Skip to main content
. 2020 Mar;8(5):207. doi: 10.21037/atm.2020.01.107

Table S1. Ability of traditional PET: probability-based, and textural features in differentiating tumors with tumor regression score 4 from those with other scores.

Classification Index AUC P value 95% CI
LB UB
Classical PET feature SUVmax 0.55 0.446 0.436      0.665
Mean 0.579 0.234 0.465      0.693
Median 0.578 0.239 0.461      0.695
Variance 0.585 0.197 0.471      0.7
Std. Dev. 0.585 0.197 0.471      0.7
Skewness 0.4 0.13 0.287      0.512
Kurtosis 0.353 0.027 0.238      0.469
25th percentile 0.582 0.217 0.466      0.697
75th percentile 0.579 0.23 0.465      0.694
Peak 0.553 0.422 0.441 MTV 0.665
MTV 0.321 0.007 0.202      0.439
TLGmax 0.374 0.057 0.259      0.489
TLGmean 0.388 0.09 0.273      0.503
TLGpeak 0.383 0.077 0.269      0.497
Total 0.388 0.09 0.273      0.503
Probability based feature Entropy 0.32 0.007 0.202      0.438
Energy 0.679 0.007 0.562      0.797
DiversityD2 0.321 0.007 0.203      0.438
DiversityD3 0.321 0.007 0.204      0.439
DiversityD4 0.324 0.008 0.206      0.442
Gray Level Co-occurrence Matrix (GLCM) Autocorrelation 0.676 0.008 0.555      0.798
ContrastG 0.647 0.026 0.51      0.785
Correlation 0.375 0.059 0.236      0.514
Cluster prominence 0.544 0.51 0.406      0.681
Cluster shade 0.445 0.406 0.328      0.561
Dissimilarity 0.651 0.022 0.518      0.785
Energy 0.603 0.12 0.473      0.733
Entropy 0.38 0.071 0.256      0.505
Homogeneitym 0.314 0.005 0.209      0.419
Homogeneityp 0.322 0.007 0.215      0.429
Maximum probability 0.565 0.329 0.436      0.693
Sum of squares variance 0.678 0.007 0.555      0.802
Sum average 0.682 0.006 0.562      0.802
Sum variance 0.682 0.006 0.561      0.803
Sum entropy 0.415 0.2 0.292      0.538
Difference variance 0.647 0.026 0.51      0.785
Difference entropy 0.505 0.944 0.373      0.636
Information measure of correlation 1 0.299 0.002 0.178      0.42
Information measure of correlation 2 0.683 0.006 0.563      0.803
Inverse difference normalized 0.316 0.005 0.209      0.422
Inverse difference moment normalized 0.331 0.011 0.218      0.445
Gray-Level Run Length Matrix (GLRLM) SRE 0.686 0.005 0.569      0.804
LRE 0.32 0.006 0.216      0.423
GLNUr 0.292 0.002 0.176      0.407
RP 0.357 0.03 0.243      0.47
RLNU 0.324 0.008 0.204      0.443
LGRE 0.314 0.005 0.188      0.441
HGRE 0.676 0.008 0.558      0.795
SRLGE 0.316 0.005 0.188      0.443
SRHGE 0.683 0.006 0.564      0.803
LRLGE 0.285 0.001 0.159      0.411
LRHGE 0.645 0.028 0.523      0.767
Neighborhood Gray-Level Different Matrix (NGLDM) Coarseness 0.708 0.002 0.598      0.819
ContrastN 0.687 0.005 0.566      0.808
Busyness 0.285 0.001 0.171      0.399
Complexity 0.683 0.006 0.559      0.807
Strength 0.658 0.017 0.539      0.777
Gray-Level Zone Length Matrix (GLSZM) SZE 0.638 0.038 0.509      0.766
LZE 0.305 0.003 0.191      0.419
GLNUz 0.319 0.006 0.199      0.439
ZP 0.466 0.611 0.354      0.579
ZLNU 0.356 0.03 0.233      0.48
LGZE 0.389 0.093 0.26      0.518
HGZE 0.652 0.022 0.534      0.769
SZLGE 0.496 0.948 0.362      0.63
SZHGE 0.613 0.087 0.492      0.734
LZLGE 0.257 <0.001 0.138      0.376
LZHGE 0.49 0.877 0.376      0.604

MTV, metabolic tumor volume; TLG, total lesion glycolysis; SRE, short-run emphasis; LRE, long-run emphasis; LGRE, low gray-level run emphasis; HGRE, high gray-level run emphasis; SRLGE, short-run low gray-level emphasis; SRHGE, short-run high gray-level emphasis; LRLGE = long-run low gray-level emphasis; LRHGE, long-run high gray-level emphasis; GLNUr, gray-level nonuniformity for run; RLNU, run-length nonuniformity; RP, run percentage; SZE, short-zone emphasis; LZE, long-zone emphasis; LGZE, low gray-level zone emphasis; HGZE, high gray-level zone emphasis; SZLGE, short-zone low gray-level emphasis; SZHGE, short-zone high gray-level emphasis; LZLGE, long-zone low gray-level emphasis; LZHGE, long-zone high gray-level emphasis; GLNUz, gray-level nonuniformity for zone; ZLNU, zone length nonuniformity; ZP, zone percentage. Definition of 25th percentile: The 25th percentile is a measurement of relative standing within SUVs of an MTV, indicating that 25% of all SUVs are below the MTV. The same model is applied for the 75th percentile. Definition of peak: The average of SUVmax and SUVs of 26 adjacent voxels. Total: Sum of all SUVs within the MTV. DiversityDn=(i=1)1(1n) where Pi indicating the occurrence probability of discretized SUVs within MTV assign to bin.