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Abstract
Background: Key pathogenetic mechanisms underlying re-
nal disease progression are unaffected by current treatment. 
Metabolite profiling has significantly contributed to a deep-
er understanding of the biochemical metabolic networks 
and pathways in disease, but the biochemical details in 
maintenance hemodialysis (MHD) patients remain largely 
undefined. Methods: The metabolic fingerprinting of plas-
ma samples from 19 MHD patients and 12 healthy controls 
was characterized using liquid chromatography quadrupole 
time-of-flight mass spectrometry. Principal component 
analysis (PCA) and orthogonal partial least squares-discrim-
inant analysis (OPLS-DA) were applied to analyze the meta-
bolic data. Results: The plasma metabolite profile distin-
guished the MHD patients from the healthy controls suc-
cessfully by using both PCA and OPLS-DA models. Sixty-three 
metabolites were identified as the key metabolites to dis-
criminate the MHD patients from healthy controls, involving 

several metabolic pathways (all p < 0.05). An increase in plas-
ma levels of D-glucose, hippuric acid, androsterone glucuro-
nide, indolelactic acid, and a reduction in plasma levels of 
glycerophosphocholine, serotonin, L-lactic acid, phyto-
sphingosine, and several lysophosphatidylcholine were ob-
served in MHD patients compared to healthy subjects. Me-
tabolomics analysis combined with KEGG pathway enrich-
ment analysis revealed that non-alcoholic fatty liver disease, 
choline metabolism in cancer, the forkhead box O signaling 
pathway, and the hypoxia-inducible factor-1 signaling path-
way in MHD patients were significantly changed (p < 0.05). 
Conclusion: The identification of a novel signaling pathway 
and key metabolite markers in MHD patients provides in-
sights into potential pathogenesis and valuable pharmaco-
logical targets for end-stage renal disease.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

End-stage renal disease (ESRD) is a state of disturbed 
metabolism, although important features such as dyslip-
idemia [1] and catabolism [2] remain poorly understood. 

This article is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (CC BY-
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Usage and distribution for commercial purposes as well as any dis-
tribution of modified material requires written permission.
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These factors are believed to contribute to mortality in 
ESRD, which is much higher than in the general popula-
tion [3, 4]. Furthermore, ESRD or cardiovascular disease 
(CVD) develop in a substantial proportion of patients 
with chronic kidney disease (CKD) receiving standard-
of-care therapy, and all-cause mortality remains un-
changed in the CKD population [5]. These data suggest 
that key pathogenetic mechanisms underlying renal dis-
ease progression are unaffected by current treatment and 
prompt the search for easily identifiable risk factors and 
novel pharmacological targets.

Current metabolite profiling (or metabolomics) tech-
nologies enable high-throughput, high-resolution phe-
notyping of human plasma and are able to identify novel 
disease biomarkers and their underlying metabolic path-
ways in well-characterized epidemiologic cohorts [6, 7]. 
Metabolomics studies have demonstrated metabolic al-
terations in clinical samples, including blood and urine 
samples of CKD [8, 9] and diabetic kidney disease [10]. 
Wang et al. [11] applied liquid chromatography-mass 
spectrometry-based metabolite profiling to plasma ob-
tained from participants in the Framingham Heart Study 
to identify novel predictors of future type 2 diabetes and 
CKD. In this pilot study, non-targeted, mass spectrome-
try-based profiling of plasma from maintenance hemodi-
alysis (MHD) patients and healthy controls demonstrat-
ed that a large number of chemical species found in sys-
temic circulation change significantly. The aim of this 
pilot study was to demonstrate that the systemic meta-
bolic alterations associated with ESRD could be evaluated 
using a rapid metabolomics screening technique. As such, 
the identification of potential signaling pathway and key 
metabolite markers could provide useful information not 
only about potential new pathogenesis of ESRD, but also 
about valuable therapeutic targets for ESRD-associated 
comorbidities.

Materials and Methods

Patients
The study population consisted of 19 patients aged over 30 

years with ESRD receiving MHD for at least 3 months from one 
clinical center, and 12 healthy controls from one health examina-
tion center. The blood samples of each patient were collected be-
fore hemodialysis, while one blood sample was obtained from each 
control.

Sample Preparation Procedures
Blood plasma samples were drawn before dialysis into Vacu-

tainer tubes containing ethylenediaminetetraacetic acid for plasma 
separation. Plasma samples were transported on ice and centri-

fuged at 4  ° C at 3,000 rpm for 15 min. Supernatants were stored in 
aliquots at –80  ° C for subsequent metabolomics analysis.

The frozen plasma samples were thawed slowly. The correct 
amount of cold methanol (precooled to –20  ° C) was added to the 
samples to make a final 80% (vol./vol.) methanol solution. The 
samples were gently shaken to mix and incubated for 6–8 h at 
–20  ° C, then centrifuged at 12,000 g for 10 min at 4  ° C. Superna-
tants were collected, transferred to a new 1.5-mL Eppendorf tube, 
and evaporated to dryness at room temperature in a SpeedVac 
concentrator (Thermo Scientific) with no heat. The dried samples 
were reconstituted in 100 µL of 60% methanol with 0.1% formic 
acid, and clarified by centrifugation for 5 min at 12,000 g. The 
clarified samples were transferred to plastic HPLC vials for liquid 
chromatography quadrupole time-of-flight mass spectrometry 
(LC-QTOF-MS) measurements.

Liquid Chromatography-Quadrupole Time-of-Flight Mass 
Spectrometry Measurements
The LC-QTOF-MS measurements were performed using an 

Agilent 1260 series LC binary pump and well plate autosampler 
coupled to a 6,520 accurate-mass Q-TOF LC-MS system equipped 
with a dual electrospray ionization (ESI) source (Agilent Tech-
nologies, Santa Clara, CA, USA). A Cogent Diamond HydrideTM 
(MicroSol, Eatontown, NJ, USA) aqueous normal phase column 
(4 μm, 2.1 × 100 mm) was used for the separation of metabolites. 
The LC parameters were as follows: autosampler temperature, 
4  ° C; injection volume, 5 μL; column temperature, 35  ° C; flow rate, 
0.4 mL/min. The solvents and optimized gradient conditions for 
LC were: solvent A, 50% methanol/50% water/0.05% formic acid; 
solvent B, 90% acetonitrile with 5 mM ammonium acetate; elution 
gradient, 0–20 min in 100% B, 20–25 min in 40% B; post-run time 
for equilibration, 10 min in 100% B. A blank injection was run af-
ter every 3 samples. The optimized ESI Q-TOF parameters for MS 
experiments were: ion polarity, positive and negative; gas temper-
ature, 325  ° C; drying gas, 10 L/min; nebulizer pressure, 45 psig; 
capillary voltage, 4,000 V; fragmentor, 140 V; skimmer, 65 V; mass 
range, 70–1,100 m/z; acquisition rate, 1.5 spectra/s; instrument 
state, extended dynamic range (1,700 m/z, 2 GHz). Spectra were 
internally mass calibrated in real time by continuous infusion of a 
reference mass solution using an isocratic pump connected to a 
dual sprayer feeding into an ESI source. Data were collected in 
both the positive and negative ESI mode. Data were acquired with 
MassHunter Acquisition software (Agilent Technologies).

Data Processing and Metabolomics Data Analysis
Following LC-QTOF-MS data acquisition, the acquired raw 

data files were processed with Agilent MassHunter Qualitative 
Analysis software (version 5.0). Reproducibility of chromato-
grams was first inspected by overlaying the total ion chromato-
grams of all samples. Data files that showed extraneous peaks were 
excluded for further processing. The positive and negative data 
were combined. The normalization procedure was confirmed by a 
comparison of the total ion intensity of peaks in MS profiles. Ini-
tial, putative metabolite identification was achieved by searching 
the accurate m/z values of the peaks against an in-house database 
derived from HMDB, METLIN, and other public databases. At the 
same time, the extracted ion chromatograms for these matched 
putative metabolites were generated by performing find by for-
mula function integrated into the software. The abundance of the 
extracted ion chromatograms was calculated by summing the in-
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tensities of all compound-related peaks (e.g., isotopic peaks, ad-
duct peaks, etc.). The preprocessed data files were imported into 
Agilent Mass Profiler Professional software (version 12.1) for fur-
ther statistical analysis. MS/MS spectra and retention times ac-
quired from reference metabolites were used for confirmation of 
the identification of statistically significant metabolites. More spe-
cifically, the exact m/z values and intensities of fragment ions from 
the acquired MS/MS spectra of putative metabolites must have a 
reasonable match with that of reference metabolites or the frag-
ment ions from public databases (e.g., METLIN, MassBank), if 
available. Unsupervised principal component analysis (PCA) and 
supervised orthogonal partial least squares-discriminant analysis 
(OPLS-DA) models were employed to evaluate the difference be-
tween 2 tested groups by using SIMCA 14.1 software (Umetrics 
AB, Umeå, Sweden). Also, the permutation tests (the number of 
permutations was 200) were used to validate each group in the 
OPLS-DA models. S-plot and the variable importance for projec-
tion (VIP) values were used to figure out the key mediators that 
contribute significantly to the discrimination of the 2 groups. 
Those variables with a VIP > 1.0 were considered relevant for 
group discrimination. A heatmap of the different metabolites in 
this process was constructed using the pheatmap package in R 
(3.40).

Statistical Data Analysis
The Kolmogorov-Smirnov test was used to check the normal-

ity of the data distribution. Numerical variables were expressed as 
the mean ± SE for normally distributed parameters or median (in-
terquartile range) for skewed distributions, while categorical vari-
ables were expressed as counts (%) or as a ratio. To identify statis-
tically significant differences between plasma samples from the 
healthy controls and MHD patients, the processed data files were 
imported into Agilent Mass Profiler Professional software version 
12.1 (Agilent Technologies) for statistical analysis. The intensities 
of the identified metabolites in the plasma samples from healthy 
controls and MHD patients were compared using a t test followed 
by a Benjamini-Hochberg multiple testing correction.

Results

Patient Characteristics
A total of 31 subjects were enrolled in this study and 

19 of them were ESRD patients receiving MHD treat-
ment. Table 1 lists the clinical information for all of the 
31 subjects, including clinical chemistry values, as well as 
their disease history as diagnosed by the attending physi-
cian or by previous medical histories. Twelve volunteers 
without documented kidney disease were used as healthy 
controls. 

Metabolic Differences between Healthy Controls and 
MHD Patients
The plasma samples from both individual MHD pa-

tients and healthy controls were subjected to methanol 
protein precipitation and subsequent centrifugation, be-

cause this technique was previously reported to be the 
most effective, straightforward, and reproducible extrac-
tion method for such samples [12].

To study the statistically significant metabolic altera-
tions in the plasma between the 2 groups in more depth, 
PCA, an unsupervised multivariate statistical method, 
was performed based on the ion intensities of all the iden-
tified metabolites in the plasma samples of the healthy 
controls and MHD patients. As seen in Figure 1a, the re-
sults of the PCA (plotting principle component 1 vs. prin-
ciple component 2) shows an excellent separation of the 
MHD patients and healthy controls (R2X = 0.459, Q2 = 
0.361). 

Then, OPLS-DA, a supervised multivariate statistical 
method, provided valuable insight into group relation-
ships from simple visual inspection of scores-space clus-
tering patterns. One predictive component and one or-
thogonal components model were constructed with a 
2-dimensional score plot illustrated in Figure 1b (R2X = 

Table 1. Clinical characteristics of the study population and con-
trols

Controls MHD patients

n 12 19
Male 6 (50) 12 (63)
Age, years 42 (39–50) 56 (45–57)*
Disease history

Myocardial infarction 0 (0) 0 (0)
Hypertension 0 (0) 17 (89)*
Diabetes mellitus 0 (0) 2 (11)
Hypercholesterolemia 0 (0) 2 (11)
NAFLD 0 (0) 1 (5)

Systolic blood pressure, mm Hg 123.1±15.6 143.3±28.1*
Diastolic blood pressure, mm Hg 81.0±12.1 70.8±22.6*
Laboratory values

Hemoglobin, g/L – 100.4±15.5
Parathyroid hormone, pg/mL – 222.3±196.1
Calcium, mmol/L – 2.3±0.2
Phosphorus, mmol/L – 1.6±0.4

Medication
Use of CCB – 11 (58)
Use of ARB – 2 (11)
Use of ACEI – 5 (26)
Use of β-receptor blocker – 10 (53)
Use of aspirin – 1 (5)
Statins – 6 (32)
Weekly dose of epoetin, IU – 3,000 (3,000–6,000)

Values expressed as n (%), mean ± SE, or median (IQR). * p < 0.05, com-
pared with healthy controls. Comparisons between 2 groups were performed 
using the Mann-Whiteny U test. MHD, maintenance hemodialysis; NAFLD, 
non-alcoholic fatty liver disease; CCB, calcium-channel blocker; ACEI, an-
giotensin-converting enzyme inhibitor; ARB, angiotensin II type 1 receptor 
blocker. 
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0.598, R2Y = 0.995, Q2 = 0.976), which shows visual sep-
aration of the 2 groups in the t1-axis. S plots of the (O) 
PLS-DA performed to verify the differentiated metabo-
lites between the 2 groups and supervise the multivariate 
analysis are shown in Figure 1c. 

As shown in Figure 2, heatmap analysis revealed dis-
tinct patterns of metabolites in the MHD and control 
groups, with 151 metabolites detected as being signifi-
cantly changed. Also, the VIP values for each variable 
were generated and are presented in Table 2, which were 

all > 1.00 (p < 0.05). Of 63 key metabolites, 30 were in-
creased, while 33 were reduced in the plasma of MHD 
patients compared to those in healthy controls. This 
showed that the plasma levels of D-glucose, hippuric 
acid, androsterone glucuronide, and indolelactic acid 
were increased, and the plasma levels of glycerophospho-
choline (GPC), serotonin, L-lactic acid, phytosphingo-
sine, and several lysophosphatidylcholines were de-
creased in the MHD patients compared to those of con-
trols. 
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Fig. 1. Plasma metabolic profiles of LSMs for the MHD patients 
and healthy controls. a Two-dimensional PCA score plots show 
visual separation of MHD patients (red dots) from the healthy con-
trols (blue dots). R2X = 0.459, Q2 = 0.361. The percentage varia-
tion in the plotted principal components is marked on the axes. 
Each spot represents one sample, and each group is indicated by a 
different color. b Two-dimensional OPLS-DA score plots high-

light the difference between the patients (red dots) and healthy 
controls (blue dots). R2X = 0.598, R2Y = 0.995, Q2 = 0.976. c S-
plots of the OPLS-DA models for the processed data. d Permuta-
tion plots for the MHD patients and controls all show that the 
OPLS-DA models used above are valid. The green dots represent 
R2 while blue dots represent Q2. The number of permutations for 
each plot was 200.

Fig. 2. Heatmap analysis of the blood metabolite patterns in MHD 
patients and healthy controls. The heatmap shows the significant-
ly changed metabolites between the 2 groups. Each column in the 

heatmap represents one sample, and each row represents one me-
tabolite. The color bar showing green to red indicates the relative 
content of metabolites.

(For figure see next page.)
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Table 2. Identification of significant differential metabolites in plasma samples by comparison of the MHD patients and healthy controls 
using a VIP threshold of 1 (p < 0.05)

Compound VIP FC Change Pathway name

L-Lactic acid 10.22810 0.43789 Down HIF-1 signaling pathway
LysoPC (16:0) 9.98057 0.48435 Down Choline metabolism in cancer
Creatinine 9.58230 2.45733 Up Arginine and proline metabolism
Felbamate 9.28300 0.0003567 Down Drug metabolism – cytochrome P450
Hippuric acid 5.30880 58.94476 Up Phenylalanine metabolism
Acetyl-N-formyl-5-methoxykynurenamine 3.84561 54.30022 Up Tryptophan metabolism
Geranyl-PP 3.78926 0.33354 Down Phosphonate and phosphinate metabolism
Pyroglutamic acid 3.72451 0.45121 Down D-Glutamine and D-glutamate metabolism
Hypoxanthine 3.62224 13.02824 Up Purine metabolism
Glycerophosphocholine 3.54836 0.33648 Down Choline metabolism in cancer
D-Glucuronic acid 3.21844 17.55045 Up Amino sugar and nucleotide sugar metabolism
D-Glucose 3.13755 49.69100 Up NAFLD
1-Methylhistidine 3.10201 2.65084 Up Histidine metabolism
LysoPC (18:0) 2.95710 0.66651 Down Choline metabolism in cancer
Glucosamine 2.91254 0.23987 Down Amino sugar and nucleotide sugar metabolism
LysoPC (18:3 [6Z, 9Z, 12Z]) 2.83799 0.26197 Down Choline metabolism in cancer
Thiamine 2.73887 39.48890 Up Thiamine metabolism
Uridine 2.62345 12.56130 Up Chemical carcinogenesis
D-Xylose 2.56559 12.33261 Up ABC transporters
Galactonic acid 2.40013 287.15969 Up Galactose metabolism
Lactosylceramide (d18:1/12:0) 2.38472 0.56823 Down Sphingolipid metabolism
Trigonelline 2.34204 15.59125 Up Nicotinate and nicotinamide metabolism
N-acetylputrescine 2.32334 0.0014299 Down Arginine and proline metabolism
Uric acid 2.23204 0.52909 Down Bile secretion
Mercaptopurine 2.15339 91.55563 Up Bile secretion
5-Acetylamino-6-formylamino-3-methyluracil 2.0563 11.81809 Up Caffeine metabolism
L-Isoleucine 1.97048 0.62502 Down Central carbon metabolism in cancer
L-Histidine 1.88933 0.47130 Down Central carbon metabolism in cancer
LysoPC (20:4 [5Z, 8Z, 11Z, 14Z]) 1.88369 0.59427 Down Choline metabolism in cancer
Galactitol 1.87569 46.61731 Up Galactose metabolism
L-Tryptophan 1.81269 0.31861 Down Central carbon metabolism in cancer
2-Hydroxyethanesulfonate 1.81057 7.84180 Up Taurine and hypotaurine metabolism
Lysine 1.78813 0.50828 Down Protein digestion and absorption
3-Dehydroquinate 1.77531 16.16455 Up Biosynthesis of amino acids
5-Hydroxy-N-formylkynurenine 1.72359 0.002373 Down Tryptophan metabolism
Cortol 1.70001 0.53788 Down Steroid hormone biosynthesis
Betaine 1.69081 0.66840 Down ABC transporters
LysoPC (20:3 [5Z, 8Z, 11Z]) 1.63686 0.52152 Down Choline metabolism in cancer
L-Tyrosine 1.62937 0.56811 Down Cocaine addiction
L-Glutamic acid 1.55062 2.70260 Up Cocaine addiction
Linoleic acid 1.54579 0.63493 Down Linoleic acid metabolism
D-1-Piperideine-2-carboxylic acid 1.52247 0.40154 Down Lysine degradation
cis-Aconitic acid 1.52231 1.59038 Up Citrate cycle
Homovanillic acid 1.49443 35.46233 Up Tyrosine metabolism
LysoPC (20:5 [5Z, 8Z, 11Z, 14Z, 17Z]) 1.49287 0.28354 Down Choline metabolism in cancer
Pyruvic acid 1.41018 0.08689 Down HIF-1 signaling pathway, citrate cycle
4-Hydroxycyclophosphamide 1.37597 773.31431 Up Drug metabolism – cytochrome P450
LysoPC (16:1 [9Z]) 1.35209 0.40768 Down Choline metabolism in cancer
Hydroxybenzoic acid 1.33573 48.97962 Up Phenylalanine metabolism
Androsterone glucuronide 1.29119 70.87835 Up Steroid hormone biosynthesis
L-Aspartic acid 1.28381 143.33270 Up Central carbon metabolism in cancer
Ascorbic acid 1.28257 34.16483 Up HIF-1 signaling pathway
Phytosphingosine 1.25514 0.09685 Down Sphingolipid metabolism
Oxoglutaric acid 1.22487 0.51611 Down HIF-1 signaling pathway
Ornithine 1.22003 0.43673 Down Arginine biosynthesis
Estrone glucuronide 1.15291 3,320.94099 Up Steroid hormone biosynthesis
N-Acetyl-L-aspartic acid 1.14337 5.31335 Up Alanine, aspartate and glutamate metabolism
Hydroxyproline 1.12281 0.44768 Down Arginine and proline metabolism
Palmitic acid 1.11319 0.60753 Down Biosynthesis of unsaturated fatty acids
Dethiobiotin 1.08593 26.11047 Up Biotin metabolism



Plasma Metabonomic Profiling of 
Hemodialysis Patients

131Kidney Dis 2020;6:125–134
DOI: 10.1159/000505156

The KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) pathway enrichment analysis based on the 
changed metabolites showed that 47 biological path-
ways were significantly changed, and that these chang-
es were primarily linked to non-alcoholic fatty liver dis-
ease (NAFLD), choline metabolism in cancer, the fork-
head box O (FoxO) signaling pathway, and the 
hypoxia-inducible factor-1 (HIF-1) signaling pathway 
(Fig. 3). 

Discussion

A broad, untargeted, LC-QTOFMS-based profiling 
of plasma distinguished the MHD patients from the 
healthy controls successfully by using both PCA and 
OPLS-DA models. As seen in Figure 1, PCA shows an 
excellent separation of the MHD patients and healthy 
controls. We next turned our focus toward the identifi-
cation of those features that showed significant differ-
ences in levels between the MHD and healthy control 
sample sets. Sixty-three key metabolites (VIP score > 1) 
were significantly altered in plasma samples of MHD 
patients, involving several key metabolic pathways (all  
p < 0.05), including the NAFLD, choline metabolism in 
cancer, FoxO signaling pathway, and HIF-1 signaling 
pathway, and so on. 

In the kidney, renal fibrosis is a poor prognostic indi-
cator and represents a common final pathway in the de-
velopment of ESRD irrespective of the underlying cause. 
Morphologically, tubulointerstitial fibrosis is associated 
with tubular atrophy, glomerulosclerosis, interstitial in-
flammation, and loss of peritubular capillaries. Our data 
demonstrated that the FoxO and HIF-1 signaling path-
ways were significantly changed in MHD patients, which 
are all involved in renal fibrosis. HIF-1 and HIF-2 are 
basic helix-loop-helix transcription factors that allow 
cells to survive in a low oxygen environment by regulat-

ing energy metabolism, vascular remodeling, erythro-
poiesis, cellular proliferation, and apoptosis. Recent 
studies suggest that HIF activation promotes epithelial to 
mesenchymal transition (EMT) and renal fibrogenesis. 
Hypoxia plays an active role in the progression of fibrot-
ic kidney disease and identifies epithelial HIF-1 as an ox-
ygen-regulated transcription factor that is capable of 
promoting fibrogenesis through increased expression of 
extracellular matrix modifying factors, lysyl oxidase 
genes, and by facilitating EMT [13]. On the other hand, 
pharmacological targeting of HIF-α degradation by pro-
lyl-hydroxylase inhibition increased serum epoetin lev-
els in humans and improved anemia of chronic disease 
and inflammation in patients and animal models [14–
16]. 

Medial vascular calcification is a common complica-
tion of CKD or ESRD. Mokas et al. [17] found that HIF-1, 
the key hypoxic transcription factor, was essential for en-
hanced vascular smooth muscle cell calcification in CKD-
relevant conditions. Elevated inorganic phosphate rap-
idly activates HIF-1, even in normal oxygenation, and the 
enhance stimulates vascular smooth muscle cell osteo-
genic transdifferentiation and calcification.

Recent research showed that FoxOs exerted redun-
dant effects and divergent functions in many diseases, 
including fibrosis, CVDs, and cancer EMT. FoxO is a 
potent transcription factor for TGF-β-induced regula-
tory T cells, which are central to TGF-β anti-inflamma-
tory function [18]. Hypoxia-activated HIF-1α contrib-
uted to FoxO3 activation and functioned to protect the 
kidneys, as tubular deletion of HIF-1α decreased hypox-
ia-induced FoxO3 activation and resulted in more se-
vere tubular injury and interstitial fibrosis following 
ischemic injury. Strikingly, tubular deletion of FoxO3 
during the AKI to CKD transition aggravated renal 
structural and functional damage, leading to a more 
profound CKD phenotype [19]. Additionally, FoxO ex-
pression progressively increased in aging human and 

Compound VIP FC Change Pathway name

Indolelactic acid 1.06475 4.19283 Up Tryptophan metabolism
Serotonin 1.04025 0.057756 Down Bile secretion
Acetic acid 1.00395 20.11659 Up Glycosaminoglycan biosynthesis – heparan sulfate/ 

heparin

MHD, maintenance hemodialysis; VIP, variable importance for projection; FC, fold change (MHD patients vs. healthy controls); NAFLD, non-alcohol-
ic fatty liver disease.

Table 2 (continued)
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mouse brains. The nervous system-specific deletion of 
FoxO transcription factors in mice accelerates aging-re-
lated axonal tract degeneration. FoxOs exert both detri-
mental and protective effects on neurodegenerative dis-
eases [20]. More work is required before FoxO proteins 
can be considered clinically valuable therapeutic targets 
for reversing renal fibrosis and ESRD-associated comor-
bidities.

KEGG pathway enrichment analysis based on the 
changed metabolites demonstrated that NAFLD path-
ways were significantly changed in MHD patients. The 
presence and severity of NAFLD has been related to the 
incidence and stage of CKD independently of tradition-
al CKD risk factors; conversely, the presence of CKD 

increases overall mortality in patients with NAFLD 
compared with the general population [21, 22]. Further 
supporting a pathogenic link between NAFLD and 
CKD, non-alcoholic steatohepatitis-related cirrhosis 
carries a higher risk of renal failure than other etiologies 
of cirrhosis, is an increasing indication for simultaneous 
liver-kidney transplantation, and is an independent risk 
factor for kidney graft loss and CVD [23, 24]. Collec-
tively, these data suggest that common pathogenic 
mechanisms underlie both liver and kidney injury. 
Therefore, additional research is needed to explore the 
possible mechanisms. 

Additionally, our KEGG analysis suggested that the 
choline metabolism in cancer metabolic pathways was al-
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tered significantly in MHD patients, involving the key 
metabolites GPC. Besides, GPC in the plasma of healthy 
controls was 2-fold higher than that in the plasma of 
MHD patients, which has been reported to be correlated 
with neurodegeneration, and could improve metabolic 
health [25]. GPC is an orthomolecular water-phase, non-
membrane phospholipid. It has been clinically validated 
in 21 clinical trials for attention, immediate recall, and 
other cognitive functions, as well as for Alzheimer’s and 
vascular dementia, stroke recovery, and recovery from 
brain trauma. Although not directly incorporated into 
cell membranes, GPC is readily coupled with the omega-3 
fatty acid docosahexaenoic acid (DHA) by enzymes spe-
cialized for this task. The resulting phosphatidylcholine 
molecules containing DHA are highly fluidizing for the 
new nerve cell membrane. Little energy is required for 
this conversion, making it highly facile in the brain [26]. 
Also, GPCs are believed to protect the tissues from urea 
by stabilizing macromolecules, and thus counteracting 
the actions of urea [27], while high concentrations of urea 
are present in the mammalian renal medulla. Urea gener-
ally destabilizes biological macromolecules, altering their 
structure and function. Such effects are expected to be 
deleterious. 

Our study has some limitations that should be consid-
ered. Firstly, only a limited number of MHD patients and 
healthy control plasma samples were examined here. In 
addition, MHD patients differed from controls in terms 
of age, cardiovascular history, and blood pressure and 
treatment. More subjects need to be involved in our fu-
ture study to discover novel metabolomics biomarkers 
and signaling pathways of MHD patients.

In conclusion, our study demonstrates striking differ-
ences from metabolomics studies between MHD patients 
and healthy controls, and may provide clues to potential 
functional pathways and valuable pharmacological tar-
gets for reversing renal fibrosis and ESRD-associated co-
morbidities.
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