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ABSTRACT: G protein-coupled receptors (GPCRs) are inten-
sively studied due to their therapeutic potential as drug targets.
Members of this large family of transmembrane receptor proteins
mediate signal transduction in diverse cell types and play key roles
in human physiology and health. In 2013 the research consortium
GLISTEN (COST Action CM1207) was founded with the goal of
harnessing the substantial growth in knowledge of GPCR structure
and dynamics to push forward the development of molecular
modulators of GPCR function. The success of GLISTEN, coupled
with new findings and paradigm shifts in the field, led in 2019 to
the creation of a related consortium called ERNEST (COST Action CA18133). ERNEST broadens focus to entire signaling
cascades, based on emerging ideas of how complexity and specificity in signal transduction are not determined by receptor−ligand
interactions alone. A holistic approach that unites the diverse data and perspectives of the research community into a single
multidimensional map holds great promise for improved drug design and therapeutic targeting.
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The importance of research on G protein-coupled receptor
(GPCR) signal transduction is known and appreciated by

most in the biomedical field. Over one-third of all prescribed
drugs target a GPCR,1 which is not surprising considering the
substantial number of GPCRs expressed in the human body
and their prevalence in mediating signal transduction in nearly
every cell. Since the first crystal structure of a GPCR2 was
published in the year 2000, there has been intense activity
elucidating how these receptors work on the molecular level.
The field has benefited immensely from a blossoming of
structural data on different GPCRs in various states of
activation, bound to different types of ligands and/or to
intracellular binding partners.3−5 Currently, the “resolution
revolution”6 in cryo-electron microscopy is rapidly producing
unprecedented insights into the structures of GPCRs in native-
like and functionally relevant states and complexes.7,8

Simultaneous to these advancements, strategies for struc-
ture-based GPCR drug design are moving in an exciting new
direction, based on the discovery that different ligands can
bind to the same receptor yet stimulate the association of
different effector proteins to different extents. These concepts
of biased agonism and the broadly more general functional
selectivity (discussed more below) open significant possibilities

for creating more effective drugs that have desired therapeutic
effects while avoiding deleterious side-effects. Indeed, examples
of such biased GPCR ligands for improved treatment of
various diseases have already been identified and tested in
clinical trials.9 The potential of signaling pathway-specific
drugs to improve human health worldwide cannot be
understated. Despite this fact, as a field we still know very
little about the mechanisms governing ligand bias and
functional selectivity. To explain these phenomena, multiple
approaches that encompass a wider perspective including
information on where and when signaling events take place
while taking into account the unique environment inside
dif ferent cell typesis required. Moreover, recent studies cast
doubt on key established dogmas underlying ligand bias and
functional selectivity. As a field, we stand at a critical turning
point and must re-evaluate our assumptions and seek
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innovative and interdisciplinary approaches to understand the
mechanisms governing GPCR signal transduction. Our efforts
at designing better drugs and therapeutics will be severely
hampered until we do so.
In this perspective piece, we introduce the recently launched

COST (1) Action CA18133 “European Research Network on
Signal Transduction” (ERNEST), the primary goal of which is
to address these challenges faced by the research community.
We describe the origins of ERNEST and how these roots led
to a more holistic approach to understand GPCR signal
transduction. We outline the specific objectives of ERNEST
and how these will be met by the large and diverse community
of researchers that compose the Network. We discuss the
current state of knowledge in the field, the major unresolved
questions, and our reasoning why our planned approach holds
the best promise for untangling these issues. Finally, we
provide an outlook of the anticipated long-lasting impacts of
ERNEST on science and society.

■ GLISTEN AND THE DAWN OF ERNEST
Launched in 2013, the COST Action CM1207 GLISTEN
(GPCR-Ligand Interactions, Structures, and Transmembrane
Signaling: a European Research Network) was dedicated to
deepening the understanding of GPCRs, especially with regard
to the receptor activation mechanism, ligand binding, and
effects of the membrane and other interaction partners on
GPCR signaling. A central motivation of GLISTEN was to
utilize this information to identify and design chemical
modulators of GPCR signaling. In line with this focus, many
pharmacologists, structure-based drug designers, and computa-
tional and medicinal chemists, joined the network early on. As
the network grew, membership became more diverse as those
with other perspectives in structural and cell biology,
(patho)physiology, and translational medicine became aware
of GLISTEN. Recruitment and diversification were made
possible by decentralization of semiannual meeting organ-
ization. Local organizers were free to designate the thematic
focus of their respective meetings according to their own
research interests and perspectives. Hence, a wide variety of
topics in the GPCR field was covered in the course of eight
GLISTEN meetings. The trajectory went from a focus on
computational methods at the inaugural meeting in Warsaw
(2013),10 followed by meetings with emphasis on biophysics,
structural biology, and drug discovery in Barcelona (2014),11

Budapest (2014),12 and Allschwil (2015),13 to meetings
focused on medicinal chemistry and pharmacology in
Amsterdam (2015),14 Erlangen (2016),15 and Prague
(2016)16 to more (patho)physiological aspects at the last
meeting in Porto, Portugal (2017).17 GLISTEN meetings were
put together by enthusiastic local organizers representing
different academic institutes and companies in Europe (see
Acknowledgments). Notably, several industry partners were
closely involved in scientific program development and hosting
companies to stimulate and integrate academic and biotech/
pharmaceutical drug discovery cooperation in GLISTEN.
GPCR research training was further advanced by a series of
workshops and training schools, including GPCR Computa-
tional Chemistry Workshops in Warsaw (2013) (Computer-
Aided Drug Design, Molecular Dynamics, Protein Homology
Modeling, Structural Chemogenomics and Chemoinfor-
matics), GPCRdb Structural Bioinformatics tutorials at every
GLISTEN meeting from 2013 to 2017, a training school on
GPCR Fragment-Based Drug Discovery (FBDD), and

Molecular Pharmacology in Budapest (2014), a GLISTEN-
Lorentz Workshop in Leiden (2014) on in vitro to in vivo
GPCR biology, a workshop on GPCR Research Valorization in
Amsterdam (2015), and contributions of GLISTEN research-
ers at the Biophysics Training School in Croatia in 2016.18

The eventual composition of the network (more than 200
research groups from 31 countries) fulfilled the main purpose
of GLISTEN to connect researchers and thereby enable cross-
disciplinary cooperation. In addition, information exchange
was promoted by cross-border exchanges of investigators
between laboratories and training schools that connected
experts and novices. The strategies employed by GLISTEN in
its activities were highly successful at fostering collaborative
research, in particular between experimental and theoretical
groups, and ultimately provided valuable examples for similar
consortia. Many leading experts of the GPCR field in Europe
and worldwide, as well as the key pharmaceutical companies,
were regular participants at GLISTEN events. One significant
indicator of the importance of GLISTEN to the research
community was the popularity of the semiannual meetings.
Meetings were often oversubscribed within hours of the
opening of online registration, most notably for the meeting in
Erlangen that featured Nobel laureate Brian Kobilka as keynote
speaker.
GLISTEN formally came to an end in 2017, yet its many

successes are still being realized. First, more than 65 joint
publications stemming from collaborations established within
the network have been released. Notable GLISTEN
publications are cited here.19−24 In addition, a multitude of
joint grants for research funding was acquired by network
members, many of which will continue to produce significant
scientific findings in the coming years (e.g., Oncornet 2.025 and
PSYBIAS26,27). Technology and know-how were spread by
GLISTEN-sponsored exchanges of investigators between
research groups in different countries and training schools,
and the impact of this dissemination will continue to benefit
diverse groups and individuals for a long time to come.
Relatedly, GLISTEN positively influenced the careers of many
early career investigators, which will serve to strengthen the
future scientific output of the field. Last but certainly not least,
GLISTEN pushed the development and use of GPCR-focused
web-based databases and tools for the benefit of the
international research community. GPCRdb, which was
originally headed by Gert Vriend at the EMBL in Heidelberg,
Germany,28 relocated to the group of David Gloriam at the
University of Copenhagen, Denmark in 2013. Several
investigator-exchanges and the contributions of GLISTEN
members helped this database to grow to contain GPCR
reference data, visualization/analysis suites, and tools to design
new experiments.1,21,29−31−33 GLISTEN also spurred the
creation of GPCRmd, an online repository and visualization
platform for molecular dynamics (MD) simulation data and
their analysis. This database arose from the need to organize
and standardize this information including experimental
setups/protocols and to provide intuitive analysis tools. By
these means, GPCRmd promotes transparency, consistency,
and reproducibility in the field of GPCR dynamics and also
facilitates data exchange between GPCR scientists from
different disciplines.24

Well before the official end of COST funding, the
inclusiveness and influence of GLISTEN drove an intense
community-wide desire to evolve a new COST Action. At the
same time, developments in the field made clear that in order
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to meet current challenges, a wider perspective must be taken
(explained in detail below). Hence, ERNEST came into
existence, continuing the excellent tradition of GLISTEN and
leading the field in an exciting new direction.

■ UNRESOLVED QUESTIONS IN SIGNAL
TRANSDUCTION

To survive and reproduce, all living cells must be able to sense
their environments and respond in an appropriate way. Nature
accomplishes this task by signal transduction, the process of
passing external stimuli into and through the cell in order to
induce cellular responses. Every signaling pathway essentially
consists of a series of macromolecular interactions, and the
signal is carried through the chain of interactions by
biochemical events (e.g., changes in protein structure,
association or dissociation of small molecules, or chemical
modification of proteins). Most signaling pathways consist of a
transmembrane receptor protein that binds an extracellular
ligand (e.g., small molecule, peptide, or ion). This event
triggers the binding of intracellular effector proteins that then
produce second messengers, usually small molecules or protein
modifications, which activate the next level of effector proteins.
Each molecular interaction along a pathway can be considered
a node at which the signal can be modulated and amplified,
and different signaling cascades can consist of any number of
nodes.
The spectrum of stimuli encountered by cells is both sizable

and diverse, as is the number and type of cellular responses
elicited by these stimuli. Yet, remarkably, signal transduction
systems use a relatively limited repertoire of intracellular
signaling components. This small number of effector proteins
nevertheless enables a cellular signaling apparatus that is
flexible and versatile. Versatility is achieved by modulation at
the molecular, spatial, and temporal levels of the macro-
molecular interactions at each node in the pathway. In effect, a
limited number of nodes, each with several alternative
downstream pathways, can give rise to a vast number of
distinct signaling pathways. Although versatile and complex,
the biological role of signal transduction demands specificity
and precision in signaling. This is, in part, achieved through a
large number of receptors (about 1000 GPCRs34), each of
which binds only one or a few endogenous ligands.
On the atomic level, the receptor is a dynamic structure that

exists in different conformations or states, and ligand binding
enhances the presence of some receptor states over others.
States derived from experimental structural determination
techniques are usually described as either active or inactive,
depending on whether they can couple to effectors or not.
Moreover, ligands can selectively stabilize receptor states that
preferentially interact with certain primary effectors over
others, a concept called biased agonism. Put another way,
different biased ligands can stimulate distinct signaling
pathways with different efficacies, a concept also referred to
as functional selectivity. Biased agonists differentially influence
the conformational dynamics of GPCRs,35−38 yet it is not fully
understood how these signals control interactions with effector
proteins and their downstream cellular functions.
The influence of molecular, temporal, and spatial factors is

widely appreciated in the field and actively discussed.39−43

However, the underlying mechanisms by which these factors
and the cellular environment modulate signal transduction
remain unexplained. A few recent studies have approached this
gap in knowledge by using experimental or computational

systems.44,45 However, in order to progress as a field toward
molecular modulators that have predictable and reproducible
effects in living cells (and eventually patients), the field
requires a detailed map of signal transduction that takes into
account all known factors that influence pathway selectivity.
To build such a holistic multidimensional map, diverse types of
data must be integrated in a way to allow mechanistic insight
and formulation of general principles that govern signal
transduction modulation in different cell types. This ambitious
endeavor, which is out of reach for individual research groups
and smaller research consortia, now forms a key objective of
ERNEST. The network is in a unique position to harness the
diverse data and expertise of hundreds of researchers in
different disciplines.
There is an urgent need for a holistic mapping of signal

transduction. Signal transduction plays a ubiquitous and critical
role in normal physiology, and aberrations in pathways
controlled by GPCRs lead to disease. Currently many research
groups are unravelling signaling pathways that contribute to
different disease states, and there is great excitement for the
promise of biased ligands to treat these diseases more
effectively and with fewer side effects. For example, ligands
that promote sustained G protein signaling from β-adrenergic
and angiotensin receptors lead to deleterious effects on the
heart, while those that stimulate arrestin activity bring many
cardioprotective effects.46 In the case of the dopamine D2
receptor, drug candidates for the treatment of schizophrenia
are being developed that selectively antagonize arrestin activity
(leading to antipsychotic effects) while still promoting G
protein signaling and thus avoiding motoric side effects.47−49

For the opioid receptors, many academic research groups and
companies have sought biased agonists, based on the belief
that analgesic effects are supported by G protein-signaling,
while unpleasant side-effects (e.g., respiratory depression and
constipation) arise from arrestin-mediated effects.50,51 A few
such G protein-biased agonists have shown promise as
potential drug candidates.50,52 However, recent publications
cast doubt on whether some of these drug candidates are
actually biased,53,54 and moreover, on whether arrestin activity
at opioid receptors is responsible for side-effects.55,56 The
developing controversies in biased agonism at opioid receptors
illustrate our significant gaps in knowledge in GPCR signal
transduction,57,53 often exacerbated by inconsistent or
incorrectly applied quantitative pharmacology,58,59 that under-
mine efforts to translate candidate drugs into the clinic.60

■ OBJECTIVES OF ERNEST
The main purpose of ERNEST is to establish and support a
diverse network of signal transduction investigators through
regular meetings, training schools, cross-border research group
exchanges, and other dissemination activities. ERNEST
promotes communication, knowledge exchange, and cooper-
ation between scientists from different training levels,
disciplines, institutions, and countries to address unresolved
questions in signal transduction. Specific points to be
addressed are described below.

Clarification of Biased Agonism and Functional
Selectivity. The ability of certain ligands to elicit distinct
cellular responses is broadly referred to as functional
selectivity, the first determinate of which is the receptor−
ligand interaction. Biased agonism, where certain GPCR
conformations are preferentially stabilized that recruit certain
effector proteins, can certainly influence the functional
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selectivity of a ligand. However, many other factors have
significant influence over the signaling outcome, including
allosteric modulation, membrane environment, crosstalk,
intracellular location, and cell type, among others.58 Biased
agonism at GPCRs, and its specific influence on functional
selectivity, is widely discussed in the field.59,61−63 However,
there is much confusion about the precise definition of biased
agonism and how it relates to functional selectivity. The field
requires community-wide accepted methods to assess and
report ligand bias in GPCR signaling, and to distinguish
signaling bias (i.e., functional selectivity) from bias in terms of
preferential receptor coupling to intracellular proteins. For
example, most studies report bias by comparing the relative
abilities of different ligands to stimulate activation of different
G proteins and/or arrestin recruitment. Since these events are
measured experimentally in different ways, often using indirect
readouts at different time points and in different cell types,
clear conclusions and comparisons to other studies are neither
possible nor sound. Another fundamental issue is the choice of
reference ligands for each GPCR, and whether endogenous
ligands should preferentially be used as reference, since they
themselves might be biased. Moreover, the widely accepted
paradigm of arrestin as a GPCR signal transducer in its own
right is being re-evaluated in recent publications,64−66 which
complicates the interpretation of “arrestin-biased” ligands.
ERNEST, in coordination with other authoritative organisa-
tions and groups, is addressing these issues by gathering
leading experts to constructively dissect the root issues from
their diverse perspectives and then publish collective strategies
for resolving discrepancies by suggesting best practices. In
addition, ERNEST will push the development of better
methods, technologies, and database resources for evaluating
biased agonism and, eventually, functional selectivity.
Multidimensional Signaling Map. As described above,

future development of signaling pathway-specific molecular
modulators is hindered by our incomplete understanding of
the complexities of GPCR-mediated signaling. ERNEST is
addressing this challenge by coordinating and supporting
development of a holistic multidimensional map of signal
transduction that will be comparable to previous and ongoing
efforts to map interactomes and signaling pathways with
respect to scale and level of detail,67−75 yet will be distinctive in
its focus on elucidating the mechanisms of biased agonism in
GPCR signal transduction. ERNEST has clear advantages for
accomplishing this ambitious task, namely a substantial
membership of diverse researchers and the ability to bring
the key players together to work in interdisciplinary
cooperation. Development of the signaling map is at present
ongoing and will proceed in three phases (Figure 1). First, the
data and expertise of all Network members will be curated,
catalogued, and (when possible) standardized with the help of
experts in data integration and database development. A
“blueprint” of all signaling pathways studied within the
Network will be generated, thereby allowing the identification
of the pathways containing a sufficient amount of validated
data (as well as highlighting gaps in information that need to
be addressed) for the development of a comprehensive map.
ERNEST efforts will be guided by similar web-based resources
for mapping biomolecule interactions and signaling path-
ways.76,77 Next, a focused “Mapping Group” within ERNEST
will facilitate communication between data contributors and
the systems biologists who will eventually create the signaling
map. Communication between these participants will be

bidirectional. Systems biologists will receive and evaluate
substantial data from Network members and then give
feedback regarding the usefulness of the data and shortcomings
that need to be resolved. Again, the size and interdisciplinarity
of ERNEST affords the participating system biologists a rare
opportunity to optimize the necessary parameters (e.g.,
binding affinities, rates and kinetics of interactions, cellular
localization, cell type) for their computational modeling
approaches. Since signaling responses differ between different
organisms and also within different cell types (primary and
cultured), all gathered data will be labeled with great detail
according to their origin and environment. With enough data
at hand, signaling map(s) could be visualized for different cell
types and growth conditions. Comparison of signaling
pathways in different cell types may provide further
information on how signaling is modulated by cell-specific
characteristics, as well as indicate gaps in understanding.
Armed with this large and well-curated data set, the systems
biologists will develop signaling map(s). Multiple approaches
will be encouraged and supported by ERNEST by facilitating
joint grant applications. The envisioned signaling maps will
serve three main purposes: (1) Provide an overview of
available GPCR knowledge and missing links; (2) Visualize
and understand how molecular, spatiotemporal, and cell
environment factors control signal transduction; (3) Allow
prediction of which cellular responses are elicited by particular
GPCR ligands (depending on cell type). The predictive
capability of the signaling mapsof utmost importance for the
improved development of pathway-specific drugswill be
verified and further optimized by collaborations between map
developers, drug designers, and experimentalists within
ERNEST.

Pathway-Specific Chemical Modulators of Signal
Transduction. Biased ligands might provide improved
efficacy and/or side effect and safety profiles.78 A holistic
signaling map will obviously greatly advance the development
strategies of such ligands for therapeutically significant GPCR
targets. We anticipate that participating computational drug
designers will benefit from this map already in the early stages
of development, and ERNEST invites such researchers to join
the Network in order to stimulate progress. Besides drug
discovery efforts, the field requires chemical probes to study

Figure 1. Schematic overview of how ERNEST will develop a holistic
multidimensional map of GPCR-mediated signal transduction. See
text for full description.
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signal transduction, that is, specific inhibitors to determine
which pathways receptors signal through, or how different
signaling networks are interconnected. Such tools will benefit
the entire GPCR field, and their application will further assist
development and refinement of the signaling map.
An advantage of the large ERNEST network will be to

extend the characterization of developed molecular modulators
into animal models, both to study pharmacology and test the
treatment of disease states, and eventually to translate these
findings to patients in clinical trials. Such work will be carried
out by linking the drug developers to physiologists, clinicians
and those in industry.
Advanced Methods, Technologies, and Database

Resources. Over the last 10 years, research on signal
transduction has been propelled forward by new methods
and technologies spanning many disciplines. These include
advancements in structural biology (e.g., nanobodies for
stabilization of proteins and protein complexes, free-electron
lasers for poorly diffracting crystals, atomic resolution
improvements in cryo-electron microscopy), computational
biology (longer molecular dynamics simulations of complex
systems, advanced sampling methods, novel methodologies),
cell biology (visualization of cellular structures and proteins,
including super-resolution microscopy, biosensors, single-
molecule fluorescence), chemical biology (ad-hoc chemical
probes, for example, new radioligands and radiotracers,
covalent ligands, affinity-based probes, fluorescent probes,
allosteric and bitopic ligands) and systems biology (“omics”
and bioinformatics methods, such as deep-mutational scan-
ning, data mining, coevolution, and machine learning
approaches). In addition, the field has benefited immensely
from public web-based resources, such as GPCRdb and
GPCRmd. In order to advance all aspects of signal trans-
duction research, to promote international cooperation and to
facilitate its scientific objectives, ERNEST will further develop
and disseminate new methods and technologies. These goals
will be accomplished by (1) cataloguing known expertise
within the Network in an open platform for participants to find
collaborators; (2) identifying new methods and technologies
that are needed by the community through constructive
discussions at Network meetings; (3) pushing the develop-
ment of new methods and technologies by recruiting the right
experts and supporting them in grant applications; (4)
establishing “best practice” principles for new and existing
approaches by recruiting experts and encouraging publication
on this topic. ERNEST will foster further development of
GPCRdb and GPCRmd by enabling communication between
database users and developers regarding which features and
tools are needed by the research community.
Cooperation between Academia and Industry. The

potential of ERNEST to improve the design of signaling
pathway-specific drugs naturally attracts many researchers from
both academia and industry. On the basis of experience from
GLISTEN, the close inclusion and involvement of participants
from pharmaceutical and biotech companies will be valuable
for ERNEST and its goals. Pathway-specific chemical
modulators would be of interest due to the challenging target
validation and target engagement efforts in early phase drug
discovery programs. Advanced methods and technologies
developed in ERNEST might attract significant attention in
pharmaceutical and biotech settings. Cooperation between
industry and academic researchers will be fostered at dedicated
sessions on the topic at ERNEST meetings. Besides promoting

collaboration between researchers in academia and industry,
ERNEST will support cross-sectoral training of early career
investigators by sponsoring exchange programs between
academic groups and research-oriented companies.

■ WORKING GROUPS OF ERNEST
Network participants belong to one or more Working Groups
(WG), whose task is to coordinate members and their
expertise in order to achieve the objectives of the Network.
The focus areas of ERNEST are designed to be inclusive of all
researchers in the signal transduction field, from the molecular
to the cellular to the physiological perspectives, as well as those
focused on pushing forward new methods, technologies, and
resources for the advancement of research (Figure 2).

WG1: Macromolecular Interactions in Signaling Path-
ways. Signal transduction is mediated and dependent on
macromolecular interactions. The protein players in signal
transduction cascades are molecular machines, the conforma-
tions and movements of which are modulated by interactions
with small molecules and other biological macromolecules,
resulting in different signaling states. The main objective of
WG1 is elucidation of structural dynamics and molecular
interactions at the atomic level that give rise to signal
transduction, with emphasis on how the modulation of
interactions generates specificity in transmembrane receptor-
mediated signal transduction.

WG2: Biological Roles of Signal Transduction. The
biological importance of macromolecular interactions can only
be understood within the context of a living cell. The main
objective of WG2 is to connect the molecular interactions and
their subcellular localization to the cellular response and
(patho)physiological states. Signaling pathways must be
defined and characterized for different cell types and systems,
involving experts in different physiological systems (e.g.,
neurobiology, cardiovascular system, cancer, and immunity)

Figure 2. Thematic synergism between the Working Groups (WG) of
ERNEST. WGs 1, 2, and 3 form the core of scientific knowledge of
the Action, and the overlaps represent shared focus and potential for
interdisciplinary cooperation. WG4 will support the three core WGs
with new methods and technologies and also establish best practice
standards for their application. Output from the three core
workgroups (arrows out) will be incorporated by WG5 into database
resources for public dissemination, and WG5 will generate database
tools that will feedback into the three core WGs (arrows in). Figure
reprinted in part from COST Action CA18133 ERNEST Memo-
randum of Understanding with permission from the COST
Association.80
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within the Network. This activity has the benefit that new
biological model systems can be developed and new
therapeutic targets can be identified. Signaling pathways must
also be defined in order to understand how disease results from
imbalances in signal transduction.
WG3: Molecular Modulators of Signal Transduction.

WG3 will harness chemical space for modulation of protein
interactions and signaling. The core objective is the design and
optimization of molecules that interact with components of the
signal transduction cascade. The design of functionally
selective therapeutics will be possible through information
about relevant receptor conformations or residues provided by
WG1 and WG2. WG3 will also work closely with WG4
(advanced technologies and methods) and industry partners to
develop chemical probes to investigate cell signaling
mechanisms and to stabilize GPCR complexes with binding
partners for high-resolution structural analysis and hit/lead
compounds for drug discovery programs.
WG4: Advanced Methodologies and Technologies.

The main objective of WG4 is to promote advanced
methodologies and technologies within ERNEST, and to
coordinate sharing through collaboration. Included are novel
approaches that can help achieve the aims of the Network, as
well as repurposing of existing methods and technologies from
other fields of biomedical research. This WG will also establish
best practice principles for the application of commonly used
methodologies across groups within and beyond the Network.
These advancements in experimental approach and technology
will support the other WGs and overall objectives of ERNEST.
WG5: Public Web Resources. The key objective of WG5

is to structure, integrate, and make accessible different types of
data emanating from ERNEST and its members and the global
GPCR community. Online databases have greatly benefited the
signal transduction research community in the past decade.
WG5 will contribute key public online resources in this area for
reference data and analysis tools. Experts from all WGs will
design and use this resource and thus increase the
dissemination of their scientific results.

■ FUTURE OUTLOOK AND ANTICIPATED IMPACTS
TO THE FIELD AND BEYOND

ERNEST was created by a diverse group of researchers to
directly address and collectively resolve the major challenges
facing the field of GPCR-mediated signal transduction. The
support of the COST Association in the endeavor will prove
highly worthwhile, as several positive impacts of this Action are
anticipated. The large membership of the Network, including
most world-leading GPCR experts in Europe, united in close
cooperation with a holistic concept of how to best understand
signal transduction and harness this knowledge, is likely to
achieve many successes. In the short term, ERNEST will
stimulate collaborations between academic groups of quite
disparate fields, which will be brought together because of the
unprecedented holistic approach to understanding signal
transduction. In particular, collaborations between academia
and industry will be pushed by the new targeting possibilities
offered by the signaling map. In the long term, ERNEST will
advance this holistic view of signal transduction and establish
new paradigms for modulation of signaling pathways. The
detailed multidimensional map and database tools that will be
developed during the lifetime of the Network will be valuable
resources for the research community for many years to come.
In addition, new chemical modulators developed through

ERNEST activities will be invaluable for future research and as
starting points for drug development. These therapeutic agents
will have a significant and positive socio-economic impact by
improving human health worldwide.
ERNEST will have further long-term impact through the

cross-disciplinary training of early career investigators, as these
individuals will drive signal transduction research into the
future. ERNEST-sponsored cross-border exchanges will open
up career perspectives and opportunities for many researchers.
These exchanges will have further lasting benefits by spreading
technologies and knowhow throughout Europe and beyond.
Finally, ERNEST will promote diversity in the leadership ranks
of European research by promoting target groups, especially
women and scientists from less research-intensive countries. In
summary, the future looks promising for signal transduction
research, and time will tell the importance of being ERNEST.79
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■ ADDITIONAL NOTE
1The European Cooperation in Science and Technology
(COST), founded in 1971, funds research networks (COST
Actions) created by researchers themselves to address specific
and significant challenges in their respective fields. COST
supports networking activities, e.g. conferences, training
schools, international exchange of investigators between
research groups, dissemination, and communication activities.
COST Actions are highly interdisciplinary, open to new
participants throughout their lifetime of 4 years, and active in
promoting early career investigators and investigators from less
research-intensive countries. Hence, COST plays a key role in
stimulating international cooperation that pushes scientific
progress and benefits a diverse community of researchers. For
more information, see: https://www.cost.eu.
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(2019) GPCRmd uncovers the dynamics of the 3D-GPCRome.
bioRxiv, 839597.
(25) http://www.oncornet.eu/ (accessed 2020/03/02).
(26) https://www.era-learn.eu/network-information/networks/
neuron-cofund/call-for-proposals-for-transnational-research-projects-
on-mental-disorders/a-novel-paradigm-for-effective-and-safer-
treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-
polypharmacological-profile (accessed 2020/03/02).
(27) https://www.neuron-eranet.eu/_media/PSYBIAS_summary.
pdf (accessed 2020/03/02).
(28) Horn, F., Weare, J., Beukers, M. W., Horsch, S., Bairoch, A.,
Chen, W., Edvardsen, O., Campagne, F., and Vriend, G. (1998)
GPCRDB: an information system for G protein-coupled receptors.
Nucleic Acids Res. 26 (1), 275−9.
(29) Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsoe, K.,
Hauser, A. S., Vroling, B., Bojarski, A. J., Vriend, G., and Gloriam, D.
E. (2016) GPCRdb: an information system for G protein-coupled
receptors. Nucleic Acids Res. 44 (D1), D356−64.
(30) Flock, T., Hauser, A. S., Lund, N., Gloriam, D. E., Balaji, S., and
Babu, M. M. (2017) Selectivity determinants of GPCR-G-protein
binding. Nature 545 (7654), 317−322.
(31) Hauser, A. S., Chavali, S., Masuho, I., Jahn, L. J., Martemyanov,
K. A., Gloriam, D. E., and Babu, M. M. (2018) Pharmacogenomics of
GPCR Drug Targets. Cell 172 (1−2), 41−54 e19.

(32) Pandy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S.,
Harpsoe, K., Hauser, A. S., Bojarski, A. J., and Gloriam, D. E. (2018)
GPCRdb in 2018: adding GPCR structure models and ligands.
Nucleic Acids Res. 46 (D1), D440−D446.
(33) Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M.,
Flock, T., Hanson, M. A., Stevens, R. C., Deupi, X., and Gloriam, D. E.
(2019) An online resource for GPCR structure determination and
analysis. Nat. Methods 16 (2), 151−162.
(34) Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., and Mitaku, S.
(2002) Identification of G protein-coupled receptor genes from the
human genome sequence. FEBS Lett. 520 (1−3), 97−101.
(35) Rahmeh, R., Damian, M., Cottet, M., Orcel, H., Mendre, C.,
Durroux, T., Sharma, K. S., Durand, G., Pucci, B., Trinquet, E., Zwier,
J. M., Deupi, X., Bron, P., Baneres, J. L., Mouillac, B., and Granier, S.
(2012) Structural insights into biased G protein-coupled receptor
signalling revealed by fluorescence spectroscopy. Proc. Natl. Acad. Sci.
U. S. A. 109 (17), 6733−8.
(36) Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P.,
Vardy, E., McCorvy, J. D., Jiang, Y., Chu, M., Siu, F. Y., Liu, W., Xu,
H. E., Cherezov, V., Roth, B. L., and Stevens, R. C. (2013) Structural
features for functional selectivity at serotonin receptors. Science 340
(6132), 615−9.
(37) Wingler, L. M., Elgeti, M., Hilger, D., Latorraca, N. R., Lerch,
M. T., Staus, D. P., Dror, R. O., Kobilka, B. K., Hubbell, W. L., and
Lefkowitz, R. J. (2019) Angiotensin Analogs with Divergent Bias
Stabilize Distinct Receptor Conformations. Cell 176 (3), 468−478
e11.
(38) Lamichhane, R., Liu, J. J., White, K. L., Katritch, V., Stevens, R.
C., Wuthrich, K., and Millar, D. P. (2020) Biased Signalling of the G-
Protein-Coupled Receptor beta2AR Is Governed by Conformational
Exchange Kinetics. Structure 28, 371.
(39) Steen, A., Larsen, O., Thiele, S., and Rosenkilde, M. M. (2014)
Biased and g protein-independent signalling of chemokine receptors.
Front. Immunol. 5, 277.
(40) Roth, S., Kholodenko, B. N., Smit, M. J., and Bruggeman, F. J.
(2015) G Protein-Coupled Receptor Signalling Networks from a
Systems Perspective. Mol. Pharmacol. 88 (3), 604−16.
(41) Grundmann, M., and Kostenis, E. (2017) Temporal Bias:
Time-Encoded Dynamic GPCR Signalling. Trends Pharmacol. Sci. 38
(12), 1110−1124.
(42) Irannejad, R., Pessino, V., Mika, D., Huang, B., Wedegaertner,
P. B., Conti, M., and von Zastrow, M. (2017) Functional selectivity of
GPCR-directed drug action through location bias. Nat. Chem. Biol. 13
(7), 799−806.
(43) Eichel, K., and von Zastrow, M. (2018) Subcellular
Organization of GPCR Signalling. Trends Pharmacol. Sci. 39 (2),
200−208.
(44) Shaw, W. M., Yamauchi, H., Mead, J., Gowers, G. F., Bell, D. J.,
Oling, D., Larsson, N., Wigglesworth, M., Ladds, G., and Ellis, T.
(2019) Engineering a Model Cell for Rational Tuning of GPCR
Signalling. Cell 177 (3), 782−796 e27.
(45) Apostolakou, A. E., Baltoumas, F. A., Stravopodis, D. J., and
Iconomidou, V. A. (2020) Extended Human G-Protein Coupled
Receptor Network: Cell-Type-Specific Analysis of G-Protein Coupled
Receptor Signalling Pathways. J. Proteome Res. 19 (1), 511−524.
(46) Wang, J., Gareri, C., and Rockman, H. A. (2018) G-Protein-
Coupled Receptors in Heart Disease. Circ. Res. 123 (6), 716−735.
(47) Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F.,
Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen,
N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G.,
Javitch, J. A., Roth, B. L., and Jin, J. (2011) Discovery of beta-arrestin-
biased dopamine D2 ligands for probing signal transduction pathways
essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. U. S. A. 108
(45), 18488−93.
(48) Moller, D., Kling, R. C., Skultety, M., Leuner, K., Hubner, H.,
and Gmeiner, P. (2014) Functionally selective dopamine D(2), D(3)
receptor partial agonists. J. Med. Chem. 57 (11), 4861−75.
(49) Weiwer, M., Xu, Q., Gale, J. P., Lewis, M., Campbell, A. J.,
Schroeder, F. A., Van de Bittner, G. C., Walk, M., Amaya, A., Su, P., L,

ACS Pharmacology & Translational Science pubs.acs.org/ptsci Viewpoint

https://dx.doi.org/10.1021/acsptsci.0c00024
ACS Pharmacol. Transl. Sci. 2020, 3, 361−370

368

https://dx.doi.org/10.1146/annurev-pharmtox-010919-023545
https://dx.doi.org/10.1016/j.coph.2016.12.001
https://dx.doi.org/10.1016/j.coph.2016.12.001
http://www.biomodellab.eu/1glisten
http://eventia.upf.edu/Barcelona-GPCR-Conference-2014
http://glisten.ttk.hu/
https://sites.google.com/site/glisten2015/home
http://www.medchemsymposium.org/Home.html
http://grk1910.de/glisten-2016.html
http://www.glisten2016.cz
https://glistensymposium.wordpress.com
http://school.ifs.hr/2016
https://dx.doi.org/10.1016/j.str.2014.05.017
https://dx.doi.org/10.1016/j.str.2014.05.017
https://dx.doi.org/10.1124/mol.115.099663
https://dx.doi.org/10.1124/mol.115.099663
https://dx.doi.org/10.1124/mol.115.099663
https://dx.doi.org/10.1111/bph.13509
https://dx.doi.org/10.1111/bph.13509
https://dx.doi.org/10.1038/ncomms14258
https://dx.doi.org/10.1038/ncomms14258
https://dx.doi.org/10.1073/pnas.1818718116
https://dx.doi.org/10.1073/pnas.1818718116
http://www.oncornet.eu/
https://www.era-learn.eu/network-information/networks/neuron-cofund/call-for-proposals-for-transnational-research-projects-on-mental-disorders/a-novel-paradigm-for-effective-and-safer-treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-polypharmacological-profile
https://www.era-learn.eu/network-information/networks/neuron-cofund/call-for-proposals-for-transnational-research-projects-on-mental-disorders/a-novel-paradigm-for-effective-and-safer-treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-polypharmacological-profile
https://www.era-learn.eu/network-information/networks/neuron-cofund/call-for-proposals-for-transnational-research-projects-on-mental-disorders/a-novel-paradigm-for-effective-and-safer-treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-polypharmacological-profile
https://www.era-learn.eu/network-information/networks/neuron-cofund/call-for-proposals-for-transnational-research-projects-on-mental-disorders/a-novel-paradigm-for-effective-and-safer-treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-polypharmacological-profile
https://www.era-learn.eu/network-information/networks/neuron-cofund/call-for-proposals-for-transnational-research-projects-on-mental-disorders/a-novel-paradigm-for-effective-and-safer-treatment-of-schizophrenia-biased-ant-agonists-with-a-characterized-polypharmacological-profile
https://www.neuron-eranet.eu/_media/PSYBIAS_summary.pdf
https://www.neuron-eranet.eu/_media/PSYBIAS_summary.pdf
https://dx.doi.org/10.1093/nar/26.1.275
https://dx.doi.org/10.1093/nar/gkv1178
https://dx.doi.org/10.1093/nar/gkv1178
https://dx.doi.org/10.1038/nature22070
https://dx.doi.org/10.1038/nature22070
https://dx.doi.org/10.1016/j.cell.2017.11.033
https://dx.doi.org/10.1016/j.cell.2017.11.033
https://dx.doi.org/10.1093/nar/gkx1109
https://dx.doi.org/10.1038/s41592-018-0302-x
https://dx.doi.org/10.1038/s41592-018-0302-x
https://dx.doi.org/10.1016/S0014-5793(02)02775-8
https://dx.doi.org/10.1016/S0014-5793(02)02775-8
https://dx.doi.org/10.1073/pnas.1201093109
https://dx.doi.org/10.1073/pnas.1201093109
https://dx.doi.org/10.1126/science.1232808
https://dx.doi.org/10.1126/science.1232808
https://dx.doi.org/10.1016/j.cell.2018.12.005
https://dx.doi.org/10.1016/j.cell.2018.12.005
https://dx.doi.org/10.1016/j.str.2020.01.001
https://dx.doi.org/10.1016/j.str.2020.01.001
https://dx.doi.org/10.1016/j.str.2020.01.001
https://dx.doi.org/10.3389/fimmu.2014.00277
https://dx.doi.org/10.1124/mol.115.100057
https://dx.doi.org/10.1124/mol.115.100057
https://dx.doi.org/10.1016/j.tips.2017.09.004
https://dx.doi.org/10.1016/j.tips.2017.09.004
https://dx.doi.org/10.1038/nchembio.2389
https://dx.doi.org/10.1038/nchembio.2389
https://dx.doi.org/10.1016/j.tips.2017.11.009
https://dx.doi.org/10.1016/j.tips.2017.11.009
https://dx.doi.org/10.1016/j.cell.2019.02.023
https://dx.doi.org/10.1016/j.cell.2019.02.023
https://dx.doi.org/10.1021/acs.jproteome.9b00754
https://dx.doi.org/10.1021/acs.jproteome.9b00754
https://dx.doi.org/10.1021/acs.jproteome.9b00754
https://dx.doi.org/10.1161/CIRCRESAHA.118.311403
https://dx.doi.org/10.1161/CIRCRESAHA.118.311403
https://dx.doi.org/10.1073/pnas.1104807108
https://dx.doi.org/10.1073/pnas.1104807108
https://dx.doi.org/10.1073/pnas.1104807108
https://dx.doi.org/10.1021/jm5004039
https://dx.doi.org/10.1021/jm5004039
pubs.acs.org/ptsci?ref=pdf
https://dx.doi.org/10.1021/acsptsci.0c00024?ref=pdf


D. O., Sacher, J. R., Skepner, A., Fei, D., Dennehy, K., Nguyen, S.,
Faloon, P. W., Perez, J., Cottrell, J. R., Liu, F., Palmer, M., Pan, J. Q.,
Hooker, J. M., Zhang, Y. L., Scolnick, E., Wagner, F. F., and Holson,
E. B. (2018) Functionally Biased D2R Antagonists: Targeting the
beta-Arrestin Pathway to Improve Antipsychotic Treatment. ACS
Chem. Biol. 13 (4), 1038−1047.
(50) DeWire, S. M., Yamashita, D. S., Rominger, D. H., Liu, G.,
Cowan, C. L., Graczyk, T. M., Chen, X. T., Pitis, P. M., Gotchev, D.,
Yuan, C., Koblish, M., Lark, M. W., and Violin, J. D. (2013) A G
protein-biased ligand at the mu-opioid receptor is potently analgesic
with reduced gastrointestinal and respiratory dysfunction compared
with morphine. J. Pharmacol. Exp. Ther. 344 (3), 708−17.
(51) Schmid, C. L., Kennedy, N. M., Ross, N. C., Lovell, K. M., Yue,
Z., Morgenweck, J., Cameron, M. D., Bannister, T. D., and Bohn, L.
M. (2017) Bias Factor and Therapeutic Window Correlate to Predict
Safer Opioid Analgesics. Cell 171 (5), 1165−1175 e13.
(52) James, I. E., Skobieranda, F., Soergel, D. G., Ramos, K. A., Ruff,
D., and Fossler, M. J. (2020) A First-in-Human Clinical Study With
TRV734, an Orally Bioavailable G-Protein-Biased Ligand at the mu-
Opioid Receptor. Clin. Pharmacol. Drug Dev. 9 (2), 256−266.
(53) Conibear, A. E., and Kelly, E. (2019) A Biased View of mu-
Opioid Receptors? Mol. Pharmacol. 96 (5), 542−549.
(54) Pedersen, M. F., Wrobel, T. M., Marcher-Rorsted, E., Pedersen,
D. S., Moller, T. C., Gabriele, F., Pedersen, H., Matosiuk, D., Foster,
S. R., Bouvier, M., and Brauner-Osborne, H. (2020) Biased agonism
of clinically approved mu-opioid receptor agonists and TRV130 is not
controlled by binding and signalling kinetics. Neuropharmacology 166,
107718.
(55) Kliewer, A., Schmiedel, F., Sianati, S., Bailey, A., Bateman, J. T.,
Levitt, E. S., Williams, J. T., Christie, M. J., and Schulz, S. (2019)
Phosphorylation-deficient G-protein-biased mu-opioid receptors
improve analgesia and diminish tolerance but worsen opioid side
effects. Nat. Commun. 10 (1), 367.
(56) Kliewer, A., Gillis, A., Hill, R., Schmidel, F., Bailey, C., Kelly, E.,
Henderson, G., Christie, M. J., and Schulz, S. (2020) Morphine-
induced respiratory depression is independent of beta-arrestin2
signalling. Br. J. Pharmacol., DOI: 10.1111/bph.15004.
(57) Michel, M. C., and Charlton, S. J. (2018) Biased Agonism in
Drug Discovery-Is It Too Soon to Choose a Path? Mol. Pharmacol. 93
(4), 259−265.
(58) Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M.,
and Sexton, P. M. (2018) Mechanisms of signalling and biased
agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19
(10), 638−653.
(59) Kenakin, T. (2019) Biased Receptor Signalling in Drug
Discovery. Pharmacol. Rev. 71 (2), 267−315.
(60) Pang, P. S., Butler, J., Collins, S. P., Cotter, G., Davison, B. A.,
Ezekowitz, J. A., Filippatos, G., Levy, P. D., Metra, M., Ponikowski, P.,
Teerlink, J. R., Voors, A. A., Bharucha, D., Goin, K., Soergel, D. G.,
and Felker, G. M. (2017) Biased ligand of the angiotensin II type 1
receptor in patients with acute heart failure: a randomized, double-
blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-
AHF). Eur. Heart J. 38 (30), 2364−2373.
(61) Violin, J. D., Crombie, A. L., Soergel, D. G., and Lark, M. W.
(2014) Biased ligands at G-protein-coupled receptors: promise and
progress. Trends Pharmacol. Sci. 35 (7), 308−16.
(62) Costa-Neto, C. M., Parreiras, E. S. L. T., and Bouvier, M.
(2016) A Pluridimensional View of Biased Agonism. Mol. Pharmacol.
90 (5), 587−595.
(63) Smith, J. S., Lefkowitz, R. J., and Rajagopal, S. (2018) Biased
signalling: from simple switches to allosteric microprocessors. Nat.
Rev. Drug Discovery 17 (4), 243−260.
(64) O’Hayre, M., Eichel, K., Avino, S., Zhao, X., Steffen, D. J., Feng,
X., Kawakami, K., Aoki, J., Messer, K., Sunahara, R., Inoue, A., von
Zastrow, M., and Gutkind, J. S. (2017) Genetic evidence that beta-
arrestins are dispensable for the initiation of beta2-adrenergic receptor
signalling to ERK. Sci. Signaling 10 (484), eaal3395.
(65) Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P.,
Simon, K., Ruttiger, N., Ziegler, N., Benkel, T., Schmitt, N. K., Ishida,

S., Muller, I., Reher, R., Kawakami, K., Inoue, A., Rick, U., Kuhl, T.,
Imhof, D., Aoki, J., Konig, G. M., Hoffmann, C., Gomeza, J., Wess, J.,
and Kostenis, E. (2018) Lack of beta-arrestin signalling in the absence
of active G proteins. Nat. Commun. 9 (1), 341.
(66) Luttrell, L. M., Wang, J., Plouffe, B., Smith, J. S., Yamani, L.,
Kaur, S., Jean-Charles, P. Y., Gauthier, C., Lee, M. H., Pani, B., Kim, J.,
Ahn, S., Rajagopal, S., Reiter, E., Bouvier, M., Shenoy, S. K., Laporte,
S. A., Rockman, H. A., and Lefkowitz, R. J. (2018) Manifold roles of
beta-arrestins in GPCR signalling elucidated with siRNA and
CRISPR/Cas9. Sci. Signaling 11 (549), eaat7650.
(67) Abbott, A. (1999) Alliance of US labs plans to build map of cell
signalling pathways. Nature 402 (6759), 219−20.
(68) Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T.,
Dricot, A., Li, N., Berriz, G. F., Gibbons, F. D., Dreze, M., Ayivi-
Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S.,
Rosenberg, J., Goldberg, D. S., Zhang, L. V., Wong, S. L., Franklin, G.,
Li, S., Albala, J. S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex,
C., Lamesch, P., Sikorski, R. S., Vandenhaute, J., Zoghbi, H. Y.,
Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.
E., Hill, D. E., Roth, F. P., and Vidal, M. (2005) Towards a proteome-
scale map of the human protein-protein interaction network. Nature
437 (7062), 1173−8.
(69) Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N.,
Toyoda, Y., Gak, I. A., Weisswange, I., Mansfeld, J., Buchholz, F.,
Hyman, A. A., and Mann, M. (2015) A human interactome in three
quantitative dimensions organized by stoichiometries and abundan-
ces. Cell 163 (3), 712−23.
(70) Huttlin, E. L., Ting, L., Bruckner, R. J., Gebreab, F., Gygi, M. P.,
Szpyt, J., Tam, S., Zarraga, G., Colby, G., Baltier, K., Dong, R.,
Guarani, V., Vaites, L. P., Ordureau, A., Rad, R., Erickson, B. K.,
Wuhr, M., Chick, J., Zhai, B., Kolippakkam, D., Mintseris, J., Obar, R.
A., Harris, T., Artavanis-Tsakonas, S., Sowa, M. E., De Camilli, P.,
Paulo, J. A., Harper, J. W., and Gygi, S. P. (2015) The BioPlex
Network: A Systematic Exploration of the Human Interactome. Cell
162 (2), 425−440.
(71) Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C.,
Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjostedt, E.,
Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S.,
Szigyarto, C. A., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober,
S., Alm, T., Edqvist, P. H., Berling, H., Tegel, H., Mulder, J., Rockberg,
J., Nilsson, P., Schwenk, J. M., Hamsten, M., von Feilitzen, K.,
Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G.,
Nielsen, J., and Ponten, F. (2015) Proteomics. Tissue-based map of
the human proteome. Science 347 (6220), 1260419.
(72) Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting,
L., Baltier, K., Colby, G., Gebreab, F., Gygi, M. P., Parzen, H., Szpyt,
J., Tam, S., Zarraga, G., Pontano-Vaites, L., Swarup, S., White, A. E.,
Schweppe, D. K., Rad, R., Erickson, B. K., Obar, R. A., Guruharsha, K.
G., Li, K., Artavanis-Tsakonas, S., Gygi, S. P., and Harper, J. W.
(2017) Architecture of the human interactome defines protein
communities and disease networks. Nature 545 (7655), 505−509.
(73) Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A., and
Teichmann, S. A. (2017) The Human Cell Atlas: from vision to
reality. Nature 550 (7677), 451−453.
(74) Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie,
M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic,
M., Roca, C. D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S.,
Varusai, T., Viteri, G., Weiser, J., Wu, G., Stein, L., Hermjakob, H.,
and D’Eustachio, P. (2018) The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 46 (D1), D649−D655.
(75) Singla, J., McClary, K. M., White, K. L., Alber, F., Sali, A., and
Stevens, R. C. (2018) Opportunities and Challenges in Building a
Spatiotemporal Multi-scale Model of the Human Pancreatic beta Cell.
Cell 173 (1), 11−19.
(76) https://reactome.org/ (accessed 2020/03/02).
(77) https://string-db.org/ (accessed 2020/03/02).
(78) Tan, L., Yan, W., McCorvy, J. D., and Cheng, J. (2018) Biased
Ligands of G Protein-Coupled Receptors (GPCRs): Structure-

ACS Pharmacology & Translational Science pubs.acs.org/ptsci Viewpoint

https://dx.doi.org/10.1021/acsptsci.0c00024
ACS Pharmacol. Transl. Sci. 2020, 3, 361−370

369

https://dx.doi.org/10.1021/acschembio.8b00168
https://dx.doi.org/10.1021/acschembio.8b00168
https://dx.doi.org/10.1124/jpet.112.201616
https://dx.doi.org/10.1124/jpet.112.201616
https://dx.doi.org/10.1124/jpet.112.201616
https://dx.doi.org/10.1124/jpet.112.201616
https://dx.doi.org/10.1016/j.cell.2017.10.035
https://dx.doi.org/10.1016/j.cell.2017.10.035
https://dx.doi.org/10.1002/cpdd.721
https://dx.doi.org/10.1002/cpdd.721
https://dx.doi.org/10.1002/cpdd.721
https://dx.doi.org/10.1124/mol.119.115956
https://dx.doi.org/10.1124/mol.119.115956
https://dx.doi.org/10.1016/j.neuropharm.2019.107718
https://dx.doi.org/10.1016/j.neuropharm.2019.107718
https://dx.doi.org/10.1016/j.neuropharm.2019.107718
https://dx.doi.org/10.1038/s41467-018-08162-1
https://dx.doi.org/10.1038/s41467-018-08162-1
https://dx.doi.org/10.1038/s41467-018-08162-1
https://dx.doi.org/10.1111/bph.15004
https://dx.doi.org/10.1111/bph.15004
https://dx.doi.org/10.1111/bph.15004
https://dx.doi.org/10.1111/bph.15004?ref=pdf
https://dx.doi.org/10.1124/mol.117.110890
https://dx.doi.org/10.1124/mol.117.110890
https://dx.doi.org/10.1038/s41580-018-0049-3
https://dx.doi.org/10.1038/s41580-018-0049-3
https://dx.doi.org/10.1124/pr.118.016790
https://dx.doi.org/10.1124/pr.118.016790
https://dx.doi.org/10.1093/eurheartj/ehx196
https://dx.doi.org/10.1093/eurheartj/ehx196
https://dx.doi.org/10.1093/eurheartj/ehx196
https://dx.doi.org/10.1093/eurheartj/ehx196
https://dx.doi.org/10.1016/j.tips.2014.04.007
https://dx.doi.org/10.1016/j.tips.2014.04.007
https://dx.doi.org/10.1124/mol.116.105940
https://dx.doi.org/10.1038/nrd.2017.229
https://dx.doi.org/10.1038/nrd.2017.229
https://dx.doi.org/10.1126/scisignal.aal3395
https://dx.doi.org/10.1126/scisignal.aal3395
https://dx.doi.org/10.1126/scisignal.aal3395
https://dx.doi.org/10.1038/s41467-017-02661-3
https://dx.doi.org/10.1038/s41467-017-02661-3
https://dx.doi.org/10.1126/scisignal.aat7650
https://dx.doi.org/10.1126/scisignal.aat7650
https://dx.doi.org/10.1126/scisignal.aat7650
https://dx.doi.org/10.1038/46111
https://dx.doi.org/10.1038/46111
https://dx.doi.org/10.1038/nature04209
https://dx.doi.org/10.1038/nature04209
https://dx.doi.org/10.1016/j.cell.2015.09.053
https://dx.doi.org/10.1016/j.cell.2015.09.053
https://dx.doi.org/10.1016/j.cell.2015.09.053
https://dx.doi.org/10.1016/j.cell.2015.06.043
https://dx.doi.org/10.1016/j.cell.2015.06.043
https://dx.doi.org/10.1126/science.1260419
https://dx.doi.org/10.1126/science.1260419
https://dx.doi.org/10.1038/nature22366
https://dx.doi.org/10.1038/nature22366
https://dx.doi.org/10.1038/550451a
https://dx.doi.org/10.1038/550451a
https://dx.doi.org/10.1093/nar/gkx1132
https://dx.doi.org/10.1016/j.cell.2018.03.014
https://dx.doi.org/10.1016/j.cell.2018.03.014
https://reactome.org/
https://string-db.org/
https://dx.doi.org/10.1021/acs.jmedchem.8b00435
https://dx.doi.org/10.1021/acs.jmedchem.8b00435
pubs.acs.org/ptsci?ref=pdf
https://dx.doi.org/10.1021/acsptsci.0c00024?ref=pdf


Functional Selectivity Relationships (SFSRs) and Therapeutic
Potential. J. Med. Chem. 61 (22), 9841−9878.
(79) Wilde, O. The Importance of Being Earnest: a Trivial Comedy for
Serious People; Leonard Smithers and Co.: London, 1898.
(80) https://www.cost.eu/actions/CA18133/ (accessed 2020/03/
02).

ACS Pharmacology & Translational Science pubs.acs.org/ptsci Viewpoint

https://dx.doi.org/10.1021/acsptsci.0c00024
ACS Pharmacol. Transl. Sci. 2020, 3, 361−370

370

https://dx.doi.org/10.1021/acs.jmedchem.8b00435
https://dx.doi.org/10.1021/acs.jmedchem.8b00435
https://www.cost.eu/actions/CA18133/
pubs.acs.org/ptsci?ref=pdf
https://dx.doi.org/10.1021/acsptsci.0c00024?ref=pdf

