Table S1. Ability of traditional PET: probability-based, and textural features in differentiating tumors with tumor regression score 4 from those with other scores.
| Classification | Index | AUC | P value | 95% CI | |
|---|---|---|---|---|---|
| LB | UB | ||||
| Classical PET feature | SUVmax | 0.55 | 0.446 | 0.436 | 0.665 |
| Mean | 0.579 | 0.234 | 0.465 | 0.693 | |
| Median | 0.578 | 0.239 | 0.461 | 0.695 | |
| Variance | 0.585 | 0.197 | 0.471 | 0.7 | |
| Std. Dev. | 0.585 | 0.197 | 0.471 | 0.7 | |
| Skewness | 0.4 | 0.13 | 0.287 | 0.512 | |
| Kurtosis | 0.353 | 0.027 | 0.238 | 0.469 | |
| 25th percentile | 0.582 | 0.217 | 0.466 | 0.697 | |
| 75th percentile | 0.579 | 0.23 | 0.465 | 0.694 | |
| Peak | 0.553 | 0.422 | 0.441 | MTV 0.665 | |
| MTV | 0.321 | 0.007 | 0.202 | 0.439 | |
| TLGmax | 0.374 | 0.057 | 0.259 | 0.489 | |
| TLGmean | 0.388 | 0.09 | 0.273 | 0.503 | |
| TLGpeak | 0.383 | 0.077 | 0.269 | 0.497 | |
| Total | 0.388 | 0.09 | 0.273 | 0.503 | |
| Probability based feature | Entropy | 0.32 | 0.007 | 0.202 | 0.438 |
| Energy | 0.679 | 0.007 | 0.562 | 0.797 | |
| DiversityD2 | 0.321 | 0.007 | 0.203 | 0.438 | |
| DiversityD3 | 0.321 | 0.007 | 0.204 | 0.439 | |
| DiversityD4 | 0.324 | 0.008 | 0.206 | 0.442 | |
| Gray Level Co-occurrence Matrix (GLCM) | Autocorrelation | 0.676 | 0.008 | 0.555 | 0.798 |
| ContrastG | 0.647 | 0.026 | 0.51 | 0.785 | |
| Correlation | 0.375 | 0.059 | 0.236 | 0.514 | |
| Cluster prominence | 0.544 | 0.51 | 0.406 | 0.681 | |
| Cluster shade | 0.445 | 0.406 | 0.328 | 0.561 | |
| Dissimilarity | 0.651 | 0.022 | 0.518 | 0.785 | |
| Energy | 0.603 | 0.12 | 0.473 | 0.733 | |
| Entropy | 0.38 | 0.071 | 0.256 | 0.505 | |
| Homogeneitym | 0.314 | 0.005 | 0.209 | 0.419 | |
| Homogeneityp | 0.322 | 0.007 | 0.215 | 0.429 | |
| Maximum probability | 0.565 | 0.329 | 0.436 | 0.693 | |
| Sum of squares variance | 0.678 | 0.007 | 0.555 | 0.802 | |
| Sum average | 0.682 | 0.006 | 0.562 | 0.802 | |
| Sum variance | 0.682 | 0.006 | 0.561 | 0.803 | |
| Sum entropy | 0.415 | 0.2 | 0.292 | 0.538 | |
| Difference variance | 0.647 | 0.026 | 0.51 | 0.785 | |
| Difference entropy | 0.505 | 0.944 | 0.373 | 0.636 | |
| Information measure of correlation 1 | 0.299 | 0.002 | 0.178 | 0.42 | |
| Information measure of correlation 2 | 0.683 | 0.006 | 0.563 | 0.803 | |
| Inverse difference normalized | 0.316 | 0.005 | 0.209 | 0.422 | |
| Inverse difference moment normalized | 0.331 | 0.011 | 0.218 | 0.445 | |
| Gray-Level Run Length Matrix (GLRLM) | SRE | 0.686 | 0.005 | 0.569 | 0.804 |
| LRE | 0.32 | 0.006 | 0.216 | 0.423 | |
| GLNUr | 0.292 | 0.002 | 0.176 | 0.407 | |
| RP | 0.357 | 0.03 | 0.243 | 0.47 | |
| RLNU | 0.324 | 0.008 | 0.204 | 0.443 | |
| LGRE | 0.314 | 0.005 | 0.188 | 0.441 | |
| HGRE | 0.676 | 0.008 | 0.558 | 0.795 | |
| SRLGE | 0.316 | 0.005 | 0.188 | 0.443 | |
| SRHGE | 0.683 | 0.006 | 0.564 | 0.803 | |
| LRLGE | 0.285 | 0.001 | 0.159 | 0.411 | |
| LRHGE | 0.645 | 0.028 | 0.523 | 0.767 | |
| Neighborhood Gray-Level Different Matrix (NGLDM) | Coarseness | 0.708 | 0.002 | 0.598 | 0.819 |
| ContrastN | 0.687 | 0.005 | 0.566 | 0.808 | |
| Busyness | 0.285 | 0.001 | 0.171 | 0.399 | |
| Complexity | 0.683 | 0.006 | 0.559 | 0.807 | |
| Strength | 0.658 | 0.017 | 0.539 | 0.777 | |
| Gray-Level Zone Length Matrix (GLSZM) | SZE | 0.638 | 0.038 | 0.509 | 0.766 |
| LZE | 0.305 | 0.003 | 0.191 | 0.419 | |
| GLNUz | 0.319 | 0.006 | 0.199 | 0.439 | |
| ZP | 0.466 | 0.611 | 0.354 | 0.579 | |
| ZLNU | 0.356 | 0.03 | 0.233 | 0.48 | |
| LGZE | 0.389 | 0.093 | 0.26 | 0.518 | |
| HGZE | 0.652 | 0.022 | 0.534 | 0.769 | |
| SZLGE | 0.496 | 0.948 | 0.362 | 0.63 | |
| SZHGE | 0.613 | 0.087 | 0.492 | 0.734 | |
| LZLGE | 0.257 | <0.001 | 0.138 | 0.376 | |
| LZHGE | 0.49 | 0.877 | 0.376 | 0.604 | |
MTV, metabolic tumor volume; TLG, total lesion glycolysis; SRE, short-run emphasis; LRE, long-run emphasis; LGRE, low gray-level run emphasis; HGRE, high gray-level run emphasis; SRLGE, short-run low gray-level emphasis; SRHGE, short-run high gray-level emphasis; LRLGE = long-run low gray-level emphasis; LRHGE, long-run high gray-level emphasis; GLNUr, gray-level nonuniformity for run; RLNU, run-length nonuniformity; RP, run percentage; SZE, short-zone emphasis; LZE, long-zone emphasis; LGZE, low gray-level zone emphasis; HGZE, high gray-level zone emphasis; SZLGE, short-zone low gray-level emphasis; SZHGE, short-zone high gray-level emphasis; LZLGE, long-zone low gray-level emphasis; LZHGE, long-zone high gray-level emphasis; GLNUz, gray-level nonuniformity for zone; ZLNU, zone length nonuniformity; ZP, zone percentage. Definition of 25th percentile: The 25th percentile is a measurement of relative standing within SUVs of an MTV, indicating that 25% of all SUVs are below the MTV. The same model is applied for the 75th percentile. Definition of peak: The average of SUVmax and SUVs of 26 adjacent voxels. Total: Sum of all SUVs within the MTV. where Pi indicating the occurrence probability of discretized SUVs within MTV assign to bin.