in the
graph (normal type) and the random matrix G it represents
(bold face). G is represented by a single node G, instead of
multiple nodes G1; . . . ;Gp. This choice is related to our as-
sumption that K is the same for all traits; see File S7.1 for a
motivating example. The orientation of any edge between G
and Yj is restricted to G/Yj, because the opposite orientation
would be biologically nonsensical. Because of our assumption
that GY is a DAG, it follows that G is a DAG as well, as a cycle
would require at least one edge pointing into G.

We emphasize that G is just a mathematical object and not
a complete visualization of all model terms and their distri-
bution, as is common in the SEM literature. In particular, G
does not contain nodes for the residual errors, path coeffi-
cients, or information about the off-diagonal elements of SG.
While in general, SG is not entirely identifiable (Gianola and
Sorensen 2004), we will see that G is identifiable in terms of
its skeleton (the undirected graph obtained when removing
the arrowheads) and some of the orientations. The skeleton
is generally not equal to the conditional independence graph,
which is the undirected graph associated with the inverse
covariance or precision matrix (Spirtes et al. 2001; Kalisch
and Bühlmann 2007). See File S6.2 for an example.

Direct and indirect genetic effects

As pointed out by various authors (Gianola and Sorensen
2004; Valente et al. 2010, 2013; Töpner et al. 2017), the
genetic variance of a trait is driven not only by its direct ge-
netic effect ðgiÞ, but also by direct genetic effects on traits
affecting it, i.e., its parents in the graph GY . Assuming that the
inverse G ¼ ðI2LÞ21 exists, it follows from Equation 3 that

yi ¼ xiBGþ giGþ eiG ¼ xiBGþ ui þ eiG
� N

�
xiðBGÞ;GtSGGþ GtSEG

� ¼ NðxiðBGÞ;VG þ VEÞ;
(5)

where the 13 p vector ui ¼ giG contains the total genetic
effects for the ith individual. The n3 1 vector Uj ¼ Ggj con-
tains the total genetic effects for the jth trait, where gj is
defined as the jth column of G. The vector of indirect genetic
effects is the difference Uj 2Gj. In Figure 3 for example,
G3 ¼ ð0; . . . ; 0Þt and U3 ¼ l13G1 þ l23G2.

Likewise, we can distinguish between the contribution of
direct and indirect genetic effects to the genetic covariance.
The ð j; kÞth element of VG ¼ GtSGG in Equation 5 is the total
genetic covariance between Yj and Yk. This is what is usually
meant with genetic covariance. Most often, this is different
from the covariance between the direct genetic effects Gj and
Gk, given by SG½ j; k�. Indeed, SG½ j; k� affects the total genetic
covariance, but the latter is also driven by causal relation-
ships between traits, as defined by G ¼ ðI2LÞ21. If no such
relationship exist, then L contains only zeros, and VG ¼ SG.
In general, however, these matrices are different, and,
depending on the structure of the graph and the path coeffi-
cients, the correlation SG½j; k�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SG½j; j�SG½k; k�

p
may be much

larger than VG½j; k�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VG½j; j�VG½k; k�

p
, or vice versa. For exam-

ple, given direct effects G1 and G2 with equal variance and
correlation 0.9, and an effect Y1/Y2 of size 21, the total
genetic correlation is 20:22. Regarding the diagonal of VG,
we note that traits without a direct genetic effect may still
have positive genetic variance.

Genetic relatedness: The genetic relatedness matrix K intro-
duced in Assumption 4 determines the covariance between
the rows of G. In principle, our approach allows for any type
of GRM, but, for simplicity, we focus on the following types.
In all cases, K has dimension n3 n.

1. K ¼ ZZt, Z being the n3m incidence matrix assigning
n ¼ mr plants (or plots) to m genotypes, in a balanced
design with r replicates for each genotype. This K is
obtained when each genotype has an independent effect,
as in the classical estimation of broad-sense heritability
(or repeatability). Since no marker information is in-
cluded, the model cannot be used directly for genomic
prediction, but we will see that, for the reconstruction of
G (using the training genotypes), it has considerable com-
putational and statistical advantages.

2. Given only a single individual per genotype (or genotypic
means), we assume K ¼ A; A being a ðn3 nÞ GRM esti-
mated from a dense set of markers, assuming additive
infinitesimal effects.

3. Given both r replicates of m genotypes and a GRM A of
dimension m3m, we assume that K ¼ ZAZt. In absence
of nonadditive effects, this covariance structure uses all
available information. However, for computational rea-
sons it is usually easier to work with either the replicates

Figure 3 An example of a graph G representing a genetic structural
equation model (GSEM), with path-coefficients l13 and l23. There is no
direct genetic effect on Y3; and therefore no edge G/Y3:
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or with genotypic means and the GRM A. We further
explore this issue in the simulations below and in the
Discussion.

The balance required when K ¼ ZZt is necessary in Theo-
rems 5 and 6 below, but is not a general requirement for our
models, nor for the PCgen algorithm.

The joint distribution implied by the GSEM: The sumGþ E
does not, in general, have a matrix-variate normal distribu-
tion, but from our Assumption 4, it still follows that vecðGþ EÞ
is multivariate normal with covariance SG5K þ SE5In. We
can rewrite Equation 4 as

Y ¼ XBGþ GGþ EG ¼ XBGþ Uþ EG; (6)

whereU ¼ GG is the n3 pmatrix of total genetic effects, with
columns Uj. Equation 5 now generalizes to

vecðYÞ � N
�
vec

�
X~B

�
;VG5K þ VE5In

�
; (7)

where ~B ¼ BG is the matrix of fixed effects transformed by G.
This is a common model for multi-trait GWAS and genomic
prediction [see, among others, Korte et al. (2012), Stephens
(2013), and Zhou and Stephens (2014)]. In those works,
however, VG and VE are arbitrary covariance matrices,
whereas here they are modeled as functions of SG, SE; and
G ¼ ðI2LÞ21.

Under Assumption 3 (SE diagonal),SG,SE; andL together
have, at most, pðpþ 1Þ=2þ pþ pðp2 1Þ=2 ¼ pðpþ 1Þ pa-
rameters, as many as VG and VE together. This suggests that
SG, SE; and L might be identifiable from the distribution in
Equation 7. In Appendix A.2 we show how SG, SE; and L can
be obtained from VG and VE. Apart from Assumption 3, this
requires knowledge of the graph, and the faithfulness As-
sumptions (9)–(10) given below. Equations 17 and 18 in
Appendix A.2 can be used to derive estimates ŜG, ŜE; and
L̂ from estimates V̂G and V̂E, although the development of
good estimators of SG, SE; and L is beyond the scope of this
work. Such estimators should account for the structure of the
GSEM, as defined by L and SG, and might rely on alternative
restrictions on the parameters (instead of diagonal SE); see
Gianola and Sorensen (2004).

Using the results of Spirtes et al. (2001) (p. 371), it
turns out that G can be written directly in terms of sums
of products of path coefficients (see Appendix A.3). Con-
sequently, there is no need to invert ðI2LÞ, although it
still holds that G ¼ ðI2LÞ21, provided the inverse exists.
Recalling that gj is the jth column of G, we can express the
jth trait as

Yj ¼ XBgj þ Ggj þ Egj ¼ XBgj þ Uj þ Egj; (8)

which is Equation 6 restricted to the jth column. Similarly, for
any nonempty index-set S⊂f1; . . . ; pg, the n3 jSjmatrix YS of
traits in S (i.e., Y with columns restricted to S) equals
XBGS þ GGS þ EGS, where GS is the p3 jSj matrix with

columns gj ðj 2 SÞ. Equation (26) (Appendix A.7) provides
an expression for the covariance of vecðYSÞ. For the corre-
sponding nodes in the graph, we write YS ¼ fYm : m 2 Sg.

Causal inference without genetic effects: So far, we have
assumed that G is known, in which case estimation of L, SG;

and SE is usually of interest. In this work, however, we focus
on the reconstruction of an unknown G, based on observa-
tions from a GSEM given in Equation 4. We will do this with
the PCgen algorithm introduced below, but will first review
the necessary concepts, as well as existing methods. Appen-
dix A.1 contains a more detailed introduction.

Suppose for the moment we have observations generated
by an acyclic SEM without latent variables, and without ge-
netic effects. From the pioneering work of Judea Pearl and
others in the 1980s, it is known that we can recover the
skeleton of the DAG and some of the orientations, i.e., those
given by the v-structures. A v-structure is any triple of nodes
Yj; Yk; Yl; such that Yj/Yk)Yl, without an edge between Yj
and Yl. All DAGs with the same skeleton and v-structures
form an equivalence class, which can be represented by a
completed partially directed acyclic graph (CPDAG). DAGs
from the same equivalence class cannot be distinguished us-
ing observational data, at least not under the assumptions we
make here. For the reconstruction of the CPDAG, constraint-
based and score-based methods have been developed (for an
overview, see Peters et al. 2017).

Here,we focus on constraint-basedmethods,which rely on
the equivalence of conditional independence (a property of
the distribution) and directed separation (d-separation; a
property of the graph). An important result is that an edge
Yj 2 Yk is missing in the skeleton of the DAG if and only if Yj
and Yk are d-separated by at least one (possibly empty) set of
nodes, YS. Such YS is called a separating set for Yj and Yk.
Given the equivalence of d-separation and conditional inde-
pendence, this means that we can infer the presence of the
edge Yj 2 Yk in the skeleton by testing Yj╨YkjYS for all YS.
The PC- and related algorithms therefore start with a fully
connected undirected graph, and remove the edge Yj 2 Yk
whenever Yj and Yk are found to be conditionally indepen-
dent for some YS. While the first constraint-based algorithms
such as IC (Pearl et al. 1991) exhaustively tested all possi-
ble subsets, the PC-algorithm (Spirtes et al. 2001) can of-
ten greatly reduce the number of subsets to be considered.
Although this is not essential for the equivalence of
d-separation and conditional independence, most con-
straint-based algorithms assume that observations be inden-
dently and identically distributed, and structural equations
with additional random effects are usually not considered.

Existing approaches for estimating GY , given genetic ef-
fects: To deal with the dependence introduced by the genetic
effects, Valente et al. (2010) and Töpner et al. (2017) pro-
posed to predict the total genetic effects (i.e., the term U in
Equation 6), and perform causal inference on the residuals.
These methods are flexible, in the sense that any genomic
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prediction method can be used, and combined with any
causal inference method. A disadvantage, however, is that
the presence of direct genetic effects cannot be tested. Sup-
pose, for example, that G/Y1/Y2/Y3, and we subtract the
total genetic effects. Then, given only the residuals, we can
never know if part of the genetic variance of Y2 was due to a
direct effectG/Y2. Another disadvantage is that fewer of the
between-trait edges can be oriented. Technically, this is be-
cause, in the CPDAG (showing which orientations can be re-
covered from data), typically more edges are undirected; see
Appendix A.1 for more details. In the preceding example, the
CPDAG associated with G is G/Y1/Y2/Y3, i.e., all orien-
tations can be recovered. By contrast, the CPDAG associated
with GY is Y1 2 Y2 2 Y3, and we only know that the orienta-
tion is not Y1/Y2)Y3 (see Figure 2).

To use the causal information associatedwith genetic effects,
Töpner et al. (2017) estimated “genomic networks”, based on
the predictions themselves. These, however, seem to require
additional assumptions, which are not required for the residual
networks (in particular, diagonal SG). Moreover, it seems diffi-
cult to relate edges in such a network to direct genetic effects
(see the sectionData fromdifferent experiments in theDiscussion,
andFile S7.2). In summary, residual and genomic networks only
estimate the (CPDAG associated with the) subgraph GY of trait-
to-trait relations, instead of the complete graph G.

Another disadvantage is that, without specific models put-
ting restrictions on VG and VE, the MTM (7) can only be fitted
for a handful of traits (Zhou and Stephens 2014) for statistical
as well as computational reasons. For example, Zwiernik et al.
(2017) showed that, for general Gaussian covariance models,
(residual) ML-estimation behaves like a convex optimization
problem only when n* 14p. Similar problems are likely to
occur for Bayesian approaches. The problem with fitting
the MTM to data from the GSEM model (Equation 4) is that
one cannot exploit the possible sparseness of G. Even for
sparse graphs with few direct genetic effects, the matrices
VG ¼ GtSGG and VE ¼ GtSEG may still be dense, requiring a
total of pðpþ 1Þ parameters. To overcome these limitations,
we explicitly consider the presence or absence of direct genetic
effects to be part of the causal structure, and develop PCgen, a
causal inference approach directly on G.

The PCgen algorithm: The main idea behind PCgen is that
the PC-algorithm is applicable to any system in which
d-separation and conditional independence are equivalent,
and where conditional independence can be tested. We first
describe the algorithm and propose the various independence
tests; the equivalence is addressed in Theorems 1 and 2 be-
low. If we define Ypþ1 :¼ G; and temporarily rename the
node G as Ypþ1, PCgen is essentially the PC-algorithm applied
to Y1; . . . ; Ypþ1:

1. Skeleton-stage. Start with the fully connected undirected
graph over fY1; . . . ; Ypþ1g; and an empty list of separation
sets. Then, test the conditional independence between all
pairs Yj and Yk; given subsets of other variables YS.

Whenever a p-value is larger than the prespecified signif-
icance threshold a, update the skeleton by removing the
edge Yj 2 Yk; and add YS to the list of separation sets for Yj
and Yk. This is done for conditioning sets of increasing
size, starting with the empty set (S ¼ ∅; marginal inde-
pendence between Yj and Yk). Only consider S that, in the
current skeleton, are adjacent to Yj or Yk.

2. Orientation-stage. Apply the orientation rules given in
File S1 (R1–R3 in Algorithm 1) to the skeleton and sep-
arating sets found in the skeleton-stage. For example, if
the skeleton is Y1 2 Y2 2 Y3; and fY2g is not a separating
set for Y1 and Y3, the skeleton is oriented Y1/Y2)Y3;
otherwise, neither of the two edges can be oriented.

Inorder toobtainPCgen,weneedtomakea fewrefinements
to these steps. First, in the skeleton stage, we need to specify
how to test conditional independence statements. Clearly, in-
dependence between two traits requires a different test than
independence between a trait ðYjÞ and G (i.e., Ypþ1), in par-
ticular because the latter is not directly observed. Second, we
need to modify the orientation rules, in order to avoid edges
pointing into G. The usual rules give the correct orientations
when given perfect conditional independence information, but
statistical errors in the tests may lead to edges of the form
Yj/G. Third, statistical errors can also make the output of
PC(gen) order-dependent, i.e., putting the columns (traits)
in a different order may lead to a different reconstruction.
We therefore adopt the PC-stable algorithm of Colombo and
Maathuis (2014), who proposed to perform all operations in
the skeleton- and orientation-stage list-wise (details given in
File S1). Apart from eliminating the order-dependence, this
has the advantage that all conditional independence tests of
a given size jSj ¼ s can be performed in parallel.

In summary, PCgen is the PC-stable algorithm with: (1)
specific conditional independence tests (described below);
and (2) modified orientation rules, in order to avoid edges
pointing into G (File S1.2). As in the original PC-algorithm,
the number of type-I and type-II errors occurring in the tests
is determined by the choice of the significance threshold a,
which is discussed in section Assessing uncertainty below and
in the Discussion.

Skeleton stage: conditional independence tests. We can
distinguish between the following types of conditional in-
dependence statements in the skeleton stage:

Yj╨GjYS; (A)

Yj╨YkjfG;YSg; (B)

Yj╨YkjYS; (C)

where j; k 2 f1; . . . ; pg ðj 6¼ kÞ and S4f1; . . . ; pgnfj; kg [or,
in statement (A), S4f1; . . . ; pgnfjg�: In words, (A) means
that the trait Yj is independent of all genetic effects ðGÞ,
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conditional on the traits Ym ðm 2 SÞ. If S is the empty set, this
is understood as marginal independence of Yj and G. Simi-
larly, (B) and (C) express conditional independence of traits
Yj and Yk given G and YS; or given YS alone.

Wenowpropose statistical tests for statements (A)and(B),
which rely on the linearity of our GSEM, as well as some
additional assumptions, which we discuss in more detail
below (section Statistical properties of PCgen, and Figure 2).
Statement (C) can be tested using standard partial correla-
tions and Fisher’s z-transform. However, as we show in File
S6, this test is redundant, since for any set YS that d-separates
Yj and Yk; the set YS[ ​ fGg will also d-separate them. We
therefore skip any test for Yj╨YkjYS; and instead test the
corresponding statement including G, i.e., Yj╨YkjfYS;Gg.

Testing Yj╨G
		YS: Our test for statement (A) is based on the

intuition that Yj is independent of G ¼ ½G1⋯Gp� given YS;

whenever there is no direct genetic effect on Yj (i.e.,
Gj ¼ 0), and all directed paths from G to Yj are blocked by
the set YS ¼ fYm : m 2 Sg. In particular, if S is the empty set,
there should not be any directed path from G to Yj: Because
directed paths from G to Yj will generally introduce some
genetic variance in Yj; the idea is to test whether there is
significant genetic variance in the conditional distribution
of Yj given YS ¼ ~yS: This is done as follows:

1. When K ¼ ZZt, we use the classical F-test in a one-way
ANOVA, with X and ~yS as covariates. Technically, this is an
ANCOVA (analysis of covariance), where the treatment
factor genotype is tested conditional on the covariates
being in the model.

2. For other K, one can use a likelihood ratio test (LRT). The
asymptotic distribution under the null-hypothesis is a mix-
ture of a point mass at zero and a chi square.

In both cases, it is assumed that the conditional distribution
of Yj given YS ¼ ~yS is that of a single-trait mixed model, the
mean being a linear regression over the conditioning traits.
This assumption is made mathematically precise below in
Equations 12 and 14.

Testing Yj╨YkjfG;YSg: For statement (B), we mostly use
the residual covariance (RC) test, which is based on the
conditional distribution of Yj and Yk given the observed
YS ¼ ~yS: It is assumed that this distribution is that of a bi-
variate MTM, again with the mean being a linear regression
over the conditioning traits; see Equations 13 and 14 below.
Assuming the bivariate MTM, we test whether the residual
covariance is zero, using the LRT described in File S1.3. The
underlying idea is that a nonzero residual covariance must be
the consequence of an edge Yj/Yk or Yk/Yj, because of the
assumed normality and causal sufficiency. On the other hand,
a nonzero genetic covariance may also be due to covariance
between direct genetic effects on these variables, or due to a
genetic effect on a common ancestor. The RC-test therefore
compares the full bivariate mixed model with the submodel
with diagonal residual covariance, while accounting for all
genetic (co)variances. The RC-test is not to be confused with
a test for zero genetic covariance. The latter is often useful for

data exploration, but has no role in PCgen (although in File
S1.4 we describe a LRT test that is implemented in our
software).

An alternative to the RC-test is the RG-test [Residuals of
GBLUP, i.e., the best linear unbiased prediction of the genetic
effects]. Fitting the MTM (Equation 7), we obtain the BLUP
U* of the total genetic effectsU ¼ GG; and the BLUE ~B* of the
fixed effects. We then test the significance of partial correla-
tions among residuals, i.e., the columns of Y2U* 2X~B*.
When U* is close enough to U, it follows from Equations 6
and 7 that the covariance of vecðY2U*Þ is approximately
ðGtSEGÞ5In, i.e., that of independent samples, without any
genetic relatedness. This approach is very similar to the work
of Valente et al. (2010) and Töpner et al. (2017), who instead
took a fully Bayesian approach to predictU. In either case, the
performance of the RG-test critically depends on the predic-
tion error ðU* 2UÞ. As mentioned before, fitting an MTM is
usually challenging for .5–10 traits; we therefore also con-
sider residuals of single-trait GBLUP, as an approximation.

PCres: reconstructing only trait-to-trait relationships:
Testing only conditional independencies of the form (B),
one can reconstruct the graph GY of trait-to-trait relations
(see the green boxes in Figure 2). Moreover, if this is done
with the RG-test, the algorithm is very similar to the residual
approaches of Valente et al. (2010) and Töpner et al. (2017).
Staying within the context of the PC-algorithm, and using
residuals from GBLUP, we will call this PCres. As for the
RG-test in PCgen, PCres can be based on residuals of either
single or multi-trait mixed models.

Software: In our R-package pcgen, we implemented PCgen
for the case K ¼ ZZt: PCres is implemented for K ¼ ZZt;

K ¼ A; as well as K ¼ ZAZt. Moreover, PCres can be based
on either residuals of the full MTM (Equation 7) (only for
small numbers of traits), or from univariate models (the de-
fault). Tables 1 and 2 in File S2 provide a complete over-
view of the options, with the required R-commands. The
package is freely available at https://cran.r-project.org/web/
packages/pcgen/index.html. pcgen is built on the pcalg pack-
age (Hauser and Bühlmann 2012; Kalisch et al. 2012), in
which we modified the orientation rules and the default con-
ditional independence test.

Assessing uncertainty: The PC-algorithm is asymptotically
correct, in the sense that the underlying CPDAG is recovered if
conditional independence canbe testedwithout error (Spirtes
et al. 2001). In Theorem 2 below, we provide a similar con-
sistency result for PCgen. In practice however, type-I or
type-II errors are likely to occur, leading to incorrect edges
in the graph. Depending on the significance level a used in
each test, there may be more type-I errors (large a) or rather
more type-II errors (small a). Reliable control of the
(expected) false positive rate, or total number of false posi-
tives, remains challenging; see the Discussion (Assessing un-
certainty).Wewill therefore just consider the P-values as they
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are, and analyze the real datasets for different significance
thresholds. Following Kalisch and Bühlmann (2007) and
Kalisch et al. (2012), we report, for each remaining edge,
the largest P-value found across all conditioning sets for
which the edge was tested.

Extensions of PCgen: File S3 describes several extensions of
PCgen,which are partly implemented in our software. Among
others, the causal graph G and PCgen could be extended with
fixed effect QTL, and PCgen can be sped up by starting with a
skeleton obtained from PCres (“prior screening”). As in the
pcalg-package, it is possible to restrict the maximum size of
the conditioning sets, also to improve computation time.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. The maize and rice data used below can
be accessed at https://doi.org/10.15454/IASSTN and https://
doi.org/10.6084/m9.figshare.7964357.v1, respectively. Sup-
plemental materials are available at figshare: https://doi.org/
10.6084/m9.figshare.11635392.

Results

Simulations with randomly drawn graphs

To compare the different algorithms, we simulated random
GSEMs by randomly sampling the sets D (defining the traits
with direct genetic effects) and the covariance matrices SG;

combined with randomly drawn DAGs over the traits ðGYÞ:
Traits were simulated for an existing population of 256maize
hybrids (Millet et al. 2016). Two replicates of each genotype
were simulated. Given the 2563 256 additive relatedness
matrix A based on 50k SNPs, genetic effects were simulated
such that vecðGÞ � SG5ðZAZtÞ (i.e., the vector of genetic
effects for all the replicates, and all traits). File S4.1 provides
further details, such as the magnitude of genetic (co) vari-
ances. We focus here on the comparison of:

1. PCgen based on the replicates, assuming K ¼ ZZt (i.e.,
ignoring A). By default, we apply the prior-screening with
PCres.

2. PCres (replicates): PCres based on residuals from univar-
iate GBLUP, again using only the replicates.

3. PCres (means): PCres based on residuals from multivari-
ate GBLUP, using genotypic means and the relatedness
matrix A that was used to simulate the data.

Table S2 provides results for variations on these algo-
rithms, including PCgen without prior screening. In all sim-
ulations, the significance threshold was a ¼ 0:01. The effect
of sample size, and the trade-off between power and false
positives as function of a, was already investigated by Kalisch
and Bühlmann (2007) for the standard PC-algorithm, and is
likely to be similar for PCgen.

We separately evaluated the reconstruction of GY and the
edges G/Yj; as the latter is only possible with PCgen. To

assess the difference between estimated and true skeleton
of GY ; we considered the true positive rate (TPR), the true
discovery rate (TDR), and the false positive rate (FPR). Ad-
ditionally, we used the Structural Hamming Distance (SHD),
which also takes into account the orientation of the edges.
File S4.2 provides definitions of these criteria. Reconstruction
of G/Yj is assessed only in terms of TPR, TDR, and FPR, as
these edges can have only one orientation.

Simulation results: We first performed simulations with
p ¼ 4 traits (scenario 1), with each potential edge between
traits occurring in the true graph with probability pt ¼ 1=3:
Hence, for any given trait, the expected number of adjacent
traits was ðp2 1Þpt ¼ 1: The edges G/Yj were included in
the true graph with probability pg ¼ 1=2: In a related set of
simulations (scenario 2), pt was increased to 0.5, giving
denser graphs. In both scenarios, PCgen reconstructed the
edges G/Yj with little error, the average TPR being �0.97
and FPR �0.03 (Table 1). In the first scenario, about one-
third of the actual edges between traits was not detected with
PCgen (TPR � 0:65; i.e., the proportion of true edges that
was discovered). At the same time, the number of false edges
in GY was very low, which is also reflected in high TDR values
(the proportion of edges in the reconstruction that is true). In
scenario 2, the TPR, FPR, and TDR all increased. Hence, for
denser graphs, more of the true edges were found, at the
expense of a somewhat higher number of false edges.

PCres (replicates) outperformed PCres (means), in spite of
the use of univariate GBLUP, and ignoring the actual relat-
edness matrix. Hence, the information contained in the rep-
licates appearsmuchmore important than the precise form of
the relatedness matrix, or unbiased estimation of genetic
correlations. The performance of PCres strongly depends on
the prediction error of the GBLUP, and, in linewith the results
of Kruijer et al. (2015), this error appeared lowest when using
the replicates. The use of both the replicates and the marker-
based GRM (i.e., assuming K ¼ ZAZt; as the data were gen-
erated), further improved performance, but only slightly (Ta-
ble S1, PCres-uni-RA). Unsurprisingly, the MTM required for
PCres (means) was computationally more demanding, and
could often not be obtained for more than four traits. Moti-
vated by this computational advantage, and the statistical
advantages mentioned in the Discussion, all analyses in the
remainder will consider only PCgen and PCres based on
replicates.

For trait-to-trait relations, PCgen and PCres (replicates)
had very similar performance in terms of TPR, TDR, and FPR.
However, PCgen substantially improved the orientation of
these edges, as shown by the reduced SHD. This is a conse-
quence of the additional edgesG/Yj in the underlying graph:
because of the fixed orientation of these edges, this generally
increases the number of v-structures, and, hence, the number
of between-trait edges Yj 2 Yk that can be oriented. See again
the example in Figure 2.

To assess performance in higher dimensions, we simulated
data setswithp ¼ 20 traits, pg ¼ 0:3; andpt ¼ 0:1 (scenario3),
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and with p ¼ 100, pg ¼ 0:1; and pt ¼ 0:01 (scenario 4). Both
scenarios consider sparse graphs; denser graphs can be ana-
lyzed as well, but, for p .20–30, require several hours, or
even days, unless the size of the conditioning sets is re-
stricted, or our implementation of PCgen would be parallel-
ized. Here, we limited the size of conditioning sets to three
(scenario 3) and two (scenario 4). As in the first two scenar-
ios, PCgen achieved a strong reduction in SHD, and reliable
reconstruction of the direct genetic effects (Table 1).

To assess the effect of thresholding the size of conditioning
sets, we simulated 200 datasets with p ¼ 10 traits and a rel-
atively dense graph (pg ¼ 0:4 and pt ¼ 4=9), and used PCgen
with various thresholds (Table S3). The restricted maximum
size means that a certain number of conditional indepen-
dence tests is skipped, whichmay lead to extra false positives.
However, the thresholding is only done in PCgen itself and
not in the prior screening with PCres (which is much faster,
and already removes most false edges). Consequently,
thresholding had very little effect on the reconstruction of
trait-to-trait relations ðGYÞ; but did lead to a higher FPR in
the reconstruction of the direct genetic effects (0.07 without
thresholding, 0.08 with m ¼ 3, and 0.48 with m ¼ 1). Also,
the accuracy in the orientations of GY slightly decreased
(SHD increasing from 15.9 to 16.2).

In another set of simulations, we explored the effect of
measurement error. As expected, increasing amounts of mea-
surement error decreased the power to detect between-trait
edges aswell as direct genetic effects (TableS4).However, the
loss in power could largely be compensated by increasing the
number of replicates, or the number of genotypes. The latter
was most effective for between-trait edges, while increased
replication gave the highest power for the edges G/Yj:

In our final set of simulations (Table S5), we explored the
effect of strong correlations in SG; i.e., when Assumption 5 is
close to being violated. We simulated an example with two
traits whose direct genetic effects had unit variance, and in-
creasing covariance (0, 0.5, and 0.95). The corresponding

TPR values for the genetic effects were respectively 0.94,
0.85, and 0.60. Consequently, even in the presence of strong
correlations, PCgen still had some power to detect direct ge-
netic effects.

Simulations using a crop-growth model

We also simulated data using the popular crop growth model
APSIM-wheat (Keating et al. 2003; Holzworth et al. 2014).
Compared to the preceding simulations, this represents a
more challenging scenario, as several of the underlying as-
sumptions are violated. In particular, the data-generating
process introduces nonlinearities and latent variables. We
simulated 12 traits for an existing wheat population of
199 genotypes, with three replicates each. The traits included
seven primary traits, four secondary traits, and yield (Y). File
S5 provides further details, and trait acronyms are given in
Table S6. Traits were simulated by running a discrete dy-
namic model from the beginning ðt ¼ 0Þ to the end ðt ¼ TÞ
of the growing season. Motivated by the fact that some trait
measurements are destructive, observations are taken only at
t ¼ T: Figure S1A shows the summary graph, defining the
causal effects from one time-step to the next (Peters et al.
2017). We note that the summary graph does not directly
describe the distribution of the traits at t ¼ T (obtained by
marginalizing over previous time points), which can be rep-
resented by an ancestral graph (Richardson and Spirtes,
2002). As such graphs are outside the scope of this work,
we investigate the extent to which we can reconstruct the
summary graph, given observations taken at t ¼ T: There
are direct genetic effects on all of the primary traits, which
have heritability 0.9. The genetic effects originate from
300 trait-specific QTL, with randomly drawn effect sizes.
There are no direct genetic effects on secondary traits and
yield.

Compared to the simulations above, it turned out to be
much harder to detect the absence of direct genetic effects: in the
PCgen reconstruction, all 12 traits had such effects (Figure S1B;

Table 1 Performance of PCgen and residuals-based approaches, averaged over 500 simulated datasets per scenario.

GY G/Yj

TPR FPR TDR SHD TPR FPR TDR

Scenario 1 ðp ¼ 4Þ ðpt ¼ 1=3Þ ðpg ¼ 0:5Þ
PCgen 0.647 0.006 0.981 0.442 0.982 0.026 0.995
PCres (replicates) 0.650 0.039 0.908 1.410
PCres (means) 0.521 0.390 0.438 3.174
Scenario 2 ðp ¼ 4Þ ðpt ¼ 0:5Þ ðpg ¼ 0:5Þ
PCgen 0.804 0.033 0.986 1.246 0.976 0.031 0.995
PCres (replicates) 0.819 0.073 0.939 2.320
PCres (means) 0.672 0.364 0.659 3.628
Scenario 3 ðp ¼ 20Þ ðpt ¼ 0:1Þ ðpg ¼ 0:3Þ
PCgen 0.895 0.002 0.985 6.806 0.969 0.018 0.991
PCres (replicates) 0.911 0.004 0.961 9.874
Scenario 4 ðp ¼ 100Þ ðpt ¼ 0:01Þ ðpg ¼ 0:1Þ
PCgen 0.959 0.001 0.942 27.288 0.976 0.022 0.943
PCres (replicates) 0.962 0.001 0.940 38.410

SE for the TPR, FPR, and TDR were between 0.001 and 0.015. SE for the SHD were �0.06 (scenarios 1 and 2), 0.18 (scenario 3), and 0.28 (scenario 4). For the performance of
other variants of PCgen and PCres in scenarios 1 and 2, see Table S2. In scenario 4, we used PCgen with the RG-test (PCgen-RG-uni); in the other scenarios we used the
RC-test, with prior screening (PCgen-RC-screening). All acronyms are explained in Table 1 in File S2. PCres (replicates) and PCres (means) refer to PCres-uni-R and PC-multi-A.
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highest P-value: 1:7 3 1024). These false positives
seemed to be a consequence of the nonlinearities in the
data-generating distribution, which are not accounted for in
our tests. The reconstructed trait-to-trait relations weremostly
correct, except for themissing edgeGN/Y ; and one incorrect
orientation ðY/GWÞ: PCres made the same errors (Figure
S1C), with an additional false arrow ðMGS2 SPÞ: The stan-
dard PC-stable algorithm applied to all traits and QTL led to
many more errors (Figure S1D), such as the false edge be-
tween GW and RUE, the missing edge TFI/FT; and some
incorrect orientations. These errors occurred because, for var-
ious traits Yj;manyQTL-effects were removed from the graph,
i.e., for some set of traits YS, the conditional independence
Yj╨QTL

		YS wasmistakenly accepted. This, in turn, led to prob-
lems in the remaining tests, where part of the genetic variance
was not taken into account. We emphasize that all 300 QTL
were available to the PC-algorithm, andnoothermarkerswere
provided. Hence, the poor performance in this case is really a
consequence of the small effects, rather than the difficulty of
QTL detection.

Two case-studies

We now use PCgen to analyze real data from four field trials
and one experiment in a phenotyping platform. In all network
reconstructions, we used a significance threshold ofa ¼ 0:01.
Reconstructions with a ¼ 0:001 are shown in Figures S2 and
S4. Figure S5 and Table S9 contain P-values for the remain-
ing edges. In all datasets, we removed traits that were de-
rived as sums or ratios of other traits, rather than being
directly measured. In particular, the maize data do not con-
tain grain number, which was defined as the ratio of yield
over grain weight. We return to this issue in the Discussion.

Maize: First, we analyze the field trials described by Millet
et al. (2016, 2019), with phenotypic data for 254 hybrids of
maize (Zea mays). We consider a subset of four trials, repre-
senting four (out of a total of five) different environmental
scenarios described inMillet et al. (2016). See Table S8 for an
overview. The scenarios were derived from physiological
knowledge, crop-growth models, and environmental sensors
in the fields. Scenarios were defined as a combination of well-
watered or water-deficient conditions (WW vs.WD) and tem-
perature. The latter was classified as “Cool” (average maxi-
mum and night temperature below respectively 33 and 20�),
“Hot” (above 33 and 20�) or “Hot (days)” (maximum tem-
perature above 33, night temperature below 20). Most trials
included seven traits:

• three height traits, i.e., tassel height ðTHÞ, ear height ðEHÞ,
and plant height ðPHÞ; the latter is missing in the Ner12R
trial.

• two flowering time traits: anthesis (A) and silking ðSkÞ,
which are male and female flowering, respectively.

• two yield-related traits: grain weight ðGWÞ and yield (Y).

Table S7 provides an overview of trait acronyms. Each trial
was laidout as analpha-latticedesign,with either twoor three

replicates. Spatial trends and (in)complete block effects were
estimated using the mixed model of Rodríguez-Álvarez et al.
(2018) (R-package SpATS), and subtracted from the original
data; PCgen was then applied to the detrended data, assum-
ing a completely randomized design. Residuals from SpATS
appeared approximately Gaussian, and no further transfor-
mation was applied.

In the PCgen reconstruction, all traits have direct genetic
effects, and traits mostly cluster according to their biological
category (height, flowering, and yield-related), especially in
the WW scenarios (Figure 4, A and B). In the Ner13W and
Ner12R trials (Figure 4, B and C), there are edges between
yield and respectively tassel- and plant-height, but these
(conditional) dependencies are weak and disappear in the
reconstruction with a ¼ 0:001 (Figure S2). Much stronger
are the edges between yield and the flowering traits in the
water-deficit trials (Figure 4, C and D); the corresponding
conditional independence tests gave highly significant P-
values for all of the considered conditioning sets (Table
S9). By contrast, in the trial without heat or drought stress
(Kar12W), the Y 2 Sk and Y 2A edges were already removed
in the test conditioning only on the genetic effects; Figure S3
provides an illustration. The relation between yield and delay
in silking in maize is well known [see e.g., Borrás et al. (2007)
and Araus et al. (2012)]. In the most stressed environment
(Bol12R), there is an additional edge between plant height
and silking. This may relate to the fact that the timing of
anthesis determines the number of phytomeres (number of
internodes and leaves) that a plant will generate, which, in
turn, affects plant height (McMaster et al. 2005). The strong
correlation between anthesis (A) and silking ðSkÞ may ex-
plain the presence of the edge PH2 Sk (rather than PH2A).

Finally, apart from the Bol12R trial, there is never an edge
between Y and GW; which seems due to the choice of the
genetic material (giving little variation in grain weight) and
the design of the trials (targeting stress around flowering time,
rather than the grain filling period). SeeMillet et al. (2016) for
further details. For all trials, the structure of the graphs is such
that none of the between-trait edges can be oriented (techni-
cally, this is due to a lack of v-structures). However, for some of
these edges, physiological knowledge clearly suggests a cer-
tain orientation, in particular for Sk2 Y and GW2 Y :

The trials also illustrate the difference between the total
genetic covariance ðVGÞ and the covariance among direct ge-
netic effects, as defined by SG: For most pairs of traits, the
total genetic correlation ðrgÞwas between 0.3 and 0.9 (Table
S10). The (total) genetic correlation between yield and silk-
ing was strongly negative in both WD trials (20:44 and
20:61), and, in the Bol12R trial, also for yield and anthesis
ð20:43Þ: In all trials, genetic correlation with GW was nega-
tive for most traits, but not always significant. In the Kar12W
trial for example, we found rg ¼ 2 0:010 for GW and PH;

and rg ¼ 2 0:435 for GW and Sk (silking). In both cases,
the two traits are d-separated in the graph (conditioning
on fGg), but only for Sk is the genetic covariance significant
ðp ¼ 1:31 3 1029Þ.
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As we have seen in the examples following Equation (5),
the existence of an edge between two traits in the graph does
not necessarily imply a strong genetic correlation. In other
words, having a shared genetic basis is not the same thing as
the presence of a causal effect, found after conditioning on
the genetic effects and other traits. In the Ner12R trial, for
example, there is no edge between yield and grain weight,
but a significant genetic correlation, whereas in the Bol12R
trial it is the other way round.

Rice: Next we analyze 25 traits measured on 274 indica ge-
notypes of rice (Oryza sativa) under water deficit, reported by
Kadam et al. (2017). Three replicates of each genotype were
phenotyped in a randomized complete block design, and
block was included as a covariate in all conditional indepen-
dence tests. Tests were restricted to conditioning sets of, at
most, four traits. A first run of PCgen produced several incon-
sistencies in the genetic effects, i.e., traits with significantly
positive heritability but without a partially directed path
coming from the node G. We therefore applied the correction
described in File S3, adding edges G/Yj for all traits with
this inconsistency, and then re-ran PCgen. The final recon-
struction is given in Figure 5, where traits are grouped into
3 shoot morphological traits (blue), 1 physiological trait
(rose), 13 root morphological traits (green), 5 root anatom-
ical traits (gray), and 3 dry matter traits (orange).

After correcting the inconsistencies, there were nine traits
without adirect genetic effect. Fiveof these (MRL,ART,RL2530,

RL3035, and RL35) were completely isolated in the graph,
without edges connecting to any other trait. All of these traits
are related to either root length, or to the length of thicker roots,
which contribute to drought adaptation under field conditions
(Uga et al. 2013). However, as the experiment was done in pots,
roots were constrained in their exploration range and therefore
genotypic differences in root length would not translate into
differential access to water and biomass (Poorter et al. 2012).
Four other traits (TRWD, RW, RL0510, andRV) had at least one
adjacent trait in the graph, but no direct genetic effect. At a
lower significance level (a ¼ 0:001, Figure S4), direct genetic
effects disappeared also for cumulative water transpiration
(CWT), and for three root anatomical traits (RD, CD, and
SD). For RV (root volume), a direct genetic effect was only
present with a ¼ 0:001, which was an artifact of the way the
initial consistencies were resolved.

Traits related to root surfacearea(SA), rootvolume(RV),and
roots with small diameter class (RL005, RL1015) had direct
genetic effects, and were connected among each other. As
expected, traits related to root volume and area influenced root
weight and total root weight density (RW, TRWD). In the
reconstruction with a ¼ 0:001, cumulative water transpired
(CWT) was affected by stem and leaf weight (SW, LW), and
byRL0510, in agreementwith the physiological knowledge that
water transpiration is influenced by water demand (related to
the above-ground biomass) and water supply (related to the
roots’ water uptake capacity). The corresponding edges were
also present in the reconstruction with a ¼ 0:01, where,

Figure 4 Estimated networks with a ¼ 0:01; for four
of the DROPS field trials. Trait categories are flowering
(orange), height (blue), and yield (brown). Each trial
represents a different environmental scenario, arising
from well-watered (WW) or water-deficit (WD) condi-
tions, and different temperatures (see text). (A)
Kar12W, (WW, Cool). (B) Ner13W (WW, Hot). (C)
Ner12R (WD, Hot (days)). (D) Bol12R (WD, Hot). Trait
acronyms are given in Table S7.
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however, they could not be oriented because of the denser net-
work (in particular, the presence ofG/CWT). Root anatomical
traits (LMXD, SD, CD, and RD) appeared as a separate module,
not related to the plant water dynamics, suggesting that root
anatomy had a smaller impact on water uptake compared with
root biomass.

Statistical properties of PCgen

Wenow investigate a number of statistical issues: the assump-
tions required for asymptotic consistency of PCgen, the as-
sumptions required for faithfulness, and properties of the
conditional independence tests. Readers primarily interested
in the application of PCgen could skip this section and con-
tinue with the Discussion. Proofs of Theorems 1–6 are given
in Appendix A.

Consistency: Asymptotic consistency holds if, for increasing
sample size, the probability of finding the correct network
converges to 1. Correct in this contextmeans that we recover
the CPDAG that contains the underlying DAG. Consistency
of the PC-algorithm was shown by Spirtes et al. (2001) (for
low dimensions) and Kalisch and Bühlmann (2007) (for
high dimensions). These authors distinguished between
consistency of the oracle version of PC, where conditional
independence information is available without error, and
the sample version, where conditional independence is

obtained from statistical tests. For PCgen we will focus on
the oracle version and consistency of the skeleton, leaving
the sample version and the correctness of the orientations
for future work.

As for the standard PC-algorithm, consistency of PCgen
requires equivalence between conditional independence and
d-separation in the graph. Part of this is the Markov property,
which states thatd-separationof twonodes in thegraph, given
a set of other nodes, implies conditional independence of the
corresponding random variables. The converse (conditional
independence implying d-separation) is known as faithful-
ness. The following result provides the Markov property for
SEM with genetic effects. The proof (Appendix A.9) is a
straightforward adaptation of Pearl’s proof for general SEMs
(Pearl 2009).

Theorem 1 Suppose we have a GSEM as defined by Equa-
tion (4), with a graph G as defined in theMaterials andMethods,
and satisfying Assumptions 1–4. Then, the global Markov con-
dition holds for G and the joint distribution of G;Y1; . . . ;Yp: In
particular, d-separation of Yj andG given YS implies Yj╨G

		fYSg;
and d-separation of Yj and Yk given fYS;Gg implies
Yj╨Yk

		fYS;Gg; for all traits Yj and Yk and subsets YS:

If we now assume faithfulness, the preceding result directly
gives the equivalence between conditional independence and
d-separation. This, in turn, implies that PCgen will recover the
correct skeleton:

Figure 5 PCgen-reconstruction for the rice data from
Kadam et al. (2017), with a ¼ 0:01: Five traits (MRL,
ART, RL2530, RL3035, and RL35) are not shown, as
they were completely isolated in the graph, without
any connections to other traits or G. Trait acronyms
are given in Table S11.
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Theorem 2 Let dsepðGÞ denote d-separation in the graph
G. Suppose we have a GSEM as in Theorem 1, and we make
the additional assumptions of faithfulness:

Yj╨Yk
		fYS;Gg⇒Yj   dsepðGÞ  Yk

		fYS;Gg (9)

Yj╨G
		fYSg⇒Yj   dsepðGÞ  G

		fYSg; (10)

for all traits Yj and Yk and subsets YS: The oracle version of
PCgen then gives the correct skeleton.

Faithfulness: For our first faithfulness condition (expres-
sion 9) to hold, it suffices to have faithfulness for the graph
without genetic effects:

Theorem 3 Let PYjU denote the joint distribution of
Y1; . . . ;Yp conditional on U ¼ GG; the matrix of total genetic
effects. Then Yj╨Yk

		fYS;Gg is equivalent with Yj╨PYjUYk; and
Yj   dsepðGÞ  YkjfYS;Gg is equivalent with Yj   dsepðGYÞ  YkjYS:
Therefore, (9) holds if

Yj╨PYjU
Yk

		fYSg⇒Yj   dsepðGYÞ  Yk
		YS: (11)

Consequently, we can rephrase (9) in terms of a faithfulness
assumption for the analogous SEM without genetic effects. A
necessary (but not sufficient) condition for this is that contri-
butions from different paths do not cancel out (Appendix A.5).

The second faithfulness statement (10) involves d-separation
of Yj and G, and requires that the genetic effects are not collin-
ear. If, for example, we have Y3 ¼ Y1 þ Y2 þ E3; with
Y1 ¼ G1 þ E1; Y2 ¼ G2 þ E2; and G2 ¼ 2G1 ¼ G; it follows
thatY3 ¼ E1 þ E2 þ E3: Consequently, becauseG3 ¼ ð0; . . . ; 0Þt;
we find that Y3 and G ¼ ½G1  G2  G3� are marginally indepen-
dent, but, in the graph G; the nodes Yj and G are not
d-separated by the empty set, as there are directed paths
G/Y2/Y3 and G/Y1/Y3: Conversely, if G1 and G2 are
not perfectly correlated, this violation of faithfulness cannot
occur. The following theorem shows that marginal indepen-
dence always implies d-separation. We conjecture (but could
not prove) that (10) also holds for nonempty conditioning sets.

Theorem 4 Suppose we have a GSEM satisfying Assump-
tions 1–5, and faithfulness for the graph without genetic ef-
fects, given by (11). Then implication (10) holds for S ¼ ∅;

i.e., marginal independence implies d-separation of Yj and G.
Hence, faithfulness involving Yj and G requires (at least)

absence of collinearities between genetic effects, aswell as faith-
fulness for the corresponding SEM without genetic effects.

Properties of the tests: Theorem2provides consistencyof the
oracle version of PCgen, where conditional independence
information is available without error. Proving consistency
of the sample version is challenging for two reasons. First, the
assumptions made for our conditional independence tests
may not always hold, introducing approximation errors. Sec-
ond, even without these errors, the probabilities of type-I and
type-II errors still need to converge to zero with increasing
sample size. This is well known for the PC-algorithm with

independent Gaussian data (Kalisch and Bühlmann 2007),
but more difficult to establish in the presence of genetic ef-
fects. Here, we address the first issue, leaving the second for
future work.

Our tests for conditional independence statements (A) and
(B) (i.e., Yj╨G

		fYSg and Yj╨Yk
		fYS;Gg) rely on the condi-

tional distributions of, respectively, Yj and vecð½Yj;Yk�Þ; given
the observed YS :

YjjvecðYSÞ ¼ vecð~ySÞ � N
�
mjjS;SjjS

�



Yj
Yk

�		vecðYSÞ ¼ vecð~ySÞ � N




mjjS
mkjS

�
;SjkjS

�
:

The normality of these distributions directly follows from
the assumed normality of the genetic and residual effects. We
made the following assumptions about the form of their co-
variance and mean:

1. The covariance matrix SjjS is that of a single-trait mixed
model with the same relatedness matrix K assumed in the
GSEM, i.e.,

SjjS ¼ s2
Gð jjSÞK þ s2

Eð jjSÞIn; (12)

for some variance components s2
Gð jjSÞ and s2

Eð jjSÞ.
2. The covariance matrix SjkjS is that of a bivariate MTM,

again with the same K assumed in the GSEM:

SjkjS ¼ VGð jkjSÞ5K þ VEð jkjSÞ5In; (13)

for some 23 2 matrices VGð jkjSÞ and VEð jkjSÞ.
3. The conditional means mjjS and mkjS are linear regressions

over the conditioning traits:

XBgj þ ~ySb
ð jÞ
S ; XBgk þ ~ySb

ðkÞ
S ; (14)

whereXBgj is themarginalmean ofYj (see Equation 8), and

b
ð jÞ
S and b

ðkÞ
S are jSj3 1 vectors of regression coefficients.

In the following theoremswe show thatwhenK ¼ ZZt, the
assumptions in Equations 12 and 13 always hold, i.e., they
directly follow from our GSEM model.

Theorem 5 When K ¼ ZZt; the distribution of
vecð½Yj;Yk�ÞjvecðYSÞ has covariance of the form given by
Equation 13, i.e., that of a bivariate MTM. Moreover, under
faithfulness condition (9), the residual covariance in the
MTM is zero if and only if Yj╨Yk

		fYS;Gg
Theorem 6 Suppose we have a GSEM as described in Theo-

rem 1,withK ¼ ZZt: Then, the covariance ofYjjYS is of the form
s2
Gð jjSÞK þ s2

Eð jjSÞIn, for any conditioning set S. Moreover, as-
suming the faithfulness condition (10) and SG½D;D� of full rank
(Assumption 5), s2

Gð jÞ ¼ s2
Gð jj∅Þ is zero if and only if Yj╨G:

Apart from the covariance structure, these theorems ad-
dress the correctness of our tests. In particular, Theorem 5
shows that the residual covariance in the distribution of
fYj;YkgjYS is indeed the right quantity to test statement
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(B). Similarly, the genetic variance in the conditional distri-
bution of YjjYS is the relevant thing for testing (A). This
appears to be true for any conditioning set S, although (in
Theorem 6)we could prove it only for the empty conditioning
set, because faithfulness is required (which we also estab-
lished only for S ¼ ∅; see Theorem 4).

The situation is different for the assumption in Equation
14, regarding the conditional means: even when K ¼ ZZt; it
holds for certain conditioning sets and not for others. We
illustrate this with the following example. Suppose that
Y1 ¼ G1 þ E1 and Y2 ¼ lY1 þ E2; with independent vectors
G1 � Nð0;s2

G;1KÞ; E1 � Nðs2
E;1InÞ; and E2 � Nðs2

E;2InÞ: Then,
the graph G is given by G/Y1/Y2. There is no edge G/Y2;
although this is not essential for the example. The distribu-
tions are given by

Y1 � Nð0;S1Þ ¼ N
�
0;s2

G;1K þ s2
E;1In

�
;

Y2 � Nð0;S2Þ ¼ N
�
0; l2s2

G;1K þ
�
l2s2

E;1 þ s2
E;2

�
In
�
;

CovðY1;Y2Þ ¼ S12 ¼ l
�
s2
G;1K þ s2

E;1In
�
¼ lS1:

The conditional mean of Y2 given Y1 ¼ y1 is
m2j1 ¼ S12S

21
1 y1 ¼ ly1: As expected given the graph, the

conditional mean is a simple linear regression on Y1: How-
ever, the conditional mean of Y1 given Y2 ¼ y2; equals

m1j2 ¼ lS1
�
l2S1 þ s2

Eð2ÞIn
�21

y2;

which is a linear transformation, but not a multiple of y2: In
summary, our models for YjjYS and fYj;YkgjYS are sometimes
misspecified in terms of the mean, although still correct in
terms of covariance, provided K ¼ ZZt (Theorems 5 and 6).
Despite the approximation error occurring sometimes for the
conditional means, our tests still seem to perform reasonably,
as shown in the simulations above. The assumption in (14) is
more problematic if relations between traits are nonlinear.
Suppose, for example, that, for each individual i, Y2½i� :¼ ðY1½i�Þ2
and Y1 :¼ G1 � Nð0; ZZtÞ; where, for the sake of argument,
we assume absence of residual errors. Then, the factor geno-
type will generally be significant in the ANCOVA with Y1 as
covariate. For example, there could be two replicates of three
genotypes, with genetic effects ð21; 2 1; 0; 0; 1; 1Þ. Then,
clearly, there is some unexplained genetic variance when
regressing Y2 ¼ ð1; 1; 0; 0; 1; 1Þt on Y1.

Finally, we briefly discuss how the approximation could be
improved. In general, the conditionalmean is a function of the
genetic and residual covariances between Yj and YS. In Ap-
pendix A.7 (Equation 23) we derive that YjjvecðYSÞ ¼ vecð~ySÞ
has mean mjjS ¼ XBgj þ Sj;SS

21
S vecð ~yS 2XBGSÞ: Defining

hjjS ¼ 0 for S ¼ ∅; we can write mjjS ¼ XBgj þ hjjS: Conse-
quently, our approximation of the conditional mean models
hjjS as a linear regression on ~yS: This approximation could
probably be improved if we have good estimates of Ŝj;S and
Ŝ
21
S ; and set ĥjjS ¼ Ŝj;SŜ

21
S vecð~yS 2XB̂GSÞ: Such estimates,

however, require fitting an MTM for jSj þ 1 traits, which for
large S is statistically and computationally challenging,

unless pairwise or other approximations are applied
(Furlotte and Eskin 2015; Joo et al. 2016).Moreover, it seems
unclear how ĥjjS should be incorporated in the tests.

Discussion

Causal inference for data with random genetic effects is chal-
lenging because of the covariance between these effects, and
because the usual assumption of independent observations is
violated. To address these problemswehaveproposed amodel
where random genetic effects are part of the causal graph,
rather than a nuisance factor that first needs to be eliminated.
Theresultingdistributionsandgraphswereshowntosatisfy the
Markov property. This led us to develop the PCgen algorithm,
which tests conditional independence between traits in the
presence of genetic effects, and also conditional independence
betweentraitsandgeneticeffects.Weshowedthat thepresence
of adirect genetic effect canbe tested, just like thedirect (fixed)
effect of a QTL can be tested. This is, of course, relative to the
observed traits, i.e., for any effect G/Yj; there may always be
an unmeasured trait Z, such that G/Z/Yj:

In the linear simulations as well as in the rice data, our tests
could indeed identify the absence ofmany direct genetic effects.
By contrast, in the APSIM simulations and maize data all traits
had such effects. In the latter case, this could be for biological
reasons, i.e., the genetic variance of each trait might really be
“unique” to some degree. However, the APSIM results showed
that nonlinearities could increase the false positive rate in the
edges G/Yj; which may be avoided in future versions with
better conditional independence tests. Such tests might also
allow for non-Gaussian data.

Inour simulations,PCgenalso improved the reconstruction
of between-trait relations. Part of this improvement is due to
phenotypic information on replicates, reducing the number of
errors in the tests. Another part is due to the improved
orientation, which is a consequence of the additional edges
G/Yj: Compared to previous algorithms, PCgen also
appeared to be computationally more efficient: depending
on the sparseness of the network, it can analyze �10–50
traits on a single core, and many more if we limit the maxi-
mum size of the conditioning sets, or would parallelize the
conditional independence tests.

As for the original PC-algorithm, PCgen is most efficient for
sparse graphs, i.e., when each trait is connected to only a few
other traits, and when there are few direct genetic effects. But,
evenwhen this is not the case, PCgen still has an advantage over
existing approaches: by incorporating the genetic effects in the
PC-algorithm, we do not need to fit an MTM for all traits simul-
taneously, but only for bivariate models. Our approach also
makes genetic network reconstruction feasible with just two
traits, and in the absence ofQTLor evennogenotypic data at all.

As any causal inference method, PCgen only suggests
causal models that are, in some sense, compatible with the
data, and cannot validate the existence of a functional re-
lationship, which is possible only through additional experi-
ments.Becauseof the requiredassumptions, the identifiability
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issues and theuncertainty in theestimatednetworks, itmaybe
better to speak of an algorithm for causal “exploration” than
for causal “discovery”. At the same time, analysis of one trait
conditional on other traits (e.g., yield given plant height) is a
common and natural thing to do (Stephens 2013). From that
perspective, PCgen could be seen simply as a tool that per-
forms such analyses systematically, combines them, and visu-
alizes the results. PCgen results for different significance
levels could then be reported alongside other “descriptive”
statistics like heritability estimates and genetic correlations,
suggesting functional hypotheses that are of interest in future
research.

Dealing with derived traits

Weanalyzed themaize and rice datasets using the traits as they
were measured, without adding “derived” traits defined by
ratios, sums, or differences of the original traits. Because such
derived traits are not measured themselves, there is no error
associated with them, apart from “copies” of errors in the orig-
inal trait. For example, if there is much variation in leaf weight
but almost none in the total weight of a plant, the derived trait
“leaf weight ratio”will be essentially a copy of the original leaf
weight trait. This can violate our assumption of faithfulness,
and lead to errors in the reconstruction; see Figure 7 in Ap-
pendix A for an example. Sometimes, derived traits are biolog-
ically highly relevant. It may then be desirable to include them
in the analysis, and omit some of the original traits. Alterna-
tively, derived traits may be added after running PCgen. For
example, we may extend the reconstructed graph with the
node Y3 :¼ Y1 þ Y2 and edges Y1/Y3 and Y2/Y3; provided
that this makes sense biologically.

Data from different experiments

We assumed traits to be measured on the same individuals in
the same experiment, with residuals errors arising from bi-
ological variation (Assumption 1). In certain applications, this
assumption can indeed be restrictive, but seems to be inevita-
ble. Suppose traits were measured in different experiments, or
residual errors would only come from measurement errors.
Then there would be no propagation of residual errors, and
the reconstruction would rely completely on how the genetic
effects are propagated through the network. The GSEMmodel
(Equation 4) would need to be replaced by Y ¼ XBþ Uþ E
and U ¼ ULþ ~U; where ~U in a sense models direct genetic
effects, reminiscent of the genomic networks of Töpner et al.
(2017). However, if data are actually generated by Equa-
tion (4), these networks provide only partial information
about the direct genetic effects, even without any type-I or
type-II error in the tests (see File S7.2). Moreover, the use of
the PC-algorithm would require the columns of ~U to be in-
dependent, which appears to be a rather unrealistic
assumption.

Biologically, the genomic networks have a different in-
terpretation: for example, we would assume that the genetic
component inhighbloodpressure causes somecardiovascular
disease, rather than high blood pressure itself. The alternative

model ðY ¼ XBþ Uþ EÞ implies that the observed traits
have diagonal residual covariance, instead of the matrix
GtSEG obtained under Assumption 1 (see Equation 5). How-
ever, the latter matrix turned out to be essential for network
reconstruction (see e.g., Theorems 5–6 above). This is why,
without Assumption 1, we would need to rely completely on
the genetic effects.

A relevant alternative approach here is that of invariance
causal prediction (Peters et al. 2016), which infers causal
effects that are consistent across several experiments, but still
requires all traits to be measured in each experiment (as well
as low genotype-by-environment interaction).

Replicates vs. means

In principle, PCgen allows for any type of genetic relatedness.
We have however focused on the case of independent genetic
effects, for the following reasons:

1. Performance under model misspecification: different
types of genetic effects could, in theory, be represented
by introducing multiple genetic nodes, with conditional
independence tests that can distinguish between these
effects. But this seems difficult in practice due to the com-
putational requirements and lack of statistical power
(Blair et al. 2012; Uhler et al. 2013; Kruijer 2016). For
this reason, it seems, previous work on network recon-
struction used genotypic means and an additive GRM.
For the analysis of a single trait, however, Kruijer (2016)
showed that broad-sense heritability estimates (obtained
with K ¼ ZZt) capture any type of genetic effect, while a
model assuming only additive effects can produce strongly
biased heritability estimates, if the actual genetic effects
are, for example, partly epistatic. It seems plausible that
this robustness extends to the multivariate models consid-
ered here, for example, when direct genetic effects are
driven by different sets of QTL, leading to trait-specific
relatedness matrices.

2. Higher power: estimates of (total) genetic variance based
on replicates are typically more accurate than marker-
based estimates based on genotypic means (Kruijer et al.
2015; Visscher and Goddard 2015), and the use of repli-
cates is therefore also likely to improve hypothesis testing.
For the reconstruction of trait-to-trait relations with
PCres, our simulations indeed suggest that replicates give
more power. Mixed models with both replicates and a
GRMmight further increase power if the true architecture
is really additive (Kruijer et al. 2015), but also these mod-
els lead to biased inference if the actual architecture is
different (Kruijer 2016).

3. When K ¼ ZZt; the conditional independence statement
considered in the RC-test is completely equivalent with
Yj╨Yk

		fYS;Gg (Theorem 5), while for other K it is not,
and an alternative test might be required.

Apart from these statistical issues, there is also a compu-
tational advantage: the test for Yj╨G

		YS can be based on
standard ANCOVA, which is many times faster than the
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LRT for a mixed model. Also the tests for Yj╨Yk
		fYS;Gg are

faster when K ¼ ZZt:

Finally, we have not investigated the performance of PCgen
for unbalanced designs, but it seems likely that small unbal-
ancedness has only a minor effect. A more fundamental chal-
lenge seems to be the presence of incomplete blocks or spatial
trends (Flaxman et al. 2015; Rodríguez-Álvarez et al. 2018).

Assessing uncertainty

If one mistakenly rejects the null-hypothesis of conditional
independence (type-I error), PCgen leaves the correspond-
ing edge, although it may still be removed at a later stage,
with a different conditioning set. If the null-hypothesis is
mistakenly not rejected (type-II error), a true edge is re-
moved, and will not be recovered. Moreover, it may affect
the remaining tests, since d-separation of Yj and Yk is only
tested given conditioning sets contained in adjðYjÞ or
adjðYkÞ, where the adjacency sets are defined relative to
the current skeleton. This is correct in the oracle version,
but in the sample version of PC(gen), adjðYjÞ; or adjðYkÞ
may become smaller than the corresponding adjacency
sets in the true graph, and the algorithm may therefore
not perform an essential independence test. See Colombo
and Maathuis (2014) for examples.

Consequently, assessing uncertainty for constraint-based
algorithms is difficult, and cannot be achieved by just apply-
ing some multiple testing correction to the P-values. To
obtain bounds on the expected number of false edges in
the skeleton, several authors have used stability selection
(Meinshausen and Bühlmann 2010; Stekhoven et al. 2012)
or other sample-splitting techniques (Töpner et al. 2017),
but these are often too stringent and require an additional
exchangeability assumption (Bühlmann et al. 2013;
Meinshausen et al. 2016). Moreover, these approaches do
not provide a level of confidence for specific edges. For ex-
ample, an edge present in 60%of all subsamples may appear
to be present in the true graph with a probability of 0.6, but
there is no justification for such a statement.

Alternatively, uncertainty may be assessed using Bayesian
methods, which are, however, computationally very demand-
ing and outside the scope of this work. Moreover, despite the
recent progress in Bayesian asymptotics (Ghosal and van der
Vaart 2017), there seem to be no results regarding the correct
coverage of posteriors in these models.

Genomic prediction

PCgen can select traits with direct genetic effects, which are
the most relevant in genomic selection. More generally, the
usefulness of structuralmodels for genomic selection depends
on whether there is an interest in some kind of intervention
(Valente et al. 2013, 2015). Informally speaking, an interven-
tion is an external manipulation that forces some of the traits
to have a particular distribution. For example, with a
so-called hard intervention on the jth trait, Yj is forced to a
constant level c, e.g., c ¼ 0; when Yj is the expression of a
gene that is knocked out. The manipulation or truncated

factorization theorem (Spirtes et al. 2001; Pearl 2009) can
then predict the joint distribution of the system after the
intervention:

pYj:¼cðG;Y2jÞ ¼ pðGÞ
Y
j9 6¼j

pðYj9jpaðYj9Þ;Gj9Þ; (15)

where paðYj9Þ is the set of parents of Yj9: This is generally
different from the distribution

pðG;Y2jjYj ¼ cÞ; (16)

obtained from conditioning on Yj ¼ c, prior to the interven-
tion [see e.g., Peters et al. (2017)]. In other words, condition-
ing is not the same as doing (intervening). In a simulated
example (File S7), we show that the use of Equation 15 can
indeed greatly improve accuracy after an intervention, com-
pared to standardmethods ignoring the underlying structure.
When, however, the intervention is on a root node, Equations
15 and 16 are the same (see again Peters et al. 2017, p. 110).

The example in File S7.4 is special in the sense that PCgen
could correctly infer the complete graph, for most of the
simulated datasets. A technical obstacle for a more general
use of our networks in genomic prediction is the identifiability
issue mentioned in the introduction. PCgen (and the
PC-algorithm in general) typically outputs a partially directed
graph, several DAGs being compatible with this graph. This is
particularly problematic for edges between the traits in D
(traits with direct genetic effects). For traits with only indi-
rect genetic effects, it is possible to estimate howmuch of the
genetic variance originates from a particular trait in D, the
result being independent of the chosen DAG. This would first
require estimates of the (total) genetic covariance among
traits in D, obtained either by fitting an MTM, or by an ap-
proximation (as in Furlotte and Eskin 2015).

In absence of interventions on the traits, we can think of
genomic prediction in terms of an intervention on the node G.
Because the latter is a root node by definition, standard genomic
prediction methods can, in principle, have optimal performance
(Valente et al. 2013). More specifically, genomic prediction usu-
ally involves a regressionof a target trait on anumber ofmarkers,
having either fixed or random effects. In either case, it is only the
total effect of each underlying locus on the target trait that mat-
ters, not through which other traits this effect passes.

Optimal prediction accuracy, however, requires that the
regression model contains the true distribution (or a good
approximation), and a sufficiently accurate estimate of this
distribution. We therefore believe that structural models may
sometimes be an appealing alternative, especially if the un-
derlying model is highly nonlinear, or when prior physiolog-
ical knowledge can be incorporated. The extent to which this
can really improve accuracy remains to be investigated.

Open questions and extensions

Although we have shown theMarkov property for our model,
and studied consistency of PCgen, there are a number of open
questions left for future work. First, it may be possible to
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construct better tests, especially for nonlinear structural models
and non-Gaussian error distributions. The recent work of Pfister
et al. (2018) seems particularly relevant here. A second issue is
the consistency of the orientations: while we have shown
PCgen’s consistency in reconstructing the skeleton, we did not
address this for the final CPDAG. This is well known for the
PC-algorithm without genetic effects (Spirtes et al. 2001;
Kalisch and Bühlmann 2007), but more difficult to establish
here, as the class of CPDAGs needs to be restricted to those
without errors pointing to G. More generally, orientation con-
straints seem to be of interest for trait-to-trait relationships as
well, e.g., one may require that, if there is an edge, the expres-
sion of a gene can only affect ametabolite and not the otherway
round. To the best of our knowledge, current methodology and
theory has considered only the forced absence/presence of an
edge, leaving the orientation to the algorithm [The pcalg-pack-
age (Kalisch et al. 2012) has the addBgKnowledge option to
add orientations (‘background knowledge’), in the estimated
CPDAG. This is however only done after running PC or a related
algorithm, and is only allowed if compatible with the CPDAG].
A final question for future work is whether Theorems 4 and
6 hold for general conditioning sets.

Apart from these open questions, we believe that the idea of
explicitly modeling direct genetic effects can be applied more
generally. In particular, we hope that the ideas developed here
provide afirst step toward themore ambitious goal ofmodeling
multiple traits through time, simultaneously for many envi-
ronments. A first generalization would be to replace the
PC-algorithm with other constraint-based algorithms, in par-
ticular FCI and RFCI (Spirtes et al. 2001; Colombo et al. 2012).
These have the advantage that the causal sufficiency assump-
tion (no latent variables) can be dropped or considerably
weakened. The presence or absence of direct genetic effects
could also be incorporated in (empirical) Bayesian approaches
for genetic network reconstruction, or in invariant causal pre-
diction (Peters et al. 2016). It might also be possible to extend
the approach of Stephens (2013), and focus only on the de-
tection of traits with direct genetic effects. Another application
of GSEM might be as covariance models in multi-trait GWAS,
as an alternative to unstructured (Zhou and Stephens 2014) or
low-rank (Millet et al. 2016) models. Finally, the concept of
direct and indirect genetic effects may be useful in deep-
learning models for high-dimensional phenotypes, observed
on genetically diverse individuals.
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APPENDIX A. Faithfulness, conditional distributions, and proofs of Theorems 1–6

A.1. Overview of graph theoretic definitions
Definitions of, for example, d-separation and CPDAGs can be found in many books and articles on graphical models and causal
inference (see for example, Lauritzen 1996; Spirtes et al. 2001; Kalisch and Bühlmann 2007; Pearl 2009). The following
summary was inspired by Shipley (2016) and Maathuis (2014).

Given different nodes Yj and Yk; a path from Yj to Yk is a sequence of edges connecting Yj and Yk:When all edges are directed
and pointing toward the same node, we have a directed path. A path that is not directed is an undirected or nondirected
path.

A cycle is a path from Yj to Yk with an additional edge between Yj and Yk: A directed cycle is a directed path from Yj to Yk
together with a directed edge Yk/Yj:

A directed acyclic graph (DAG) is a directed graph without any directed cycle. When a graph underlying a SEM is a DAG, the
SEM is said to be recursive.

paðYjÞ is the set of nodes Yk for which there is a directed edge Yk/Yj; in this case, Yj is a child of Yk; and Yk is a parent of Yj:
The nodes Yj and Yk are adjacent if there is an edge Yk/Yj; Yj/Yk; or Yk 2 Yj:

If in a DAG G there is a directed path from Yj to Yk; then Yk is a descendant of Yj; and Yj is an ancestor of Yk:
In a DAG with nodes Y1; . . . ; Yp; it is always possible to relabel the nodes, such that for each node Yj; k, j for all parents Yk in

the set paðYjÞ: Such a relabeling is known as a topological ordering of the DAG. Using this ordering, the root nodes
(without any parents) have the lowest labels, the sink nodes (without any children) have the highest labels, and the
matrix of path coefficients L is upper triangular. Formally, a topological ordering is a function p : f1; . . . ; pg/f1; . . . ; pg;
such that the preceding property holds. A topological ordering always exists, and does not need to be unique (Peters et al.
2017).

If, for a given path, two directed edges point into the same node, the latter is a collider. For example, given the DAG
A/C)B; C is a collider on the (only) path between A and B. In all other cases (A)C/B, A/C/B and A)C)B),
C is a noncollider. Several different paths can pass through a node, and being a (non)collider is always relative to the path.

In a DAG, a v-structure or immorality is a collection of three nodes (say A, B, and C), such that there are directed edges A/B
and C/B; but no edge between A and C. In this case B is an unshielded collider. If there is an edge between A and C, it is a
shielded collider. Similarly, in an undirected graph, A, B, and C form an unshielded triple if there are edges A2B and C2B;
but no edge A2C.

The skeleton of a (partially) directed graph is the undirected graph obtained after removing all arrowheads.
Given a directed graph G, two nodes A and B, and a (possibly empty) subset of nodes S not containing A and B, a path

between A and B is blocked by S if at least one of the following two conditions holds: (i) there exists a collider on the path
which is not in S, and also none of its descendants are in S; (ii) there exists a noncollider on the path that is in S.

Nodes A and B are d-separated by a set S if S blocks all paths from A to B.
Given disjoint sets U, V, and S (U and V should be nonempty), U and V are d-separated by S if S blocks all paths from Yj to Yk;

for all nodes Yj 2 U and Yk 2 V:
Two DAGs are equivalent if they have the same skeleton and the same v-structures.
An equivalence class of DAGs is a set containing all DAGs that are equivalent to one another. For example, given a skeleton

A2B2C; there is one equivalence class containing the three DAGs A/B/C; C/B/A; and A)B/C; and one
equivalence class with only one DAG ðA/B)CÞ: Any DAG in the class can be used to represent the class. But instead
of picking an arbitrary DAG, an equivalence class can also be represented by a completed partially directed acyclic graph
(CPDAG). A partially directed acyclic graph (PDAG) is “a graph where some edges are directed and some are undirected
and one cannot trace a cycle by following the direction of directed edges and any direction for undirected edges” (Kalisch
and Bühlmann 2007). A PDAG is a CPDAG if (a) every directed edge in the PDAG exists in all DAGs in the equivalence
class it represents (b) for every undirected edge A2B in the PDAG, the equivalence class contains at least one DAG with
A/B; and at least one with B/A. Chickering (2002) showed that CPDAGs represent equivalence classes uniquely.

A.2. Identifiability
In a general GSEM, the parameters in SG, SE; and L are not identifiable, which was pointed out by Gianola and Sorensen
(2004). However, when we know a topological ordering of the graph (defined above in Appendix A.1), and Assumption
3 (diagonal SE) and faithfulness assumptions (9) and (10) hold, it appears that SG, SE; and L are identifiable from the joint
distribution of Y1; . . . ;Yp (see Equation 7). Our approach relies on the LtDL decomposition of VE; and is probably known,
although we could not find it in the literature. Neither could we find a proof, but the decomposition seemed valid in all
examples we considered. It works as follows:
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1. Relabel the nodes (traits) Y1; . . . ; Yp according to a topological ordering. Then, both L and G ¼ ðI2LÞ21 are upper tri-
angular. Recall that L has zeros on the diagonal. G always has ones on the diagonal, i.e., it is unit upper-triangular.

2. Now, we use the fact that every positive definite matrix A can be decomposed as A ¼ LDLt ¼ LtDL;with a diagonal matrix D
and unit upper-triangular L [see e.g., Petersen et al. (2008), section 5.7]. We apply this result to VE :

VE ¼ LtDL; (17)

and set SE equal to D, and G equal to L. Let L ¼ I2G21:

3. Finally, using VG and L we obtain SG:

SG ¼ �
LLt

�21�LVGLt��LLt�21
: (18)

For example, consider the graph Y3/Y2/Y1; with path coefficients equal to one and unit error variances (for simplicity, we
ignore the genetic effects in this example). We need to relabel the graph such that Y1/Y2/Y3: After relabeling, we have

L ¼
0
@ 0 1 0

0 0 1
0 0 0

1
A; G ¼ ðI2LÞ21 ¼

0
@ 1 1 1

0 1 1
0 0 1

1
A; VE ¼ GtSEG ¼

0
@ 1 1 1

1 2 2
1 2 3

1
A;

as SE is the identity matrix. In R, the LtDL decomposition can be computed as follows:

b ,- matrix(c(1,1,1,1,2,2,1,2,3), ncol = 3)
#b ,- b[c(3,2,1), c(3,2,1)]
v ,- Cholesky(Matrix(b, sparse = T), LDL = T, perm = F)@x
Gamma ,- matrix(0,3,3)
Gamma[lower.tri(Gamma, diag = T)] ,- v
D ,- diag(diag(Gamma))
diag(Gamma) ,- 1
Gamma ,- t(Gamma)
Lambda ,- diag(3) - (solve(Gamma))

We emphasize that the topological ordering is crucial. Without the relabeling (e.g., uncomment the second line in the above
R-code), a different G is obtained (also after interchanging the first and third row). Although in this example the topological
ordering is unique, there may in general be multiple valid orderings; e.g., Y1; Y3; Y2 and Y3; Y1; Y2 in case the graph is
Y1/Y2)Y3: Based on all investigated examples, we conjecture (but could not prove) that these orderings lead to the same
parameter estimates.

A.3. The matrix G expressed as a function of path coefficients
Let GY denote the DAG over the nodes Y1; . . . ; Yp;with edges defined byL. For each j 2 f1; . . . ; pg; let Vj denote the union of the
set fYjg and the set of root traits (i.e., those without parents in GY) for which there is a directed path toward Yj: For all
j; k 2 f1; . . . ; pg; letPjk denote the set of all directed paths from Yj to Yk: For k ¼ j;Pjj contains only the empty path from Yj to
itself. For any directed pathp from Yj to Yk; let LðpÞ denote the product of the corresponding path coefficients as given byL; for
the empty path we define LðpÞ ¼ 1:

Using these definitions, we can decompose the variance of a trait into contributions from different ancestors, as well
as its own error variance. To this end, we follow Spirtes et al. (2001) and define the p3 1 column vector gj with elements
ðl ¼ 1; . . . ; pÞ

gj;l ¼
(X

p2Plj
LðpÞ if Yl 2 Vj

0 otherwise:
(19)

A.4. The covariance between Yj and Yk as function of path coefficients
Since Yj ¼ XBgj þ Ggj þ Egj (Equation 8 in the main text), the covariance between the n3 1 vectors Yj and Yk can be written
in terms of gj and gk:

Cov
�
Yj;Y

t
k
� ¼ E

�ðYj 2XBgjÞðYk2XBgkÞt
� ¼ �

gtjSGgk
�
K þ �

gtjSEgk
�
In; (20)
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for all j; k 2 f1; . . . ; pg: Consequently, we can express the genetic and residual covariance between traits in terms of quadratic
forms, involving SG; SE; and the path coefficients. As a special case of Equation 20, it follows that, without random genetic
effects,

CovðY½i; j�;Y½i; k�Þ ¼ gtjSEgk

is the covariance between the jth and kth trait, for each individual i. See also Spirtes et al. (2001) (Lemma 3.1.6), or Lynch and
Walsh (1998) (Appendix 2). Using standard expressions for multivariate Gaussian distributions, this implies that when
Yj ¼ XBgj þ Egj;

CovðY½i; j�;Y½i; k�jY½i; S�Þ ¼ gtjSEgk2
�
gtjSEGS

��
Gt
SSEGS

�21�
Gt
SSEgk

�
: (21)

A.5. The path coefficients condition
It iswell known that faithfulness is violatedwhen contributions fromdifferent paths cancel out. For example, in the SEMdefined
by Y1/Y2; Y1/Y3; and Y2/Y3; with respective path coefficients 1, 1, and21, Y1 and Y3 are marginally independent but not
d-separated. Conversely, when faithfulness holds, we know that such cancellations cannot occur, and that the sum in Equation
19 is never zero, i.e., gj;l ¼ 0 only for Yl;Vj: We will refer to this as the path coefficients condition.

A.6. The path coefficients condition and faithfulness
Thepath coefficients condition is a necessary but not a sufficient condition for faithfulness. First, faithfulness can also be violated
when contributions from different paths cancel out when summing over a subset of (rather than all) the directed paths; see
Example 2.10 in Peters (2012). Second, it is not only the contributions of directed paths that should not cancel out, but also
those of treks. A trek between Yj and Yk is any path between these nodes without a collider (Spirtes et al. 2001). Every trek
consists of two directed paths, starting at the source of the trek, and going toward Yk and Yk: One of these can be the empty
path; hence, each directed path is also a trek. Figure 6 provides an examplewhere contributions from different treks cancel out,
leading to nonfaithfulness.

Another necessary condition for faithfulness is that all error variances are strictly positive. Figure 7 provides an example of
nonfaithfulness due to a zero error variance. An extended version of the path coefficients condition (involving sums over subset
of treks) together with strictly positive error variances may be sufficient for faithfulness, but we could not find such a result in
the literature. However, from Equation 21 it follows that, for a Gaussian linear SEM (again without genetic effects), faithful-
ness is equivalent with

gtjSEgk 2
�
gtjSEGS

��
Gt
SSEGS

�21�
Gt
SSEgk

� ¼ 0⇒ Yj and Yk d2 separated by YS: (22)

A.7. Conditional means and covariances
Using the notation ½; S� to select the columns corresponding to S, and ½S1; S2� to select both rows and columns, it follows from
Equation 7 that YjjvecðYSÞ ¼ vecð~ySÞ is multivariate normal with mean and covariance

mjjS ¼ ðXBGÞ½; j� þ Sj;SS
21
S vecð~yS2 ðXBGÞ½; S�Þ ¼ XBgj þ Sj;SS

21
S vecð~yS2XBGSÞ; (23)

SjjS ¼ Sj2Sj;SS
21
S St

j;S; (24)

where

Sj;S ¼ �
GtSGG

�½j; S�5K þ �
GtSEG

�½j; S�5In ¼ �
gtjSGGS

�
5K þ �

gtjSEGS
�
5In; (25)

SS ¼ �
Gt
SSGGS

�
5K þ �

Gt
SSEGS

�
5In; (26)

Sj ¼
�
GtSGG

�½j; j�K þ �
GtSEG

�½j; j�In ¼ �
gtjSGgj

�
K þ �

gtjSEgj
�
In: (27)

The matrices Sj, SS; and Sj;S are the variance-covariance matrix of vecðYjÞ ¼ Yj and vecðYSÞ; respectively, and the covariance
between Yj and vecðYSÞ: From Equation 7 in the main text we also obtain the conditional distribution

vecð½Yj   Yk�ÞjvecðYSÞ ¼ vecð~ySÞ � N




mjjS
mkjS

�
;SjkjS

�
¼ N




mjjS
mkjS

�
;Sjk 2Sjk;SS

21
S St

jk;S

�
; (28)
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where mjjS and mkjS are as in Equation 23, and Sjk is the 2n32n block matrix with diagonal blocks Sj and Sk (defined as in
Equation 27), and off-diagonal blocks ðgt

jSGgkÞK þ ðgt
jSEgkÞIn: Similarly, given the p32 matrix Gjk with columns gj and gk; it

follows that

Sjk;S ¼ �
Gt
jkSGGS

�
5K þ �

Gt
jkSEGS

�
5In

is the 2n3 jSjn covariance between vecð½Yj   Yk�Þ and vecðYSÞ:
A.8. Covariance structure of the conditional distributions
When K ¼ ZZt is block-diagonal, withm blocks of ones of dimension r3 r on the diagonal, then for any positive constants c and
d,

ðcIn þ dKÞ21 ¼ c21In 2
1

c2ð1=dþ r=cÞK:

Hence, the inverse of ðcIn þ dKÞ is again a linear combination of In and K. This follows from the Woodbury identity (Petersen
et al. 2008; Golub and Van Loan 2012)�

Aþ CBCt�21 ¼ A21 2A21C
�
B21 þ CtA21C

�21
CtA21; (29)

with A ¼ cIn; B ¼ dIm; and C ¼ Z: In addition we have ZtZ ¼ rIm; and therefore K2 ¼ rK: Consequently, any product of matrices
of the form ðcIn þ dKÞ or their inverse is a linear combination of In and K. Combining Equations 25, 26 and 27, and using that
ðA5BÞðC5DÞ ¼ AC5BD for any matrices A;B;C;D of appropriate dimensions, it follows that when K ¼ ZZt; SjjS in Equation
24 is of the form s2

GðjjSÞK þ s2
EðjjSÞIn; for some numbers s2

GðjjSÞ and s2
EðjjSÞ: Similarly, it follows that SjkjS (Equation 28) is of

the form

VGðjkjSÞ5K þ VEðjkjSÞ5In;

for some 232 matrices VGðjkjSÞ and VEðjkjSÞ:
A.9. Proofs of Theorems 1 and 2
Pearl (2009) (p. 51) showed that, under quite general assumptions, structural equation models satisfy the global Markov
property, which means that d-separation in the graph implies conditional independence. It turns out that, in our case, the
required assumption of independent errors applies to the p error variables and not toG. The intuition behind this is thatG is not
just an additional error node, but part of the causal graph, and we can always distinguish between residual (co)variance and
genetic (co)variance.We now give the proof of Theorem 1, which only requiresminormodifications of the proof given by Pearl
for the case without the genetic effects.

Let GE denote the graph, obtained by extending Gwith the error variables, i.e., for traits j ¼ 1; . . . ; pwe add the node Ej and
an edge Ej/Yj:We first show that the local Markov property holds for GE, i.e., for any variable Z 2 fG; Y1; . . . ; Yp; E1; . . . ; Epg; Z
is conditionally independent of its nondescendants given its parents. This is obvious for Z 2 fG; E1; . . . ; Epg; we now consider
Yj: In GE; the set of parents of Yj is paðYjÞ [​ fEjg; where paðYjÞ contains G if j 2 D: By construction, Yj is entirely determined by

Figure 6 An example of a SEM (without genetic effects) where faithfulness does not hold, because the contributions to the covariance from the treks
Y3)Y1/Y4 and Y3)Y2/Y4 cancel out. If Y1 and Y2 are Gaussian with equal error variances, it follows that for every individual i,
CovðY3½i�;Y4½i�Þ ¼ CovðY1½i� þ Y2½i� þ E3½i�;Y1½i�2Y2½i� þ E4½i�Þ ¼ CovðY1½i� þ Y2½i�;Y1½i�2Y2½i�Þ ¼ 0: Consequently, Y3 and Y4 are marginally inde-
pendent, but not d-separated by the empty set.
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paðYjÞ [ ​ fEjg; and constant conditional on these variables. Consequently, given paðYjÞ [​ fEjg; it is independent of any Ek
ðk 6¼ jÞ; and of any Yk that it a nondescendant of Yj [note that if G;paðYjÞ; Yj is indeed conditionally independent of any
nondescendant; ifG 2 paðYjÞ;G cannot be the nondescendant because it is already in the conditioning set]. Therefore, the local
Markov property holds for GE: By the lemma below, we find that also the Markov factorization property holds for GE; since for
any distribution having a density it is equivalent with the local and global Markov properties. Given the Markov factorization
property for GE; and the fact that f ðe1; . . . ; epÞ ¼

Q ​ p
j¼1fjðejÞ;we can just integrate out the ej; and obtain theMarkov factorization

property for G: This concludes the proof of Theorem 1.
Given the result of Theorem 1 and the assumed faithfulness, Theorem 2 now follows directly from the consistency for the

general PC-algorithm (Spirtes et al. 2001); see the first part of the proof of their Theorem 5.1 (p. 407).

Markov properties: The following lemma is taken from Lauritzen (1996) (p. 51), and reformulated with somewhat less
general conditions, which, however, suffice for our purpose.

Lemma. Let P be the joint distribution of random variables ðY1; . . . ; YpÞ; having a density f, and let H be a DAG on these
variables. The following properties are equivalent:

1. The Markov factorization property: given the parents paj of each xj; the joint density (f) can be decomposed as

f
�
y1; . . . ; yp

� ¼ Yp
j¼1

fjðyjjpajÞ;

where the fj are the conditional densities.
2. The local Markov property: any variable is conditionally independent of its nondescendants, given its parents.
3. The global Markov property: for all disjoint sets U;V; S⊂fY1; . . . ; Ypg; d-separation of U and V by S in the graph H implies

conditional independence of U and V given S. In contrast to U and V, the conditioning set Smay be empty here. A definition
of d-separation is given in Appendix A.1.

A.10. Proof of Theorems 3 and 5:Wefirst prove Theorem3, by showing the equivalence of the left- and right-hand sides of (9)
and (11) in the main text. The d-separation statements on the right-hand sides are equivalent, as G can never be a (or
descendant of a) collider. Also the left-hand sides (Yj╨Yk

		fYS;Gg and Yj╨PYjU
Yk

		fYSg) are equivalent, since

pYjUðyj; ykjySÞ ¼ pðyj; ykjyS;GGÞ ¼ pðyjjyS;GGÞpðykjyS;GGÞ ¼ pYjUðyjjySÞpYjUðykjySÞ:

For Theorem 5 we make the additional assumption that K ¼ ZZt; Z ¼ Im5ð1; . . . ; 1Þt being the mr3m design matrix for r
replicates of m genotypes in a balanced design (with mr ¼ n). The first part of Theorem 5 then follows from the results in
Appendix A.8. For the second part, we first recall the equivalence of Yj╨Yk

		fYS;Gg and Yj╨PYjU
Yk

		fYSg: Because of the
Gaussianity and the assumed faithfulness, the latter conditional independence is equivalent with

gtjSEgk2
�
gtjSEGS

��
Gt
SSEGS

�21�
Gt
SSEgk

� ¼ 0; (30)

where we used Equation 21.

Figure 7 An example of a SEM where faithfulness does not hold, because the variance of the error variables E2 is zero. The random vectors Y1 and Y4

are conditionally independent given Y3; but, in the graph, the nodes Y1 and Y4 are not d-separated by Y3:
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Next, we consider the conditional distribution of vecð½Yj   Yk�ÞjvecðYSÞ ¼ vecð~ySÞ given in Equation 28,whose covariance is the
2n3 2n block matrix Sjk 2Sjk;SS

21
S S

t
jk;S: All its four n3 n blocks are a linear combinations of K and In; and it suffices to show

that the coefficient of In in the off-diagonal blocks is zero if and only if Equation 30 holds. We recall from Equation 26 that

SS ¼ �
GtSGG

�½S; S�5K þ �
GtSEG

�½S; S�5In ¼ �
Gt
SSGGS

�
5K þ �

Gt
SSEGS

�
5In:

Using the Woodbury identity (Equation 29) with A ¼ VE5In; B ¼ VG5Im; and C ¼ Ip5Z; it follows that, for any positive-
definite p3 p matrices VG and VE; we have

ðVG5K þ VE5InÞ21 ¼ �
V21
E 5In

�
2
�
V21
E

�
V21
G rV21

E
�21

V21
E

�
5K: (31)

Setting VG ¼ Gt
SSGGS; VE ¼ Gt

SSEGS; and R ¼ V21
E ðV21

G rV21
E Þ21V21

E ; it follows that

S21
S ¼ �

Gt
SSEGS

�21
5In2R5K: (32)

Combining this with the expressions for Sjk and Sjk;S given in Appendix A.7, we find that Sjk 2Sjk;SS
21
S S

t
jk;S has off-diagonal

blocks �
gtjSGgk

�
5K þ �

gtjSEgk
�
5In2

��
gtjSEGS

�
5In þ Tj5K

���
Gt
SSEGS

�21
5In 2R5K

��
Gt
SSEgk5In þ Tt

k5K
�
;

for Tj ¼ gjSGGS and Tk ¼ gkSGGS: Finally, working out the products in the last display [using that K2 ¼ ðZZtÞ2 ¼ rK], we find
that all terms involving a Kronecker product with In correspond exactly to the left-hand side of Equation 30. Consequently, the
residual covariance in the distribution fYj;YkgjYS ¼ ~yS is zero if and only if Yj╨Yk

			fYS;Gg.
A.11. Proof of Theorem 4
To obtain faithfulness for S ¼ ∅; we need to prove that Yj╨G implies d-separation of Yj and G in the graph G: Because the
conditioning set is empty, it suffices to show that there are no directed paths from G to Yj; where we can assume that j;D
(otherwise Gj would be nonzero, and because of the noncollinearity, Yj and G would not be independent). Because of the
assumed Gaussianity, the independence of Yj and G implies that

Cov
�
Yt
j ;G

� ¼ Cov
�
gtjG

t;G
� ¼ traceðKÞ�gtjSG

� ¼ ð0; . . . ; 0Þ; (33)

where we used that vecðGÞ � Nð0;SG5KÞ; and, therefore, EðG½i; j�G½i; k�Þ ¼ SG½j; k�K½i; i�; for all i 2 f1; . . . ; ng and
j; k 2 f1; . . . ; pg: Since traceðKÞ is strictly positive and the submatrix SG½D;D� has full rank, Equation 33 implies that gj;l ¼ 0
for all l 2 D: Finally, we use that the assumed faithfulness implies the path coefficients condition (see Appendices A.3–A.6).
Consequently, it follows from gj;l ¼ 0 that there is no directed path from Yl to Yj: Since this is the case for all l 2 D; there can
neither be a directed path from G to Yj:

A.12. Proof of Theorem 6
Assuming K ¼ ZZt; the first part of the theorem follows from the results in Appendix A.8. For the second part, we use that Yj

has genetic variance s2
j ðGÞ ¼ gt

jSGgj (see Equation 20). Because for traits without a direct genetic effect, rows and columns in
SG are zero, we can rewrite this as gt

j ½D�SG½D;D�gj½D�:Hence, s2
j ðGÞ ¼ 0 is equivalent with gj;l ¼ 0 for all l 2 D, where we used

that SG½D;D� is of full rank (which is a consequence of Assumption 5). Using the arguments from the proof of Theorem 4 and
the assumed faithfulness, it follows that this is equivalent with independence of Yj and G:
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