Skip to main content
. 2019 Jun 4;22(2):213–216. doi: 10.4103/aja.aja_46_19

Table 2.

Univariate and multivariate binary logistic regression analysis testing the value of clinical variables in predicting prostate cancer (all the prostate cancer)

Variables Univariable analysis Multivariable analysis


OR (95% CI) Standard error P OR (95% CI) Standard error P
Age (year) 0.960 (0.921–0.999) 0.021 0.046 0.915 (0.868–0.965) 0.027 0.001
PV (cc) 1.044 (1.019–1.071) 0.013 0.001 1.016 (0.981–1.051) 0.018 0.038
F/T PSA 394.708 (2.569–60640.494) 2.569 0.020 58.204 (0.079–43133.384) 3.372 0.028
PSAD (ng−1 ml−1 cc−1) 0.000 (0.000–0.000) 2.156 <0.001 0.001 (0.000–0.323) 3.215 0.021

PV: prostate volume (cc); PSA: prostate-specific antigen; F/T PSA: free/total PSA ratio; PSAD: PSA density (ng ml−1 cc−1); CI: confidence interval; OR: odds ratio