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Abstract

Stenosis is the primary complication of current tissue-engineered vascular grafts used in pediatric congenital cardiac
surgery. Murine models provide considerable insight into the possible mechanisms underlying this situation, but they are
not efficient for identifying optimal changes in scaffold design or therapeutic strategies to prevent narrowing. In contrast,
computational modeling promises to enable time- and cost-efficient examinations of factors leading to narrowing. Whereas
past models have been limited by their phenomenological basis, we present a new mechanistic model that integrates
molecular- and cellular-driven immuno- and mechano-mediated contributions to in vivo neotissue development within
implanted polymeric scaffolds. Model parameters are inferred directly from in vivo measurements for an inferior vena cava
interposition graft model in the mouse that are augmented by data from the literature. By complementing Bayesian
estimation with identifiability analysis and simplex optimization, we found optimal parameter values that match model
outputs with experimental targets and quantify variability due to measurement uncertainty. Utility is illustrated by
parametrically exploring possible graft narrowing as a function of scaffold pore size, macrophage activity, and the
immunomodulatory cytokine transforming growth factor beta 1 (TGF-β1). The model captures salient temporal profiles of
infiltrating immune and synthetic cells and associated secretion of cytokines, proteases, and matrix constituents
throughout neovessel evolution, and parametric studies suggest that modulating scaffold immunogenicity with early
immunomodulatory therapies may reduce graft narrowing without compromising compliance.
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INSIGHT BOX

This paper proposes a mechanistic computational bio-chemo-mechanical model of in vivo neotissue development in
tissue-engineered vascular grafts and establishes a framework for model parameter estimation in the presence of
uncertainty. The model captures experimentally available molecular and cellular profiles of immune cells, pro- and
anti-inflammatory cytokines, vascular cells, and matrix constituents following scaffold implantation. Utility is demon-
strated further by hypothesis-driven parametric studies that explore in vivo graft narrowing as a function of scaffold
design parameters as well as targeted pharmacological interventions such as modulating macrophage and TGF-β
activity, with the aim of improving long-term patency, avoiding compliance mismatch, and maintaining graft cellularity.
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INTRODUCTION

Treatment strategies for vascular diseases often rely on
replacement conduits, but the lack of suitable autologous vessels
and high rates of failure of synthetic materials significantly limit
surgical outcomes [1]. Tissue engineered vascular grafts (TEVGs)
represent a promising alternative, particularly in the pediatric
population where growth capacity is important. The first TEVG
used to treat children consisted of a biodegradable scaffold of
a woven poly(glycolic) acid (PGA) felt and a 50:50 copolymer
sealant of poly(ε)-caprolactone and L-lactide (P(CL/LA)); these
grafts were seeded with autologous bone marrow-derived
mononuclear cells before implantation as extracardiac cavopul-
monary conduits in children who underwent a Fontan operation
to palliate their single ventricle physiology [2, 3]. There were no
cases of graft-related mortality, aneurysmal dilatation, rupture,
infection, or ectopic calcification during a long-term follow-
up (mean of 11.1 years), but imaging revealed asymptomatic
narrowing, or stenosis, in 16% of the patients at a mean of
5.8 years and 28% at the last follow-up. This rate of stenosis
is greater than that reported for synthetic graft materials
[4–6]. Hence, even though stenosis was successfully treated
with percutaneous transluminal balloon angioplasty, with one
patient also requiring an intra-graft stent, there is a pressing
need to understand and better control mechanisms that give
rise to TEVG narrowing.

Toward this end, we first implanted similar scaffolds as
interposition grafts in the abdominal inferior vena cava (IVC)
of mice for up to two years [7–9]. Scaffolds are transformed
into functional neovessels via a process involving polymer
degradation, immune cell infiltration, vascular cell recruit-
ment, and extracellular matrix deposition, remodeling, and
degradation (Fig. 1). We observed a bimodal distribution of out-
comes: narrowed grafts had extensive monocyte/macrophage
infiltration into the scaffold, with neotissue formation within
the lumen composed primarily of smooth muscle cells (SMCs)
and myofibroblasts. In contrast, patent grafts had reduced
monocyte/macrophage infiltration and three mural layers
structurally resembling the native IVC [8], though some had
either stiffer or more compliant mechanical behaviors [9].
Importantly, although neotissue formation requires an immune
response to the polymeric scaffold, the incidence of TEVG
narrowing was proportional to the degree of macrophage
infiltration [10]. Graft narrowing could be prevented either by
seeding the grafts with bone marrow-derived mononuclear
cells or by providing controlled release of an inhibitor to the
TGF-β type 1 receptor [7, 8]. Given the myriad possible design
modifications and potential pharmacological therapies that
could be explored to improve graft patency further, an empirical
trial-and-error search for an optimal scaffold design or specific
clinical interventions quickly becomes impractical.

Recent advances in computational modeling promise time-
and cost-efficient simulations that can reduce the experimental
search space [11]. We previously developed a computational
model of neovessel development from an implanted polymeric
scaffold using a growth and remodeling (G&R) theory that
incorporates immuno-driven and mechano-mediated turnover
of neotissue [11, 12]. This model successfully describes and
predicts the evolving geometry and mechanical properties of
murine TEVGs, but its basis is phenomenological [9]. There is,
therefore, a need for complementary models that incorporate
molecular and cellular processes that drive TEVG development.
Such models could provide insights into adaptive processes and
enable parametric evaluations of consequences of key scaffold

parameters and targeted pharmacological interventions. Herein
we propose a model that includes interactions among the
polymeric scaffold, multiple cell types, key cytokines, growth
factors and proteases, the primary structural constituents, and
mechanical stimuli (Fig. 2). We benchmark the model against
prior data from our IVC interposition mouse model and then
parametrically explore the potential for graft narrowing as a
function of scaffold pore size, macrophage depletion, and the
immunomodulatory cytokine TGF-β.

METHODS

Our proposed bio-chemo-mechanical (BCM) model builds upon
prior models for soft tissue G&R that include molecular and
cellular kinetics [13–15], but focuses on the unique problem
of in vivo neovessel development from a polymeric scaffold; it
consists of 15 coupled ordinary differential equations (ODEs,
in time) that govern spatially homogenized interactions that
relate the scaffold design and mechanical stimulus to key
immune cells, synthetic cells, cytokines, proteases, and matrix
constituents that define the adaptation. The model includes
43 parameters, the values of which were tuned against 18
measurements from in vivo and in vitro experimental studies.
Bounds on the parameters were chosen consistent with the
literature [8, 16–19] or simply to be biologically reasonable when
data were lacking. Although such models can increase predictive
capability, their complexity necessarily renders the associated
parameter estimation nontrivial. Manual parameter tuning
has been used in the past [13–15], but it is time-consuming,
operator-dependent, and not scalable and does not account for
uncertainty in the experimental data. Indeed, tuning parameters
in the presence of uncertainty makes manual approaches
intractable.

Hence, we employed formal parameter estimation tech-
niques that should scale and translate across users. Various
automatic approaches are available [20–27]. While deterministic
optimization is convenient for parameter estimation, it pro-
vides point estimates and cannot account for uncertainty in
parameters or measurements. In other words, although well-
suited for initially probing a small subset of problems, such
approaches are insufficient for complex biological systems
that are stochastic and lack complete measurements in most
scenarios. We thus used a Bayesian estimation framework for
parameter estimation in data-poor systems with uncertainty
that employs an adaptive Markov chain Monte Carlo (MCMC)
approach to sample from the joint posterior distribution
of the unknown parameters, treated as random variables
[28]. This estimation process was complemented with an
identifiability analysis to determine unimportant parameters.
The maximum a posteriori estimate was then determined on
the identifiable parameters using simplex optimization [29],
with the maximum a posteriori estimate from MCMC used as
the initial guess for optimization. By combining identifiability
analysis with Bayesian estimation and simplex optimization,
we determined non-identifiable parameter combinations
and estimated optimal values that matched experimental
measurements in the presence of uncertainty. We then fixed
the estimated optimal parameters and, to illustrate the utility
of the model in hypothesis testing, simulated the effect of
reducing scaffold pore size to that of grafts used in clinical
trials or administering pharmacological treatments including
clodronate (to deplete macrophages) and an inhibitor of
TGF-βR1.
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Figure 1. Mechanisms for transformation of implanted biodegradable polymeric scaffolds into vascular grafts. At early times, Ly6C+ and Ly6C− monocytes infiltrate

the porous scaffold and release pro-inflammatory (TNF-α), anti-inflammatory (IL-10), and immunomodulatory (TGF-β) signaling molecules. The relative quantities of

these cytokines determine monocyte differentiation into classically or alternatively activated macrophages (Mϕ) at two weeks. The infiltrating monocytes also release

multiple angiogenic cytokines and growth factors to recruit ECs and inflammatory SMCs from the adjacent vessel, which deposit stiff inflammatory collagen as part

of the foreign body response. Six months post-implantation, the polymer is replaced with neotissue: only tissue-resident macrophages remain, and the vascular cells

have appropriately organized into a mature blood vessel structure. The inflammatory collagen has been degraded by MMPs, and stress-mediated collagen dominates

the extracellular matrix.

Figure 2. The BCM model of TEVG development, represented graphically using a schematic similar to that originally developed by [13]. The model is shown following

pharmacological intervention with a TGF-β R1 inhibitor. Legend and color scheme for the mechanistic pathways are below the figure, and variables used in the governing

equations can be found within circles next to the name of each element in the diagram. See text for further details.
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Figure 3. (A–D) Inputs for the BCM model. (A) Normalized polymer mass density (ρs (t)), which captures the degradation of the PGA felt in the first 6 weeks and the loss

of the P(CL/LA) sealant over 6 months. (B) Evolving pore size (apore (t)) for two different scaffold designs with an initial pore radius of 20 μm (solid line) or 2 μm (dashed

line). (C) Intramural stress (σ (t)) and (D) wall shear stress (τω (t)) profiles were generated using our previous phenomenological G&R framework [30]. (E) Response to

TNF-α (parameter α) as a function of the quantity of TNF-α. (F) Response to TGF-β (parameter β) as a function of the quantity of TGF-β. (G) Response to IL-10 (parameter

γ ) as a function of the quantity of IL-10. (H) Response to MMPs (parameter ζ ) as a function of the quantity of MMPs. (I) Values of parameters α and γ throughout the

baseline simulation; both parameters are fixed. (J) Values of parameter β and parameter ζ throughout the baseline simulation. Notice that the MMP response function

(dashed line) remains maximally activated throughout the baseline simulation, whereas the TGF-β response function (solid line) decays following degradation of the

polymeric scaffold. (K) Gamma function used to model the administration of TGF-β RI inhibitor. (L) Gamma function used to model the administration of clodronate.

Model formulation

Model inputs. Because we formulated our molecular–cellular
model independent of models at the scale of a tissue or organ,
prescribed inputs included experimental data from a polymer
degradation study and tissue-level computational predictions of
mechanical stress [30]. Specifically, inputs included measured
temporal changes in normalized mass density ρs(t) and
pore radius apore(t) of a PGA/P(CL/LA) scaffold as it degrades
(Fig. 3A and B) and computed changes in intramural σ(t) and
wall shear τω(t) stresses, both over a 2-year implantation in
a murine model (Fig. 3C and D). These prescribed intramural
and wall shear stresses were computed from a spatially
homogenized, membrane model of G&R [30], consistent with
prior modeling of neovessel development [11, 12]. The initial
pore radius was set at 20 μm consistent with current scaffolds
implanted as interpositional grafts in the murine IVC. As the
scaffold degrades over time t in vivo, pore radius can increase
up to 25 μm, after which it is assumed that pore size no longer
limits cellular infiltration into the scaffold [31, 32].

Equation assembly. The rate equations were developed based
on simple principles that govern the behavior of each model
constituent [13, 15, 33–37]. Terms with a positive sign indicate
production of a constituent, which for cellular species can result
from infiltration (e.g. first term in Equations 1 and 2), differentia-
tion (e.g. first term in Equations 5–7), or proliferation (e.g. second
term in Equation 7). Removal of a cellular species, represented
by terms with a negative sign, can result from differentiation
into a different cell type (e.g. second term in Equations 1 and 2),

apoptosis, or emigration from the scaffold (e.g. third term in
Equations 5 and 7). To facilitate direct comparisons with our
available data (e.g. fluorescence-activated cell sorting (FACS)),
the calculated numbers of cells represent total numbers per
graft. For non-cellular species, their production depends on each
cell type that is able to synthesize the given constituent (e.g. the
first term for collagen production; Equations 17 and 18), while
their degradation occurs by natural clearance modulated by the
concentration of cytokines and signaling molecules (e.g. the sec-
ond term for the inflammatory collagen; Equation 17). The rates
of each of these kinds of processes for cellular species, struc-
tural proteins, and soluble factors can be modified by cytokines,
growth factors, or mechanical stimuli. Population-specific mod-
ifications to the equations are elaborated below.

Immune cell infiltration. Secretion of monocyte chemoattractant
protein-1 (MCP-1) from seeded bone marrow-derived mononu-
clear cells enhances early monocyte recruitment to the scaffold
[38]. We focused on inflammatory Ly6C+ and patrolling Ly6C−
monocytes as the two primary subpopulations [8], which differ-
entiate into classically and alternatively activated macrophages,
respectively. Temporal changes (i.e. rates of change) in the num-
bers of infiltrating Ly6C+ monocytes nm+

and Ly6C− monocytes
nm−

throughout the volume of the graft are modeled by

dnm+

dt
= rm+

PGA ρs(t) − [rm
1 (1 + β) + rm

2
]

nm+
, (1)

dnm−

dt
= rm−

PGA ρs(t) − [rm
1 (1 + γ ) + rm

3
]

nm−
, (2)
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where β accounts for concentration-dependent cellular
responses to the immunomodulatory cytokine TGF-β (Fig. 3F)
and γ similarly accounts for responses to the anti-inflammatory
cytokine IL-10 (Fig. 3G). The parameter β evolves during the
implantation period (Fig. 3J), whereas γ is constant (Fig. 3I). Here
and below, rη

i (i =1,2,3, . . . ; η = m, M, β, . . . ) denote fixed rate
parameters, specific descriptions of which are in Table 1 along
with estimated/prescribed values [34, 35, 39–42]. For example,
rm
1 denotes a rate of differentiation and rm

2 a rate of emigration
or death of Ly6C+ monocytes, both of which decrease local cell
number nm+

. In contrast, the rate of Ly6C+ monocyte infiltration
into the polymeric scaffold rm+

PGA(t) is limited by pore radius
and given by an experimentally motivated hyperbolic function
[13, 33]:

rm+
PGA(t) = Imax [apore(t) − amin

]
1 + [apore(t) − amin

] , (3)

where Imax is the maximum rate of infiltration (1×106 cells/day)
[36] whereas apore(t) is the current scaffold pore radius and
amin is the minimum pore radius that allows cell infiltration
(assumed here to be 2 μm [43]). The rate of Ly6C− monocyte infil-
tration into the polymeric scaffold rm−

PGA(t) is similarly given by

rm−
PGA(t) = ψ rm+

PGA(t), (4)

where ψ is a scaling factor, set to 0.167 based on experimental
observations [19].

In similar fashion, numbers of classically activated macro-
phages ncM, alternatively activated macrophages naM, and
tissue-resident macrophages ntM that remain in the graft
following monocyte infiltration [33] are computed via

dncM

dt
= [rm

1 (1 + β)] nm+ −
[

rM
1 (1 + γ )

1 + β

]
ncM − rM

2 ncM, (5)

dnaM

dt
= [rm

1 (1+γ )] nm− +
[

rM
1 (1+γ )

1 + β

]
ncM (6)

−rM
2 naM −

[
rM
3 (1+γ )

]
naM,

dntM

dt
=
[
rM
3 (1 + γ )

]
naM + rt

1ntM − rt
2ntM. (7)

As an example, Equation (5) specifies that the rate of dif-
ferentiation of recruited Ly6C+ monocytes nm+

into classically
activated macrophages ncM is enhanced by TGF-β through the
response parameter β [8], while Equation (6) specifies that TGF-
β also inhibits the differentiation of these monocytes to alter-
natively activated macrophages naM [8]; moreover, this latter
differentiation is enhanced by the anti-inflammatory cytokine
IL-10 through parameter γ [8].

Vascular cell recruitment. Infiltrating monocytes secrete multiple
cytokines and growth factors that recruit vascular cells into the
graft that contribute to neotissue development. For example,
SMCs and endothelial cells (ECs) are recruited from adjacent
vessel segments as migrating and proliferating cells [16]. These
vascular cell populations, calculated over the volume of the graft,

are modeled by the following rate equations:

dnEC

dt
= rEC

1 nm+ +
[
rEC
2

(
1 + f ′

τω
(τω)

1 + fτω (τω)

)]
nEC (8)

−
[
riSMC
3 (1 + α + β)

]
nEC − rEC

3 nEC,

dniSMC

dt
= riSMC

1 nm+ +
[
riSMC
2 (1 + β)

]
niSMC +

[
riSMC
3 (1 + α + β)

]
nEC

−
[

riSMC
4

1 + ρs(t) + β

]
niSMC − riSMC

5 niSMC, (9)

dnsSMC

dt
=
[

rsSMC
1

(
1 + fσ (σ ) + fτω (τω)

1 + f ′
σ (σ ) + f ′

τω
(τω)

)]
nsSMC

+
[

riSMC
4

1 + ρs(t) + β

]
niSMC

−
[
rsSMC
2
(
Indfσ (σ )

)]
nsSMC−rsSMC

3 nsSMC, (10)

dnmSMC

dt
= rmSMC

1 nmSMC +
[
rsSMC
2
(
Indfσ (σ )

)]
nsSMC − rmSMC

2 nmSMC,

(11)
where α captures cellular responses to the pro-inflammatory
cytokine TNF-α (Fig. 3E) and is fixed throughout the simula-
tion (Fig. 3I); nEC is the number of ECs throughout the volume
of the graft; niSMC is the number of SMCs that phenotypically
promote inflammation, which arise from ECs via endothelial-
to-mesenchymal transition (endo-MT) and are recruited to the
polymer during the foreign body response [7, 8]; nsSMC is the
number of synthetic SMCs, which sense mechanical stresses and
deposit matrix accordingly; and nmSMC is the number of main-
tenance SMCs, which represent a more quiescent, sensing, and
synthetic phenotype that differentiates from actively synthetic
SMCs under homeostatic intramural stresses, as regulated by the
binary indicator function:

Ind
(
fσ (σ )
) =
{

1, fσ (σ ) = 0
0, fσ (σ ) �= 0

. (12)

Noting that both wall shear stress (τω) and intramural wall
stress (σ ) elicit myriad changes in gene expression in ECs and
SMCs [44, 45], consider normalized differences in τω and σ from
their homeostatic values (τh

ω and σh, respectively) given by

fτω (τω) = Kτω

1 max

{
τh
ω − τω

τh
ω

, 0

}
, (13)

f ′
τω

(τω) = Kτω

2 max

{
τω − τh

ω

τh
ω

, 0

}
, (14)

fσ (σ ) = Kσ
1 max

{
σ − σh

σh
, 0
}

, (15)

f ′
σ (σ ) = Kσ

2 max
{

σh − σ

σh
, 0
}

, (16)

where τh
ω is ∼ 2 Pa and σh ∼ 100 kPa for the native mouse IVC [11].

Here, Kτω

1 , Kτω

2 ,Kσ
1 , and Kσ

2 are gain-type scaling parameters, set
equal to each other due to lack of data (also same as K in Fig. 5).
These functional forms are motivated by the following biological
observations: values of wall shear stresses above or below the
homeostatic value τh

ω enhance or inhibit EC proliferation, respec-
tively (Equation 8) [46, 47]. Similarly, synthetic SMC proliferation
is augmented by intramural stresses above those observed in the
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Table 1. Model parameter definitions and values for mechanical inputs, inflammatory cells, signaling molecules, vascular cells, matrix
constituents, and proteases. Estimated parameters are maximum a posteriori estimates from optimization and are highlighted in gray. The
unidentifiable parameters in the model were informed by values in the literature. Note that references [7–10, 16–19, 49] are relevant to the
murine IVC interposition graft model.

Parameter Description [unit] Value References

Mechanical inputs
Kσ

1 Scaling parameter for intramural stress above homeostatic target [−] 0.0017 Estimated [46]

Kσ
2 Scaling parameter for intramural stress below homeostatic target [−] 0.0017 Estimated [46]

Kτω
1 Scaling parameter for wall shear stress below homeostatic target [−] 0.0017 Estimated [46]

Kτω
2 Scaling parameter for wall shear stress above homeostatic target [−] 0.0017 Estimated [46]

Inflammatory cells

rm
1 Ly6C+/Ly6C− monocyte differentiation rate [day−1] 0.0485 Estimated [8, 19, 39]

rm
2 Ly6C+ monocyte emigration/death rate [day−1] 0.5229 Estimated [8, 19, 40]

rm
3 Ly6C− monocyte emigration/death rate [day−1] 0.5848 Estimated [8, 19, 40]

rM
1 Classically activated macrophage differentiation rate [day−1] 0.5 Prescribed [8, 19]

rM
2 Macrophage emigration/death rate [day−1] 0.7555 Estimated [8, 19, 34]

rM
3 Alternatively activated macrophage differentiation rate [day−1] 0.0025 Prescribed [8, 19]

rt
1 Tissue resident macrophage proliferation rate [day−1] 0.0033 Estimated [9]

rt
2 Tissue-resident macrophage emigration/death rate [day−1] 0.0033 Prescribed [9]

Signaling molecules

rβ1 TGF-β secretion rate, classically activated macrophages [pg cell−1 day−1] 0.0934 Estimated [34, 35]

rβ2 TGF-β secretion rate, alternatively activated macrophages [pg cell−1 day−1] 0.001 Prescribed [34, 35]

rβ3 TGF-β secretion rate, inflammatory SMCs [pg cell−1 day−1] 0.01 Prescribed [34, 35]

rβ4 TGF-β secretion rate, ECs [pg cell−1 day−1] 0.0001 Prescribed [34, 35]

rβ5 TGF-β degradation rate [day−1] 16.6 Prescribed [34, 35]

rα1 TNF-α synthesis rate, classically activated macrophages [pg cell−1 day−1] 0.0101 Estimated [35, 37]

rα2 TNF-α degradation rate [day−1] 12.8 Prescribed [35, 37]

rγ1 IL-10 secretion rate, alternatively activated macrophages and Ly6C−
monocytes [pg cell−1 day−1]

0.0653 Estimated [35, 37]

rγ2 IL-10 degradation rate [day−1] 4.6 Prescribed [35, 37]

α Response to TNF-α [−] 2 Prescribed [50]
β Response to TGF-β [−] 0 to 5 Prescribed [50]
γ Response to IL-10 [−] 2.0998 Estimated [50]
Vascular cells

rEC
1 EC recruitment rate [day−1] 0.0017 Estimated [10]

rEC
2 EC proliferation rate [day−1] 0.007 Prescribed [10]

rEC
3 EC death rate [day−1] 0.001 Prescribed [10]

riSMC
1 Inflammatory SMC recruitment rate [day−1] 0.1963 Estimated [19, 10]

riSMC
2 Inflammatory SMC proliferation rate [day−1] 0.0822 Estimated [19, 69]

riSMC
3 Endothelial-to-mesenchymal transition rate [day−1] 0.0011 Estimated [8, 7]

riSMC
4 Inflammatory SMC to synthetic SMC differentiation rate [day−1] 0.0973 Estimated [19, 66]

riSMC
5 Inflammatory SMC death rate [day−1] 1 Prescribed [19]

rsSMC
1 Synthetic SMC proliferation rate [day−1] 0.5003 Estimated [19]

rsSMC
2 Synthetic SMC to maintenance SMC differentiation rate [day−1] 0.002 Prescribed [19, 39]

rsSMC
3 Synthetic SMC death rate [day−1] 0.5 Prescribed [19]

rmSMC
1 Maintenance SMC proliferation rate [day−1] 0.0013 Estimated [69]

rmSMC
2 Maintenance SMC death rate [day−1] 0.002 Prescribed [69]

Matrix constituents

rc
1 Inflammatory collagen secretion rate by inflammatory SMCs

[pg cell−1 day−1]
50 Prescribed [17]

rc
2 Collagen degradation rate due to classically activated macrophages [day−1] 0.1042 Estimated [41, 42]

rc
3 Stress-mediated collagen secretion rate by synthetic SMCs [pg cell−1 day−1] 20 Prescribed [66]

(Continued)
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Table 1. Continued

Parameter Description [unit] Value References

rc
4 Stress-mediated collagen secretion rate by maintenance SMCs

[pg cell−1 day−1]
20 Prescribed [17]

rc
5 Collagen degradation rate due to SMCs [day−1] 0.0093 Estimated [41, 42]

Proteases

rp
1 MMP secretion rate due to classically activated macrophages

[pg cell−1 day−1]
0.2429 Estimated [18]

rp
2 MMP secretion rate due to inflammatory SMCs [pg cell−1 day−1] 0.2169 Estimated [18]

rp
3 MMP secretion rate due to synthetic SMCs [pg cell−1 day−1] 0.1027 Estimated [18]

rp
4 MMP secretion rate due to maintenance SMCs [pg cell−1 day−1] 0.027 Prescribed [18]

rp
5 MMP degradation rate [day−1] 0.875 Prescribed [34]

ζ Response to MMPs [−] 0–3 Prescribed [49]

native mouse IVC (σh) and inhibited by lower values (Equation
10) [12, 46]. Moreover, differentiation of inflammatory SMCs to
actively synthesize SMCs is impeded by the presence of both the
polymeric scaffold ρs(t) and the immunomodulatory cytokine
TGF-β, the latter through β (Equations 9 and 10) [7, 48].

Matrix synthesis, remodeling, and degradation. As part of the
foreign body response, inflammatory SMCs synthesize a more
fibrotic collagen (cinfl), the total mass of which is

dcinfl

dt
= [rc

1 (1 + β)] niSMC − [rc
2 (1 + ζ )

]
cinfl. (17)

where ζ parameterizes the effects of matrix metalloproteinases
(MMPs), explained below. This inflammatory collagen is char-
acterized as densely packed, stiff, and scar-like, with a high
type I:III ratio [9, 12]. Synthetic SMCs produce natural mechano-
sensing-mediated collagen (cstrs), which is less densely packed
and more compliant, with a lower type I:III ratio [9]. The total
mass of stress-mediated collagen is given by

dcstrs

dt
=
[

rc
3

(
1 + fσ (σ ) + fτω (τω)

1 + f ′
σ (σ ) + f ′

τω
(τω)

)]
nsSMC

+rc
4nmSMC −

[
rc
5

(
1 + ζ + f ′

σ (σ )

1 + fσ (σ )

)]
cstrs. (18)

That is, the rate of mechano-mediated collagen production
depends on differences in intramural and wall shear stresses
from their target, or homeostatic, values. MMPs, which degrade
inflammatory and stress-mediated collagen, are secreted by
classically activated macrophages and SMCs [18], as modeled by

d (MMP)

dt
=
[

rp
1

1 + β

]
ncM +

[
rp
2

1 + β

]
niSMC

+
[
rp
3

(
1 + fσ (σ )

)]
nsSMC + rp

4nmSMC

− rp
5 (MMP) . (19)

MMPs and collagen degrade at rates reflected by their respec-
tive half-lives. The response to MMPs (parameter ζ ; see Fig. 3H)

was modeled via

ζ (MMP) = ζmax

[
MMP

Kζ + MMP

]
, (20)

where ζmax = 3 and Kζ = 500, with MMP denoting the mass (in pg)
of active MMPs [49]. The evolution of ζ throughout the two-year
implantation period is shown in Fig. 3J.

Signaling molecules. Cytokines, including pro-inflammatory (e.g.
TNF-α), anti-inflammatory (e.g. IL-10), or immunomodulatory
(e.g. TGF-β), are differentially secreted by inflammatory and vas-
cular cells; they regulate cell proliferation, differentiation, and
activation [7, 8]. The evolving concentrations of these signaling
molecules are given by

d (TGF-β)

dt
= rβ

1

(
nm+ + ncM

)
+ rβ

2 naM +
[
rβ

3

(
1 + fσ (σ )

)]
niSMC

+
[
rβ

4

(
1 + fτω (τω)

)]
nEC − rβ

5 (TGF-β) , (21)

d (TNF-α)

dt
= [rα

1 (1 + β)] nm+ + [rα
1 (1 + β)] ncM − rα

2 (TNF-α) , (22)

d(IL-10)

dt
=
[

rγ

1
1 + β

]
nm− +

[
rγ

1
1 + β

]
naM − rγ

2 (IL-10), (23)

where each cytokine also degrades at a rate determined by
its half-life. Descriptions and values for the rate constants are
summarized in Table 1.

The response to TGF-β (parameter β) was modeled to fit
a previously published dose-dependent response profile [50],
namely,

β (TGF-β) = βmax

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

TGF-β

MW
TGF-β

nm+ +ncM+naM+nEC+niSMC

Kβ +
TGF-β

MW
TGF-β

nm+ +ncM+ncM+nEC+niSMC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

with βmax∼ 5 and Kβ∼ 102.5, where TGF-β is the mass of TGF-β (in
pg). MWTGF−β is the molecular mass of a single TGF-β molecule
(4.15 × 10−8 pg) with, as before, nm+

the number of Ly6C+ mono-
cytes, ncM the number of classically activated macrophages,
naM the number of alternatively activated macrophages, nEC the
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number of ECs, and niSMC the number of inflammatory SMCs (all
of which secrete TGF-β).

Targeted pharmacological therapy

Pharmacological interventions in mice using clodronate lipo-
somes (600 μL/day) [10] or the TGF-βR1 kinase inhibitor SB431542
(10 mg/kg twice daily) [7, 8] were modeled phenomenologically
over the first few weeks following graft implantation using mod-
ified gamma functions, with dose D(t) given by

D(t) = 1 +
⎡
⎣A
(

1
Tmax

)λ

tλ−1 e
−
(

t

Tmax

)⎤
⎦ , (25)

with t the simulation time in days, A the rate parameter
(50 for the TGF-βR1 inhibitor and 100 for clodronate), λ the
shape parameter for the function (∼2), and 1/Tmax the scaling
parameter, with highest drug concentration at 14 days [7, 8, 10]
(Fig. 3K and L).

Parameter estimation and sensitivity analysis

Given our system of governing ODEs (i.e. the BCM model rep-
resented by Equations 1–24) and the associated model parame-
ters (Table 1), we identified 18 experimentally measured target
quantities that should be matched by model outputs following
optimal parameterization (Table 2). Fifteen of these targets were
determined using our previously published murine IVC inter-
position graft model: monocyte and macrophage populations
were quantified using FACS [8], vascular cells by immunofluo-
rescence analysis [19], collagen content from a hydroxyproline
assay [17], and MMPs from immunohistochemical analysis [18].
As system-specific measurements are lacking on the tempo-
ral and spatial profiles of key immunomodulatory cytokines
known to be involved in graft stenosis, targets for these signaling
molecules were determined using in vivo and in vitro measure-
ments reported in the literature [7, 34, 35, 50–52]. Model agree-
ment with all measured targets is found in Table 2. Standard
deviations for these targets came from the literature or were
assumed to be 10% of the measured value when data were
lacking.

Statistical model. Consistent with previously published statisti-
cal models, consider a set of p random inputs y = [y1, y2, . . . , yp] ⊂
R

p with joint probability distribution ρ(y), and let yk be its kth
realization [53, 54]. The present BCM model of TEVG devel-
opment relates the p input parameters and m outputs o =
[o1, o2, . . . , om] ⊂ R

m, that is, G : R
p → R

m. In other words, ok =
G(yk), with d ⊂ R

m the set of experimental measurements and
ρ(d) the corresponding joint probability distribution we seek to
match. The error between the experimental findings and model
outputs is

ε = d − G
(
y
)

. (26)

Model (or epistemic) uncertainty is not explicitly considered
but included in the selected standard deviation for the observ-
ables.

The target covariance matrix Cd is assumed to be diago-
nal, as experimental data are obtained from multiple unrelated
experiments. The statistical model [53] induces a likelihood of

observables of the form,

P
(
d|y) = 1√

(2π)m∏m
i=1wiσ

2
SDi

exp

⎛
⎝− 1

2

m∑
i=1

[
di − Gi

(
y
)]2

wiσ
2
SDi

⎞
⎠ , (27)

where di is the ith experimental measurement and Gi(y)

the corresponding model output, σSDi the standard deviation
associated with di, and the weights wi introduced for target
prioritization. Note that wi were tuned from MCMC simulations
with synthetic targets and included to modulate our ability
to match certain targets [53]. The synthetic targets, in turn,
represent a set that can be represented exactly by the BCM
model and generated from a known parameter set within the
permissible range. Once we have determined the likelihood
for a given parameter realization, the parameter posterior is
computed using the Bayesian conjunction of likelihood and
prior as

P
(
y|d) ∝ P

(
d|y) P (d) . (28)

Optimal parameter estimates are obtained by maximizing
P(y|d). Since we have no prior knowledge on the parameters, we
use uninformative uniform priors P(d) within the permissible
range.

MCMC with DREAM algorithm. Optimization of overparameter-
ized differential models based on scarce experimental evidence
is typically associated with non-convex posterior distributions
having multiple local extremes. Hence, we considered this
possibly complicated posterior using MCMC to ‘sense’ local and
global extremes, thus determining a convenient initial guess
for an optimizer. Specifically, based on past experience with
similar data-poor, high-dimensional problems [53, 54], we use a
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm
[28] that is well suited for nonlinear models and overcomes
the slow convergence exhibited by classic Metropolis–Hastings
MCMC. DREAM combines differential evolution and self-
adaptive randomized subspace sampling, improving over other
methods when sampling from heavily tailed or multimodal
distributions [55, 56]. Moreover, adopting parallel Markov chains
improves computational performance and offers better metrics
to assess convergence. Convergence to a stationary distribution
is monitored through the Gelman–Rubin (GR) convergence
metric [57]. A GR metric < 1.2 for all Markov chains guarantees
satisfactory convergence.

Identifiability. Limited experimental data is typically responsible
for lack of identifiability of model parameters, that is, when
certain parameters cannot be identified uniquely from system
outputs and multiple combinations of unidentifiable parame-
ters can yield the same likelihood [58]. It is thus important to
recognize unimportant parameters or their unidentifiable com-
binations to avoid misinterpretations of Bayesian estimation.
We used multiple tools to address identifiability. Using local
sensitivities, ∂G(y)/∂y (i.e. derivatives of targets with respect to
the parameters), we define the Fisher information matrix (FIM)
as [59]

I
(
y
) =
[

∂G
(
y
)

∂y

]T

C−1
d

[
∂G
(
y
)

∂y

]
, (29)

where Cd is the diagonal covariance matrix of the targets, as
previously described. The rank of this FIM is a measure of local
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Table 2. Agreement between experimental targets and predicted model outputs. Simulation outputs are the outputs from the maximum
a posteriori parameter estimates. Note that 15 of the 18 experimentally measured targets were determined using data from our previously
published murine IVC interposition graft model. Targets for key signaling molecules (TGF-β, TNF-∝, and IL-10) were determined from in vivo
and in vitro experimental studies from the literature.

Target definition [unit] Target value Reference % Uncertainty Simulation output % Deviation

nm+
at 14 days [cells] 1.10 × 106 [8, 38] 10 1.13 × 106 3.02

nm−
at 14 days [cells] 2.00 × 105 [8, 38] 10 2.08 × 105 4.11

ncM at 14 days [cells] 3.20 × 105 [8, 38] 10 3.22 × 105 0.81
naM at 14 days [cells] 1.40 × 105 [8, 38] 10 1.49 × 105 6.50
ntMat steady state [cells] 4.14 × 104 [9, 40] 10 4.12 × 104 −0.34
TGF-β max in the first 50 days [pg] 8.48 × 103 [7, 34, 50] 10 8.43 × 103 −0.58
TNF-α max in the first 50 days [pg] 6.78 × 103 [51, 35] 10 6.87 × 103 1.26
IL-10 max in first 50 days [pg] 8.48 × 102 [52, 35] 10 8.43 × 102 −0.56
MMP at 14 days [pg] 3.85 × 104 [18, 49] 10 3.85 × 104 −0.16
MMP at 84 days [pg] 2.14 × 104 [18, 49] 10 2.15 × 104 0.49
MMP at steady state [pg] 7.00 × 103 [18, 49] 10 6.88 × 103 −1.75
nEC at 168 days [cells] 4.60 × 105 [19, 10, 16] 10 4.40 × 105 3.55
nECat the end of simulation [cells] 3.10 × 104 [19, 10, 16] 10 3.17 × 104 2.41
nEC: nSMC at end of simulation [−] 2.65 × 10−1 [19, 10, 16] 25 2.50 × 10−1 −5.80
nSMCat 14 days [cells] 4.60 × 105 [19, 10, 16] 10 4.75 × 105 3.29
nSMCat 168 days [cells] 1.90 × 105 [19, 10, 16] 10 1.82 × 105 −4.14
cinfl at 14 days [pg] 3.00 × 108 [17, 18, 9] 10 2.96 × 108 −1.24
cstrs at the end of simulation [pg] 7.50 × 107 [17, 18, 9] 30 7.29 × 107 −2.85

identifiability; for example, a full rank indicates a locally iden-
tifiable system given the available set of experimental observa-
tions, while dominant contributions to null eigenvectors reveal
unimportant parameters, which can be removed.

Additionally, we use the marginal variance as a measure of
global identifiability by defining a learning factor (θi) as

θi = 1 −
√√√√σ 2

SD

(
yi|d
)

σ 2
SD

(
yi
) . (30)

This metric is a measure of the ability of the Bayesian frame-
work to ‘learn’ a parameter i by comparing its prior and poste-
rior marginal variance [53]. So-called well-learned parameters
associate with a value of θi close to one, while poorly learned
parameters have a resulting variance close to the prior, hence θi

close to zero. Poorly learned parameters, characterized by a ‘flat’
marginal posterior, are also considered unimportant and can be
removed, thus reducing the dimensionality of the estimation
problem.

Unimportant parameters were also identified using a sub-
system analysis where similar analyses, as above, were per-
formed for parameters associated with subsystems of inflam-
matory cells, signaling molecules, vascular cells, and matrix
constituents, keeping other subsystems fixed. Note that MCMC
merely generates samples from a distribution for which point-
wise evaluations of the posterior distribution are available up
to a constant. While the density of samples is expected to be
larger on the posterior peaks, MCMC need not provide the maxi-
mum of this posterior distribution. Hence, we used Nelder–Mead
optimization with restarts [29, 60], a simplex-based method, to
determine the local maximum a posteriori estimate. The DREAM
MCMC algorithm provides the parameter sample with the max-
imum a posteriori value as a robust initial guess for successive
optimization through the Nelder–Mead algorithm. In summary
(Fig. 4), we combined FIM analysis and learning factors from
MCMC simulations and reduced the initial set of 43 parameters
to a set of 22 identifiable parameters that can completely recover

the synthetic targets. These 22 parameters were then estimated
to match the desired experimental targets (Table 2).

Local sensitivity analysis

Finally, we computed variability in the model predictions due to
small perturbations of the inputs. Following parameter estima-
tion, local parameter sensitivity was determined by calculating
the local sensitivity index (LSI), defined as the percent change in
an output (target) for a percent change in input (parameter) [61].
The LSI was averaged over multiple perturbations (<10%) in the
neighborhood of the maximum a posteriori estimate.

RESULTS

Model parameterization captures salient aspects of
neovessel development in vivo

We began with a polymeric scaffold having an initial pore radius
of 20 μm and calibrated the model parameters (Fig. 5A) to yield
outputs consistent with experimental observations (Fig. 6A–D
and Table 2); the percent deviation between experimental tar-
gets and simulation outputs ranged from 0.16 to 6.5% (Table 2).
Specifically, the BCM model captured the available experimental
data on molecular and cellular counts of total immune cells
per graft, pro- and anti-inflammatory cytokines, total vascular
cells, and matrix constituents following the simulated surgi-
cal implantation of the scaffold. Marked monocyte infiltration,
numerous classically activated macrophages, and many inflam-
matory SMCs were collectively responsible for an early burst
in production of stiff collagen (Fig. 6A–D). Such inflammation-
driven collagen adversely affects neovessel distensibility in com-
parison to the more desirable stress-mediated collagen that is
produced after a scaffold loses load-bearing integrity and no
longer stress-shields the intramural synthetic cells [9, 12]. Recall,
too, that classical activation of monocytes contributes to graft
stenosis, with experimental studies in C57BL/6 mice revealing a
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Figure 4. Framework for parameter estimation, consisting of FIM identifiability analysis, adaptive MCMC algorithm, and Nelder–Mead optimization. Using this

framework, we report estimates for identifiable parameters in the BCM model in the presence of uncertainty in experimental measurements. See text for further

details.

48% patency rate for unseeded scaffolds of this design 6 months
post-implantation [8].

An analysis of the average LSI for the 22 identifiable parame-
ters revealed that the model has a dominant downwind behavior
(Fig. 5B). Parameters that govern the upstream differential equa-
tions for the initial inflammatory response to the scaffold and
subsequent recruitment of vascular cells affect multiple model
outputs to varying degrees, but parameters that govern the
downstream equations for matrix constituents, cytokines, and
proteases only influence those specific corresponding outputs
(Fig. 5B). For example, the proliferation rate for the synthetic
SMCs (rsSMC

1 ) affects the number of Ly6C+ monocytes at 14 days
(nm+

14 days), the number of SMCs at 168 days (nSMC 168 days),
the mass of stress-mediated collagen at the end of the simula-
tion (cstrs end), and the concentration of MMPs at both 84 days
(MMP 84 days) and steady state (MMP steady state); in contrast,
the rate of collagen degradation due to classically activated
macrophages (rc

2) only affects the mass of inflammatory collagen
at 14 days (cinfl 14 days). This suggests that the process of
neovessel development from an implanted biodegradable scaf-
fold may be open-loop, governed less by positive and negative
BCM feedback and more by the inherent immunogenicity of the
scaffold, which emphasizes the importance of scaffold selec-
tion and the associated need to control responses early after
implantation.

Once the baseline simulation was calibrated against exper-
imental data, we performed hypothesis-driven parametric
studies to explore possible changes in the in vivo develop-
ment of graft constituents, cells, and signaling molecules
as a function of modifications to scaffold design as well as
targeted pharmacological interventions, with the overall aim
of pointing to possible measures to maintain graft cellular-

ity, improve long-term patency, and minimize compliance
mismatch.

Reducing scaffold pore size may improve TEVG
distensibility at the cost of patency

Physical parameters characterizing a particular scaffold can
modulate the host inflammatory response by altering the
inherent immunogenicity [11]. We previously identified scaffold
pore size as a critical regulator of monocyte infiltration and
determinant of stenosis [11]. Reducing pore size from 20 to
2 μm dramatically reduced infiltration and patency [43]. We
hypothesized that this lower patency is secondary to the
inability of circulating monocytes to infiltrate the scaffold,
with an associated lack of paracrine-stimulated synthetic cells
migrating into the scaffold and depositing matrix interstitially,
thus leading to appositional growth of neotissue at the graft
lumen and consequent narrowing (which could be exacerbated
by thrombosis, which we do not model). Indeed, reducing pore
radius from 20 to 2 μm in our BCM model decreased the number
of monocytes and macrophages that entered the scaffold, which
reduced the number of recruited vascular cells that could
populate and remodel the graft. This decrease in SMCs reduced
both the immuno-driven and stress-mediated synthesis of
collagen (Fig. 6E–H, Supplementary Fig. 1E–H). Hence, we suggest
that, although a reduction in pore size could potentially improve
distensibility by reducing the early peak in inflammatory
collagen (Supplementary Fig. 1E–H), the inability of immune
cells to enter the scaffold immediately after implantation
could drastically compromise graft patency and reduce long-
term cellularity, suggesting a need to explore alternative
solutions.
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Figure 5. (A) Mean parameter values and their associated standard deviations, computed from the converged DREAM samples, for the set of 22 identifiable parameters

that can completely recover the targets within error. (B) Average LSI of the 18 targets to 22 identifiable model parameters. The LSI is averaged over multiple local

perturbations (<10%) of the maximum a posteriori estimate.

Macrophage depletion reduces TEVG stenosis but
compromises neotissue formation

Our initial therapy for reducing graft stenosis in our murine
model targeted macrophages. Clodronate liposomes are a well-
described method for depleting macrophages by apoptosis
[10]. Treatment with clodronate liposomes by intraperitoneal
injection for the first 2 weeks following graft implantation in
mice significantly decreased macrophage infiltration and, in
turn, TEVG stenosis [10]. Unexpectedly, however, clodronate
also dramatically reduced graft cellularity, suggesting that
inhibiting macrophage infiltration also reduces vascular

neotissue formation. That is, the inflammatory response is a
double-edged sword: excessive macrophage infiltration causes
stenosis, while severely attenuated infiltration results in
insufficient vascular cell recruitment and matrix synthe-
sis, both of which jeopardize long-term graft performance.
Indeed, prescribing increased apoptosis of monocytes and
macrophages in our BCM model (using a modified gamma
function to simulate clodronate administration; Fig. 3L) led
to a markedly reduced recruitment of vascular cells into the
TEVG and reduced inflammatory and stress-mediated collagen
production—all consistent with empirical observations [10]
(Fig. 6I–L, Supplementary Fig. 1I–L). Thus, we suggest that,
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Figure 6. Baseline simulations for a scaffold with an initial pore size of 20 μm, showing the natural evolution of inflammatory cells (A), signaling molecules (B), vascular

cells (C), and matrix constituents (D) over the course of 2 years. (A) FACS data of immune cells 14 days post-implantation are shown for Ly6C+ monocytes (solid light

purple circle), Ly6C− monocytes (open light purple circle), classically activated macrophages (solid dark purple circle), and alternatively activated macrophages (open

dark purple circle) [8]. (B) MMP immunohistochemical quantification is shown 2 weeks, 12 weeks, and 2 years post-implantation (solid teal circles) [18]. Targets for the

cytokines TGF-β (solid orange circle), TNF-α (solid red circle), and IL-10 (solid green circle) are derived from literature [50]. (C) Immunofluorescence quantification of

SMCs (solid maroon circles) and ECs (solid pink circles) is shown 2 weeks and 24 weeks post-implantation [19, 10, 16]. (D) Hydroxyproline assay data is shown for the

graft 7, 14, and 28 days post-implantation (solid blue circles) and for the native IVC at the end of the simulation (open blue circle) [17]. Illustrative studies were then

performed to explore these cellular and biochemical variables as a function of reduced initial pore radius (2 μm to simulate the graft used clinically) (E–H), administration

of clodronate for 2 weeks following scaffold implantation (I–L), and administration of a TGF-β R1 inhibitor for 2 weeks following scaffold implantation (M–P). All outputs

are normalized to baseline simulations for a scaffold with an initial pore size of 20 μm; see Supplementary Fig. 1 for the original simulations.

although clodronate (and similar) treatment may ameliorate
compliance mismatch by diminishing the peak inflammatory
collagen deposition and decrease the incidence of stenosis by
reducing luminal neotissue formation, it can also compromise
graft cellularity and matrix production, which can have
catastrophic consequences once the polymer loses load-bearing
integrity.

TGF-βR1 inhibition improves patency, maintains
cellularity, and minimizes compliance mismatch

We have shown experimentally that inhibiting TGF-β signaling
in mice either by early short-term systemic treatment or
local drug elution with the TGF-βR1 kinase inhibitor SB431542
improves graft patency [7, 8]. Specifically, this treatment
targets the otherwise significantly higher levels of TGF-β1
expression in occluded murine grafts, with a significant
proportion of the cells within the stenotic lesions appearing
to arise from endo-MT, a process exacerbated by TGF-β1 [7].

Again, a modified gamma function was used to simulate the
administration of this inhibitor in the BCM model. Unlike
treatment with clodronate, administration of the TGF-βR1
inhibitor did not disrupt monocyte infiltration or consequent
neotissue formation, thus maintaining cellularity of the graft
[8]. Rather, treatment with this inhibitor significantly decreases
the number of classically activated macrophages, which secrete
pro-inflammatory cytokines that exacerbate endo-MT [8]. Both
of these effects were captured by the computational model
(Fig. 6M–P, Supplementary Fig. 1M–P). Importantly, the model
predicted a marked reduction of stiff inflammatory collagen
at early times, which could translate to an increase in graft
distensibility at a tissue level (not modeled here). Administration
of this inhibitor was the only simulated intervention considered
that could potentially improve patency and reduce compli-
ance mismatch between the implanted polymeric scaffold
and the adjacent native vessel while still maintaining graft
cellularity. This promising possibility merits testing in future
experiments.
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Preferred window and duration of TGF-βR1
inhibitor treatment

While the duration of TGFBR1 inhibitor treatment clearly plays
a role in graft outcome, the onset of administration could also
modulate these effects. Thus, we next simulated the potential
impact of a delayed (by 7 or 14 days) administration of a TGF-
βR1 inhibitor on the evolution of model variables throughout
the simulation (Supplementary Fig. 2). This strategy blunted
the initial reduction in the number of classically activated
macrophages (Supplementary Fig. 2E, I, and M), resulting in an
early peak of inflammatory collagen production similar to
baseline simulations with no pharmacological intervention
(Supplementary Fig. 2H, L, and P). We also examined the impact
of shortened or prolonged administration of the TGF-βR1
inhibitor; rather than achieving the maximum drug concen-
tration 14 days post-implantation, coinciding with the peak in
immune cell infiltration, we modified the gamma function such
that the maximum inhibitor concentration was achieved at 7,
21, or 28 days post-implantation (Supplementary Fig. 3). A short-
ened (7 days) course of therapy did not suppress the immune
response and associated production of inflammatory collagen as
effectively as did the 14 days of inhibition performed experimen-
tally in the murine model (Supplementary Fig. 3A, D, E, and H).
Although prolonged administration of the inhibitor more effec-
tively blunts the residual immune response that persists past the
early post-implantation period (Supplementary Fig. 3I and M),
it exacerbates a rebound-like phenomenon in TGF-β levels
(Supplementary Fig. 3J and N), which in turn chronically ele-
vates the inflammatory collagen when compared to baseline
(Supplementary Fig. 3L and P).

One goal is to minimize the total number of classically
activated macrophages, which, by secreting TGF-β1 exacerbate
endo-MT, and in turn increases the number of inflammatory
SMCs in stenotic lesions. In place of the more favorable stress-
mediated collagen, these SMCs produce stiff inflammatory
collagen, which accumulates due to TGF-β-mediated MMP inhi-
bition and decreases graft distensibility. Further illustrated in
Fig. 7A–C, administration of the TGF-βR1 inhibitor immediately
after scaffold implantation minimizes the number of classically
activated macrophages and inflammatory SMCs and thus the
total mass of inflammatory collagen; it also maximizes the
total mass of stress-mediated collagen and MMPs through
the simulated adaptation period. As such, the simulations
suggest that delaying administration of the TGF-βRI inhibitor
post-implantation could reduce its efficacy in preventing graft
stenosis. Moreover, the reduction in the number of classically
activated macrophages and associated inflammatory collagen
mass plateaus following 21 days of TGF-βR1 inhibitor therapy
(Fig. 7D–F), suggesting that prolonged inhibitor administration
may not have added benefits. Indeed, there appears to be
a preferred initial window of targeted therapy, for 3 weeks
immediately following scaffold implantation, that maximally
blunts the immune response to the polymer and minimizes
the consequent peak in inflammatory collagen. Identification
of such a therapeutic window is critical since prolonged
administration of this inhibitor could have adverse effects
systemically and on long-term graft biomechanical outcomes.
Finally, although tissue-level distensibility, compliance, stenosis,
and patency were not explicitly modeled in this study, our
hypothesized explanations are based on prior correlations
between these geometric/functional metrics and graft compo-
sition [7–12, 17–19]. Hence, the present results can guide future
experiments and data collection.

DISCUSSION

Several BCM models of vascular adaptation exist [13, 62–65], but
few consider neotissue development leading to luminal narrow-
ing. Most studies of stenosis focus on vein grafts using agent-
based modeling [36, 66, 67], though biomechanical modeling
[68], including hemodynamics [69], has been pursued. Clearly,
there is move toward more integrative modeling approaches that
consider mechanical factors as well as cellular and molecular
mechanisms underlying stenosis, but to our knowledge our
BCM model is the first to explore mechanistically the in vivo
formation of a neovessel from an implanted biodegradable
polymeric scaffold. Previous computational simulations from
our group employed a constrained mixture theory of G&R
that accounts phenomenologically for immuno-driven and
mechano-mediated matrix turnover in TEVGs, with good
descriptive and predictive capability [9, 11, 12, 30]. Nevertheless,
phenomenological models cannot address the roles of specific
classes of cells or biomolecules, which limits one’s ability to
simulate particular pharmacological strategies.

Herein, we presented a mechanistic BCM model that comple-
ments our prior G&R model by incorporating the complex inter-
play between biomechanical and biochemical factors that occur
throughout neovessel development from an implanted poly-
meric scaffold. We also propose a framework for the assimilation
of experimental data and assessment of associated uncertainty
that overcomes problems of manual tuning by automatically
determining an optimal parameter set that produces results con-
sistent with observed measurements, in this case for our murine
IVC interposition TEVG and experimental values obtained from
the literature. This well-parameterized model captured exper-
imentally observed profiles of immune cells, pro- and anti-
inflammatory cytokines, vascular cells, and matrix constituents
following scaffold implantation.

We then used this BCM model to parametrically explore the
in vivo evolution of wall constituents as a function of scaffold
pore size, macrophage depletion by clodronate liposomes, and
immunomodulation via the growth factor TGF-β1. Notably, the
model suggested that treatment with a TGF-βR1 inhibitor not
only inhibits endo-MT and prevents TGF-β-induced classical
activation of infiltrating monocytes, it also reduces inflamma-
tory collagen production during early scaffold remodeling while
preserving neotissue formation and graft cellularity. Interest-
ingly, however, the model suggests that temporal reductions
in the level of the TGF-βR1 inhibitor may allow a rebound-
like phenomenon, with an increase in TGF-β levels increasing
the number of inflammatory SMCs, which results in a chronic
(albeit minor) elevation of inflammatory collagen relative to
stress-mediated collagen when compared to the baseline sim-
ulation (Fig. 6). It appears, then, that an initial suppression of
TGF-β signaling, while favorable in the short-term, may not be
sufficient to block all adverse effects in the long term. It also
appears that there is a preferred window and duration when
the TGF-βR1 inhibitor treatment is most effective (Fig. 7). The
difficulty in predicting complex temporal effects due to highly
coupled molecular and cellular mediators reveals a potential
advantage of integrative computational models, as, for example,
in overcoming the current challenge of optimizing clinical inter-
ventions in vascular tissue engineering.

This study further emphasized the need for focused data
collection and carefully designed experiments, which must
increase the number and diversity of the experimental targets.
The proposed BCM model has 43 parameters, which were
tuned herein against available (18 in this case) measurements
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Figure 7. (A–C) Parametric studies showing the evolution of the total number of classically activated macrophages and inflammatory SMCs (A), total mass of TGF-β and

MMPs (B), and total mass of inflammatory and stress-mediated collagen (C) through the adaptation period as a function of the delay in the start of TGF-β R1 inhibitor

treatment. Variables are normalized to their respective values in the absence of inhibitor treatment. (D–F) Parametric studies showing the evolution of the total number

of classically activated macrophages and inflammatory SMCs (D), total mass of TGF-β and MMPs (E), and total mass of inflammatory and stress-mediated collagen

(F) through the adaptation period as a function of the duration of TGF-β R1 inhibitor treatment. Variables are normalized to their respective values in the absence of

inhibitor treatment. There appears to be an optimal window and duration of TGF-β R1 inhibitor treatment.
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from in vivo and in vitro experimental studies. As such we
were able to uniquely recover only 22 identifiable parameters.
Most unidentifiable parameters arose from either overly
parameterized systems or systems that have multiple functions
and few relevant measurements. As our model was motivated by
biological observations and has a high fidelity in its constituent
populations, it has identified gaps in the available experimental
data. For example, system-specific data are sorely lacking on
both the magnitudes and the temporal and spatial profiles of
key pro-inflammatory, anti-inflammatory, and immunomod-
ulatory cytokines in TEVGs. Multiplex immunoassays, when
performed longitudinally for multiple markers and multiple
scaffold designs and pharmacological interventions, could help
establish reliable experimental targets and allow us to move
away from often unrelated literature values, which are less
accurate due to unavoidable differences in animal models and
experimental design. Moreover, although we had some data on
monocyte/macrophage phenotype, vascular cell populations,
protease expression, and collagen synthesis and degradation,
many of these data sets need to be extended. For example,
FACS analysis could be performed longitudinally rather than
at a single end point (currently two weeks), the extent of
SMC differentiation and maturation could be identified by
careful selection of markers for immunofluorescence staining
or lineage tracing, MMP activity could be quantified in addition
to its expression, and collagen cross-link density, alignment,
and fibrillar ratio could be evaluated during the inflammatory
response to the polymeric scaffold and following its resolution.
Increasing the number of ‘quality’ experimental targets should
increase the number of identifiable parameters.

It is interesting that our model has a dominant downwind
behavior; that is, it is an open-loop formulation. Although many
biological systems function in closed-loop and are governed
by positive (e.g. fibrosis) or negative (homeostatic) feedback,
neovessel development from an implanted biodegradable
scaffold may be an exception. Variations in graft physical
properties and immunogenicity may have far-reaching effects
on the local degradation characteristics of the polymer and the
elicited inflammatory response, which could change the bio-
chemical environment and biomechanical stimuli experienced
by the infiltrating cells, thus influencing local immune cell
phenotype, vascular cell differentiation, and matrix production.
In essence, the immune response to the polymer is dictated
by scaffold physical parameters and can strongly influence the
eventual patency and functionality of the remodeling graft. This
could explain why early intervention with immunomodulatory
therapies has proven effective in reducing the incidence of
stenosis [8, 10]. Indeed, as noted above, our BCM model suggested
that the best therapeutic window (of those considered) for
the TGF-βR1 inhibitor was for 21 days immediately following
scaffold implantation, with no observable benefit of prolonged
drug administration after this period. Such a downwind behavior
also raises challenges in estimating the parameters, especially
those that are downstream in the network, as they need to be
estimated against fewer measurements.

We started the parameter estimation process with uniform
priors and ended up with Gaussian-like marginal histograms
for most parameters (not shown). In this way, we overcame
bias. Informative priors can accelerate convergence and improve
identifiability in Bayesian estimation. Hence, it may be worth-
while to pursue multilevel estimation, that is, updating the
parameter prior through submodel analysis. Multilevel estima-
tion can take advantage of the compartmental structure of the

BCM model to further reduce the parameter marginal posterior
variance and improve parameter learning [53].

We submit that this BCM model and approach to parameter
estimation represent an important step forward in computa-
tionally modeling neovessel development in vivo. Nevertheless,
much remains to be done, including overcoming the current
modeling limitations. First, the input parameters (Fig. 3) were
fixed and unconnected to the mechanistic BCM model, and we
did not account for their uncertainty. Coupling to continuum
models of G&R will be a natural next step. Second, we had to
mine the literature which represents varying methods, scales,
and systems to identity experimental targets against which
the parameters were estimated. Third, the proposed system
focused mostly on a cellular scale and thus lacks spatial fidelity,
namely, luminal versus interstitial versus abluminal cell behav-
iors or concentration gradients. In designing novel scaffolds to
improve outcomes, it is critical to consider that degradation
could occur preferentially at the surface of the scaffold [70].
Indeed, polymer degradation for the associated G&R framework
was assumed to occur volumetrically; however, some preferen-
tial erosion from the graft surface would likely occur, partic-
ularly if cells are slow to penetrate the full thickness. Fourth,
we did not incorporate platelets into the model, which play
roles in determining the short-term patency of small-caliber
TEVGs.

There is, therefore, a pressing need for continuing exper-
imentation and integration of this mechanistic model into
tissue-level models to create more comprehensive, coupled
multiscale BCM models of neovessel formation, well informed
and validated by experimental observations. In addition to
predictions, good models help to identify specific experi-
mental needs. These include detailed characterizations of
scaffold physical parameters and their effects on the elicited
immune response, quantification of pro- and anti-inflammatory
cytokines and growth factors using multiplex immunoassays,
and documentation of the evolution of specific cellular species
and matrix constituents, particularly during rapid periods of
neovessel formation. Once established for a few diverse scaffold
designs, the true merit of a mechanistic model will emerge—to
enable extensive time- and cost-efficient parametric studies
to identify optimal scaffold parameters as well as optimal
concentrations and clinical courses of targeted pharmacological
therapies for improving short- and long-term biomechanical
outcomes such as graft patency, distensibility, and cellularity. In
this way, we can reduce the vast experimental search space and
hopefully arrive much sooner at approaches that can be eval-
uated experimentally in fewer preclinical animal models and
validated in clinical trials. We submit that the present model is a
critical step toward this long-term goal of the tissue engineering
community.
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