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Abstract

Precise management of patients with cerebral diseases often requires intracranial pressure (ICP) 

monitoring, which is highly invasive and requires a specialized ICU setting. The ability to 

noninvasively estimate ICP is highly compelling as an alternative to, or screening for, invasive ICP 

measurement. Most existing approaches for noninvasive ICP estimation aim to build a regression 

function that maps noninvasive measurements to an ICP estimate using statistical learning 

techniques. These data-based approaches have met limited success, likely because the amount of 

training data needed is onerous for this complex applications. In this work, we discuss an 

alternative strategy that aims to better utilize noninvasive measurement data by leveraging 

mechanistic understanding of physiology. Specifically, we developed a Bayesian framework that 

combines a multiscale model of intracranial physiology with noninvasive measurements of 

cerebral blood flow using transcranial Doppler. Virtual experiments with synthetic data are 

conducted to verify and analyze the proposed framework. A preliminary clinical application study 

on two patients is also performed in which we demonstrate the ability of this method to improve 

ICP prediction.
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1 Introduction

Determination of intracranial pressure (ICP) is essential for precise management of patients 

with brain injury, hemorrhage, tumor, hydrocephalus and other neurologic conditions1. 

Elevated ICP reduces cerebral blood flow, which can lead to brain damage or death10. The 

clinical standard for ICP monitoring, which entails penetrations of the skull and brain, 

carries the risks of hemorrhage, infection and tissue damage12. Moreover, such invasive 

techniques require neurosurgical expertise and a specialized ICU setting44. Even in such a 
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setting, a significant concern is to identify when ICP monitoring should be initiated for a 

given patient. A noninvasive method to estimate ICP can reduce the risks of invasive ICP 

monitoring, better identify patients needing invasive monitoring, and potentially broaden 

ICP evaluation beyond the ICU setting.

The majority of noninvasive ICP (nICP) research has been to identify noninvasive signals 

that are correlated to ICP. These have included pupil size, intraocular pressure, optic nerve 

sheath diameter, tympanic membrane displacement, cerebral blood flow velocity (CBFV), 

visual evoked potentials and skull movements, among others4. However, identifying 

noninvasive signals that are correlated to ICP often only enables inference of ICP trending or 

its detrimental effects. There remains a need to quantitatively estimate ICP from noninvasive 

signals for proper clinical response44,4. To address this challenge, nICP research has recently 

sought to develop algorithmic solutions that can bridge the gap between noninvasive 

measurements (measurable states) and ICP (the hidden state)7.

To connect measurable states with a hidden state requires a model, which can be data-based 

or theory-based. Most prior works on nICP estimation have been data-based, and have tried 

to construct mapping functions between noninvasive signals and ICP using supervised 

learning techniques, including linear/nonlinear regression6, support vector machines 

(SVM)43, kernel spectral regression24, and artificial neural networks15. Despite the varied 

attempts, these methods have struggled to achieve accurate nICP assessment for a de novo 
patient. The limitation of a data-based approach is the requirement of sufficient training data. 

Data is inherently limited for this problem because gold-standard ICP measurement is highly 

invasive, data can vary in quality or consistency, and complications with sharing patient data. 

Moreover, a large amount of data is likely necessary due to the complexity of the underlying 

physiology and inter-patient variability.

Utilization of theory-based models may help to alleviate the need for inordinate training 

data, and maximize the utility of each individual’s data, when compared to a data-based 

approach. Theory-based intracranial modeling has advanced in recent years to increase our 

understanding of the mechanisms that drive intracranial pressure42,26. In contrast to black-

box models that depend on training data, theory-based models rely on physiological 

knowledge and physical principles. It is broadly accepted that ICP dynamics is driven by the 

interactions between cerebral blood flow (CBF), cerebrospinal fluid (CSF), and brain soft 

tissue under the constraints of a rigid skull. Lumped-parameter (LP) models are widely 

employed for modeling the dynamics of these intracranial components, and among the 

several publications in this area, Ursino et al.41,40, Stevens et al.38, and Linninger et al.27 

have contributed significantly to establishing theoretical models of the component dynamics. 

However, the clinical impact of existing theory-based models remains negligible.

The challenges of using theory-based model for ICP estimation include the coupling of 

sufficiently comprehensive component models needed to capture the important physiology, 

and calibration of these model parameters for a de novo patient. A promising approach is to 

combine useful information from both theory-based modeling and noninvasive 

measurement. Kashif et al.22 demonstrated the merits of this idea. Namely, they showed that 

the accuracy of a model-based nICP approach was significantly improved compared to a 
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purely data-driven approach. Hu et al.14 also exploited using a basic physiologic model with 

measured data and filtering to estimate ICP. A recent review7 comprehensively comparing 

existing nICP algorithms also confirmed the advantage of introducing physical models/

constraints. While these works substantiate the potential of this approach, theory-based nICP 

methods still require significant development both in terms of modeling the physiology and 

effective assimilation of data. Data assimilation (DA) is emerging in other areas of 

biomechanics modeling28, and has recently included the use of variational-based 

methods39,21, unscented Kalman filtering5,29,31, and most recently ensemble Kalman 

filtering (EnKF)2,25.

The framework developed herein advances both intracranial modeling capabilities and data 

assimilation methodology in comparison to prior works in nICP estimation. Namely, we 

employ a Bayesian data assimilation (DA) framework that uses a regularizing iterative 

ensemble Kalman filtering to combine noninvasive transcranial Doppler (TCD) 

measurements with a recent multiscale intracranial dynamics model. The novelty of this 

work is in the state-of-the-art Bayesian DA and intracranial dynamics modeling, as well as 

an alternative from existing data-based, black-box nICP methods. Moreover, this work is 

significant in that the performance of the proposed approach in both synthetic and patient-

specific cases demonstrates that TCD CBF measurements are informative of ICP dynamics, 

and that ICP can be potentially estimated noninvasively from CBF waveforms. The rest of 

this paper is organized as follows. Section 2 introduces the key components of the proposed 

model-based nICP framework, including the multiscale intracranial model and regularizing 

iterative ensemble Kalman method. Section 3 presents numerical results for both synthetic 

cases and patient-specific cases to demonstrate merits of the proposed method. Finally, the 

success and limitations of the method are discussed in Section 4.

2 Materials and Methods

2.1 Overview of data-augmented, theory-based modeling framework

The main idea of the proposed framework is to combine a physiological model of ICP 

dynamics and noninvasive ICP-related measurements (e.g., CBFV or arterial blood pressure, 

ABP) to achieve an nICP estimation. A Bayesian data assimilation scheme is adopted to 

incorporate the noninvasive data for calibrating the model and estimating unobserved states 

(i.e., ICP) for a de novo patient. A schematic of this framework is shown in Fig. 1. 

Conceptually, it consists of three modules, including (1) a forward model of intracranial 

dynamics, (2) noninvasive measurement data, and (3) a data assimilation scheme, which are 

marked by the red, blue and green boxes, respectively, in Fig. 1. The theory-based forward 

model within the red box is used to compute measurable states (e.g., CBFV and ABP) and 

hidden states (e.g., ICP) based on physical principles. Without calibration, the model can be 

expected to produce an inaccurate prediction (red curve) due in large part to inaccurate 

model parameters for a de novo patient. To address this issue, noninvasive measurement data 

specific to each patient are integrated into the model within a Bayesian framework, and thus 

primary model parameters can be more accurately established, leading to improvement in 

the calibrated ICP prediction (green curve).
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Specifically, a multiscale cerebrovascular model34 is employed as the forward model in this 

work to simulate intracranial states z (e.g., ICP, CBFV, and ABP) based on prescribed initial 

states z0, boundary conditions ∂D, and model parameters θ. The forward problem can be 

generally represented as a mapping z = ℱ z0, ∂D, θ . The predicted state z can be expected to 

be biased from the truth z due to model-form errors in ℱ and uncertainties in boundary 

conditions ∂D and parameters θ. This can be expressed as

z = ℱ z0, ∂D, θ = z + σm, (1)

where σm represents the model discrepancy. Similarly, noninvasive measurement data y, e.g., 

CBFV or systemic ABP, to be assimilated are imprecise and indirect in relation to ICP. This 

can be expressed as

y = ℋ z + σd, (2)

where ℋ ⋅  represents a projection operator mapping the full state to the observed space, 

and σd represents measurement noise. Typically, the measurements are sparse in time and/or 

space. In the proposed framework, the model discrepancy σm is modeled as a random 

process representing an epistemic uncertainty, while the data noises are modeled as 

independent Gaussian random variables. The fusion of the model and data are formulated in 

a Bayesian manner. Namely, the prior estimation is obtained from the baseline model by 

assuming prior distributions for the initial conditions zo, boundary conditions ∂D, and 

parameters θ. The likelihood is obtained from the probabilistic distribution of the data 

uncertainty, and the data-assimilated prediction is the posterior estimation obtained after the 

Bayesian updating.

The forward model and data assimilation scheme are described further below, as well as the 

assimilation of noninvasive data from both synthetic experiments and actual patient-specific 

scenarios.

2.2 Forward model of intracranial dynamics

The multiscale cerebrovascular model described in Ryu et al.34 was adopted as the forward 

model. This model was developed to simulate regulatory cerebrovascular flow by coupling a 

distributed one-dimensional (1D) propagation network model of the major systemic arteries 

to a sophisticated lumped parameter (LP) network of the intracranial dynamics. The 

intracranial LP portion of the model includes mechanisms such as cerebral autoregulation, 

collateral rerouting, and CSF and ICP coupling. A schematic of the multiscale forward 

model is shown in Fig. 2.

The 1D distributed network (Fig. 2a) models arterial blood flow and pressure throughout the 

major systemic and cerebral arteries. While the number of the arteries is adjustable, we 

included the major arteries supplying the head, arms, and torso as shown in Fig. 2a. Each 

arterial segment is modeled as a deformable tube with blood flow and wall deformation 

governed by the 1D Navier-Stokes and Laplace equations,
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∂A
∂t + ∂AU

∂x = 0, (3a)

∂U
∂t + 2α − 1 U ∂U

∂x + α − 1 U2

A
∂A
∂x = − 1

ρ
∂p
∂x + 2μ

ρR
∂u
∂r R

, (3b)

p − p0 = πℎE
1 − σ2

1
A0

− 1
A , (3c)

where x and r are the axial and radial coordinates, R, h, A, σ and E are respectively the 

vessel radius, thickness, cross-section area, Poisson’s ratio and Young’s modulus. U is the 

transverse average of the axial velocity u, p is the transversely averaged pressure, ρ and μ are 

blood density and viscosity, p0 is the external pressure, and R0 is the radius at zero 

transmural pressure (p = p0). The parameter and wall shear rate ∂u
∂r R are determined from 

an assumed velocity profile17 with the arterial segment diameter. In regards to boundary 

conditions, a sinusoidal inflow rate Qin(t) is prescribed at the aortic root, the extracranial 

terminals (marked with ● in Fig. 2a) are coupled to three-element Windkessel models, and 

the intracranial terminals (marked with ○ in Fig. 2a) are coupled with the LP intracranial 

network.

An intracranial LP network (Fig. 2b) is coupled to the 1D domain to capture the dynamics 

and coupling between CBF, CSF and ICP. The 6 major arterial territories of the brain (Left/

Right Anterior/Middle/Posterior) are represented by lumped vessel models, and are 

controlled by the respective vascular passive elastic tension Te, viscous tension Tν, and 

active tension Tm produced by the smooth muscle contraction in response to autoregulation 

stimuli–either myogenic or metabolic. Briefly, the relation between transmural pressure and 

wall tensions is applied based on Laplace’s Law,

Pdrd − Pic rd + ℎd = Te + Tv + Tm, (4)

where Pd, rd, and hd are pressure, effective radius, and vessel thickness of each lumped 

arterial bed, and Pic represents the intracranial pressure. The passive elastic tension is 

calculated by assuming an exponential functional form of rd as,

Te = σe0 exp Kσ
rd − rd0

rd0
− 1 − σcoll ℎd, (5)

where σe0, rd0, Kσ, and σcoll are constant model parameters. The viscous tension is related to 

the viscous force of the blood flow, which is expressed as Tv = η/rv0 drd/dt  with η and rν0 

being constant model parameters. Cerebral autoregulation is carried by smooth muscle 

producing an elastic tension as,
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Tm = T0 1 + M exp − rd − rm
rt − rm

nm
(6)

where T0, rt, rm, and nm are constant model parameters, and M is the autoregulation 

activation factor responding to maintain CBF, which varies between [−1, 1] and can be 

calculated by,

M = e2x − 1
e2x + 1

. (7)

The extreme values of M, 1 and −1, represent maximal vasoconstriction and vasodilation. To 

maintain CBF, the control function is modeled with a first-order low pass system expressed 

as,

tCA
dx
dt = − x + GCA

qd − qn
qn

, (8)

where qd is the CBF at each cerebral territory, and qn is the respect target flow rate. tCA and 

GCA are constant parameters representing the time scale and gain of the low pass filter, 

respectively.

ICP Pic is spatially uniform within the intracranial compartment and shared by the six distal 

vascular beds. The ICP and its coupling with the cerebral vascular system are determined by 

the Monro-Kellie principle, assuming that the total volume inside the cranium remains 

constant, which can be represented as follows,

Cic
Pic
dt = ∑

k = 1

6 dV k
dt + Ifk − I0 (9)

where k represents the indices of six distal vascular beds, Vk is the blood volume of vascular 

bed k, Ifk and I0 are CSF inflow and outflow, respectively. The intracranial compliance Cic 

is modeled as a nonlinear function of ICP. The volume changes of Vk is represented by a 

differential equation of effective vessel radius rd of each vascular territory, which varies due 

to blood pressure and myogenic or metabolic autoregulation. This cerebrovascular model 

has been validated against clinical measurements of a transient hyperemic response test11, 

which quantifies the dynamics change of CBFV in the right MCA due to transient 

compression of the carotid artery. Additionally, qualitative validation of the model with 

regards to CO2 inhalation and hyperventilation tests have also been performed35. Further 

implementation details and nominal parameter assignment for this model can be found in34.

This multi-scale model is potentially advantageous for several reasons. A distributed 1D 

network for modeling the major systemic and cerebral arteries facilitates data assimilation. 

Namely, measurements of blood flow or pressure from specific arteries can be more directly 

assimilated to corresponding locations in the model. Moreover, the 1D distributed network 

enables more realistic pressure and flow temporal waveforms37, and therefore, 
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measurements of (e.g., CBFV or ABP) temporal waveform dynamics can be better 

assimilated, potentially better informing model calibration and ICP estimation. These 

pressure and flow waveforms are also the main “forcing functions” to intracranial dynamics. 

The multi-scale model also enables more avenues to make the model patient-specific from, 

e.g., angiography, or other clinically-available data.

2.3 Regularizing iterative ensemble Kalman method

Data-assisted predictions of unobserved states and parameters can be considered posterior 

estimations calculated from the prior (Eq. 1) and data (Eq. 2) using Bayes’ theorem

p x y p x p y x , (10)

where p(x|y), p(x), and p(y|x) are the probability density functions of the posterior state, 

prior state, and data uncertainty, respectively. To obtain the exact posterior estimation, 

Markov chain Monte Carlo (MCMC) sampling is typically required to sample the posterior 

distribution. This process involves an onerous number of forward model evaluations 

sequentially, which is prohibitively expensive for nontrivial systems. As such, we adopt an 

approximate Bayesian approach, the iterative ensemble Kalman method (IEnKM)19, along 

with an ensemble-based regularizing scheme18. Instead of directly sampling the entire 

posterior distribution, the Bayesian analysis formula in the IEnKM is derived under a 

Gaussian assumption. Specifically, by assuming that measurement noises σd obey an 

unbiased Gaussian distribution with a covariance Pd and the underlying distribution of 

model predictions is also Gaussian with the mean x and covariance Pm, the updated state 

(i.e., Bayesian analyzed state with a maximized posterior) x can be expressed as,

x = x + PmHT HPmHT + αPd
−1 y−Hx , (11)

where [·]T denotes matrix transpose; H is the matrix form of the observation projection 

function ℋ ⋅  mapping the full state x to the observed state y; α is a control variable used 

for regularization described below. The Monte Carlo method is employed to estimate 

associated statistical information. Namely, the error covariance matrices Pm and Pd for the 

forward model predictions and observation data are estimated based on a number of 

samples. Therefore, potential non-Gaussian behavior and nonlinearity of the model can be 

considered by the ensemble-based estimations. Conceptually, to perform IEnKM-based data 

assimilation, there are three main steps: (1) prior sampling, (2) forward prediction (3) 

Bayesian analysis. These procedures are presented in the Fig. 3, and will be detailed below. 

The entire algorithm can be found in Appendix 4

Prior sampling: The variations of model predictions (i.e., predicted CBFV and ICP) are 

induced by uncertainties in model parameters θ, initial physical state zo, and boundary 

conditions ∂D. To capture correlations among them, an augmented state vector 

x = zoT , θT , ∂DT T
 is used in the data assimilation process. To begin, we sample the initial 

parameter space based on prior knowledge to represent the uncertainties in model 

parameters and initial/boundary conditions. The Latin hypercube sampling method20 is 
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adopted to efficiently generate the initial state ensemble xj j = 1
Ns , where Ns represents 

number of samples. As shown in Fig. 3, each sample (red dot in the blue dashed box) 

represents one possible initial guess of the model inputs, i.e., model parameter set, initial and 

boundary conditions.

Forward prediction: The uncertainties in model inputs lead to different predicted states 

by evaluating the forward intracranial model Ns times. Namely, each initial sample in the 

parameter space corresponds to one possible physical state predicted by the forward model. 

The physical state vector consists of variables including ICP and CBFV and ABP at various 

vessels. Augmented with model parameters and boundary conditions, an ensemble of 

predicted states xj j = 1
Ns  is obtained, which are represented by the red dots in the state space 

“1” in Fig. 3. Without incorporating any data, the forward prediction can be seen as an 

uncertainty propagation process, where variations of model inputs are propagated to the 

predicted state variables as propagated uncertainties. The predicted state ensemble 

represents a prior estimation of the intracranial state.

Bayesian analysis: When data (i.e., TCD-based CBFV and/or ABP) are available, the 

predicted state ensemble can be updated based on the Eq. (11). This is Bayesian analysis 

where both the physical variables and model parameters are updated by incorporating 

information from observation data. To calculate the analyzed state x, mean and error 

covariance information of predicted states and observation data is estimated by samples. The 

perturbed observation samples yj j = 1
Ns  (blue triangles in Fig. 3) are obtained within the 

observation space spanned by measurement uncertainties and process errors. Note that only 

a very limited portion of the state is observed (e.g., CBFV at MCA), and thus the dimension 

of observation vector y is much smaller than that of the full state vector x, as shown in Fig. 

3. Finally, the updated state ensemble is in turn used as the initial ensemble in next iteration 

of the IEnKM.

Iterative regularization scheme: The forward prediction and Bayesian analysis steps 

are conducted iteratively until a prescribed stopping criterion. To stabilize the Bayesian 

update and control the iterative process, a regularization scheme proposed in18 was adopted. 

Specifically, the control variable α in Eq. 11 is calculated by the following sequence,

αi + 1 = 2iα0, (12)

where α0 is an initial guess. Then, we chose α = αN, where N is the first integer such that,

αN Pd
−1/2 HPmHT + αNPd

−1 y−Hx 2 ≥ ρ Pd
−1/2 y−Hx 2, (13)

where ⋅ 2 represents L2 norm, and ρ is a constant parameter within an interval of (0; 1). 

Larger ρ indicates slowly decaying α and thus more regularization on the Bayesian analysis. 

The iteration is terminated whenever the normalized misfit between prediction and data is 

smaller than the noise level of the data, as shown by Eq. 22. This regularization scheme can 

be derived as an approximation of the regularizing Levenberg-Marquardt scheme30, where 
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the derivative of the forward operator and its adjoint are approximated using ensemble-based 

covariances. The details of associated derivations and proofs can be found in18.

3 Results

We first consider synthetic data to systematically explore the proposed framework. Our goal 

is to test if the assimilation of middle cerebral artery (MCA) blood flow velocity, which is 

readily accessible clinically, is sufficient to improve prediction of ICP in the model. Note, it 

is not obvious that assimilation of MCA CBFV data alone (and even if the data is noise-free) 

can lead to significant improvement in ICP prediction since the intracranial model is highly 

nonlinear, and MCA flow velocity has no direct relation to ICP. We then proceed to a more 

realistic application, using patient-specific TCD data measured clinically in patients 

suspected of having intracranial hypertension. These patients also had invasive ICP 

measurements performed that the model prediction can be compared against.

Based on a parameter sensitivity analysis (see Table. 1) for the intracranial model by the 

one-factor-at-a-time (OFAT) method, we identified that the target perfusion flow rate 

parameters qn (see Eq. 8) of the six arterial territories are important for both CBFV and ICP 

prediction. (Note, this does not necessarily imply CBFV is dominant in ICP prediction.) To 

improve identifiability of the problem, only the six primary parameters qn are inferred 

simultaneously along with the hidden ICP state. Other parameters, which were deemed less 

important by the sensitivity analysis were determined offline from population-based 

calibrations conducted in previous studies14,40. The full set of primary parameters for both 

the forward intracranial model and the data assimilation process are given by Table 2.

3.1 Verification with synthetic data

The intracranial model was run using an arbitrary but physiologic set of model parameters as 

the “ground truth”. That is, instead of data coming from a patient, data comes from the 

model run with a hidden parameter set. The six unknown “true” target flow rate parameters 

are shown as black lines in Fig. 4. Synthetic TCD data was obtained by “measuring” CBFV 

at the left and right MCAs, with and without artificial random noises added. Then all 

simulated information is discarded, except the measured MCA CBFV data, and the ICP 

which was blinded and reserved as the “ground truth” to later compare against. To determine 

the sample size sufficient for an accurate mean estimation, data assimilation using Ns = 20; 

50, and 100 samples was conducted and the expectations of posterior ICP estimations are 

compared. The results showed that the difference among these cases was less 2%. Therefore, 

twenty samples (Ns = 20) were adopted in the following numerical cases. Note that the term 

“sample” represents one of the randomly perturbed forward simulations in IEnKM, while 

the term “data” refers to the noninvasive measurements within this paper.

3.1.1 Noise-free CBFV data—We first consider the case in which the MCA CBFV 

measurements are noise-free. Figure 4 shows DA iteration histories of the target flow rate 

parameters qn, n = 1, ⋯, 6, which are added to the extended state vector and inferred during 

the DA process. All the samples (light green lines) are scattered initially (iteration step 0), 

representing the prior distributions of the parameters. Each ensemble mean at iteration step 0 
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(first red dot) can be seen as a best prior guess for the respective parameter; it is observed 

that these prior guesses deviate significantly from the respective ground truths (black lines), 

representing a typical biased prior estimation. The bias is highly relevant in real-world 

applications, since it is almost impossible to guarantee an unbiased prior (initial guess for a 

de novo patient). However, after assimilating the synthetic TCD velocity “measurements” at 

the MCAs, the unknown parameters are well recovered within a few iterations and 

uncertainty is largely reduced. As expected, CBFV data in the MCAs is most informative to 

MCA-related target flow rates (q1 and q2), which converge exactly to the truth, whereas 

slight discrepancies remain for ACA and PCA territory perfusion flow rates (q3 – q6).

We next consider the hidden state of most interest, ICP, which is less directly related to 

CBFV than the hidden parameters qn. The comparison of prior and posterior estimations for 

ICP are presented in Fig. 5. In Fig. 5a, it can be observed that the prior samples of ICP 

prediction are scattered from around 8:5 mmHg to 12:0 mmHg due to physiologic 

perturbations of the initial state and parameters due to prior epistemic uncertainty. Similarly, 

the mean (red dashed) of the prior ICP ensemble is biased from the truth (black solid). Fig. 

5b displays the convergence of each sample following assimilation of the MCA CBFV data, 

demonstrating that all the posterior samples converge to the truth after the regularizing 

iterative ensemble Kalman DA method is applied with very low uncertainty and expected 

value very close to the true value. We note that the other hidden physical states, including 

flow velocity and pressure at unobserved arteries, were also similarly recovered via this 

framework; since the prediction performance is similar to that shown here for ICP, those 

results are omitted.

Assimilating data from both MCAs was considered in the synthetic tests since such 

simultaneous measurements can, in theory, be obtained clinically. Alternatively, we also 

consider data from only one MCA, which is more consistent with the clinical cases 

considered below in Section 3.2. Results from the synthetic tests with only the right MCA 

CBFV data assimilated are presented in Fig. 5, with the results from noise-free data in panel 

(d) and from noisy data in panel (e). As shown, the posterior mean of ICP maintains close 

consistency with the true ICP. However, the posterior sample scattering is slightly higher 

compared to the case with data from both MCAs assimilated (Fig. 5, panels b and c). This 

demonstrates that the epistemic uncertainties resulting from the lack of data can be 

reasonably considered in the current Bayesian framework.

3.1.2 Noisy CBFV data—We next consider corrupting the synthetic MCA CBFV data 

with 10% Gaussian random noise to represent measurement error, and in addition a 10% 

process error is considered to account for potential model-form uncertainties. The 

combination of the measurement error and process error are reflected by the data error 

covariance matrix Pd
9. We focus here on our ultimate target of ICP. Figure 5c displays the 

ICP posterior estimation following assimilation of the noisy MCA CBFV data. It is clear 

that all ICP samples, which as above demonstrate high scatter in the prior estimation, 

converge toward the true signal by incorporating the (now noisy) CBFV data, and that the 

associated posterior uncertainties are largely reduced. However, compared to the results of 

the noise-free case as shown in Fig. 5b, where all posterior ICP samples converge to the 

truth, the posterior ICP samples in Fig. 5c display some scatter, or posterior uncertainty. 
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Nonetheless, all samples and the expectation are close to the truth. Moreover, if only the data 

from one MCA is assimilated, a higher posterior uncertainty (i.e., higher sample scatter) is 

observed in Fig. 5e, which is expected due to the reduction of data.

Interestingly, in contrast to the ideal noise-free case above where all the hidden states are 

essentially recovered exactly, the posterior estimations of CBFV at unobserved vessels are 

not significantly improved by assimilating the noisy data. For example, Figures 6a and 6b 

show the prior and posterior ensembles of CBFV at the right ACA, where the improvement 

of the posterior sample mean is not notable compared to the prior, and large uncertainties 

remain in the posterior estimation. This indicates that CBFV data at the MCA is not 

necessarily informative to CBFV at other arteries, and exemplifies that it is not trivial to 

predict which (presumably measurable) states will be significantly informative of other 

(presumably hidden) states.

3.1.3 Assimilating additional ABP data—The cases showed above only utilize 

CBFV data in the MCAs, which is commonly measurable by TCD ultrasonography. Other 

than the TCD-based CBFV data, systemic ABP measurements are also among the data 

available bedside in routine clinical practice. Therefore, it is also interesting to investigate 

whether the posterior predictions can be further improved by assimilating both ABP and 

CBFV measurements simultaneously. We conducted another experiment with the same set 

up as above, except using both CBFV and ABP data sampled from two MCAs. By 

additionally incorporating the ABP data, performance of the ICP prediction remained 

excellent, and additionally posterior estimations of CBFV at unobserved arteries were 

notably improved. For example, Figure 6c shows the posterior ensemble of CBFV at the 

right ACA by assimilating both CBFV and ABP data at the MCAs. All the samples are 

corrected toward the ground truth and the posterior mean is significantly improved compared 

to the results displayed in Fig. 6b. Moreover, sample scattering is also relatively smaller. 

Note that the ABP assimilated in our model was arterial pressure at the MCA whereas 

systemic ABP data are typically measured at the radial artery, which differ in time and 

waveform. A correction algorithm proposed by Kashif et al.22 needs to be employed to 

obtain an approximation of ABP at MCAs when systemic ABP data measured from the 

radial artery are used.

3.2 Validation against clinical data

Preliminary clinical application of the proposed framework was also investigated. TCD 

measurements were obtained in patients that had invasive ICP measured. Note, only right 

MCA CBFV was assimilated in these validation studies, compared to both left and right 

MCA data being assimilated in the synthetic cases above. Generally, the prior model 

parameters and overall framework were the same as in the synthetic test cases, except the 

observation data to be assimilated. However, the main difference here from synthetic cases is 

not just that real versus synthetic TCD data was used, but that the ICP we compare against 

was measured from actual patients, and not the computational model.

The TCD and ICP data were acquired by the protocol approved by the UCLA Internal 

Review Board and the full dataset was reported in23. In this study, we focus on patients with 
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a homeostatic intracranial system, where the ICP/CBFV waveform is assumed to have 

reproducible features at similar mean levels13. We investigate two patients with approximate 

homeostatic TCD and ICP signals. The two patients are referred to as P1 and P2. Patient P1 

was a 55 years-old female and treated for aneurysmal subarachnoid hemorrhage (aSAH), 

while patient P2 was a 47 years-old male and treated for traumatic brain injury (TBI). The 

ICP signals for both patients were obtained through external ventricle drainage (EVD). 

Figure 7a displays the raw TCD-measured CBFV signal at right MCA for patient P1 over 

260 cardiac cycles. The mean CBFV level approximately remains the same, and waveform 

features are also similar cycle to cycle, as shown in the zoomed-in view of Fig. 7a. Similar 

steady features are also observed in the corresponding ICP signal and for the MCA CBFV 

and ICP data for patient P2.

Based on the quasi-steady nature of the signals, pulses over the 260 cardiac cycles of raw 

CBFV signal data were aggregated and the ensemble average was computed. Figures 7b and 

7c show the CBFV data of patients P1 and P2 where all pulses from the raw signal are 

plotted within one cardiac cycle, and the ensemble-averaged pulse is plotted by a bold red 

line. The shape of the mean pulse is triphasic (i.e., having three peaks) for both patients, 

which is a commonly observed feature for both CBFV and ICP waveforms16,33,32. Although 

the waveforms of the MCA CBFV between the two patients are similar, the mean CBFV 

level of patient P1 is slightly larger than that of patient P2.

The scattering of the pulse data represents uncertainties introduced by TCD measurement 

errors, respiratory effects, and physiological deviations from the steady-state assumption. 

These uncertainties are treated as data uncertainties in the assimilation process and are 

estimated based on the pulse history. That is, instead of assimilating the ensemble average, 

which would effectively ignore this uncertainty, the statistical distribution of the measured 

CBFV data was used to sample data for assimilation. For example, Fig. 8a for patient P1 

(and in Fig. 8c for patient P2) displays the uncertainty interval of TCD data (light blue 

region) and sampled data for assimilation (green dots). As for the synthetic cases above, the 

CBFV data is assimilated to calibrate target flow rate parameters, which were deemed to be 

informative of ICP via the OFAT sensitivity analysis. We first compare the ability of the 

model to match the measured TCD by simulating the model with the inferred target flow 

rates for each patient. Without data assimilation, the prior predictions of RMCA CBFV are 

highly scattered and biased, and the mean CBFVs are largely underestimated for both 

patients, as shown in Figs. 8a and 8c. Following data assimilation, the model parameters 

(i.e., target flow rates to each territory) appear well inferred as the corresponding RMCA 

CBFV posterior prediction is significantly improved when compared with the TCD data and 

has less uncertainty, as shown in Figs. 8b and 8d. Note that all the posterior samples are 

mostly converged to the sample mean curve (red dashed line) quickly. The reason for this is 

that the data uncertainty level is relatively large compared to the perturbation of simulations 

and thus the stopping criteria can be satisfied within only a few DA iterations. Although the 

posterior CBFV pulse agrees well with TCD data and mostly falls inside the data uncertainty 

region, some discrepancy can be observed at the beginning of the CBFV pulse (“early 

systole”) in both patients. This is likely due to the model-form error as discussed below.
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Finally, we investigate the prediction of ICP for the two patients in comparison to the 

invasive ICP data measured from the lateral ventricles in each patient. Similar to the TCD 

data, the raw ICP pulses are aggregated to compute an ensemble average and statistical 

distribution for uncertainty. Figures 8e and 8g show the ensemble-averaged pulse for the 

invasive ICP measurements for patients P1 and P2, while Figs. 8f and 8h display the non-

invasive ICP predictions obtained from our data assimilation framework. For both patients, 

the baseline (prior mean) ICP prediction substantially under-predicts the measured mean 

ICP. However, after assimilating the TCD measurements, the posterior ICP predictions of 

both patients (red curve) increase significantly, with a mean value reasonably close to the 

mean invasive ICP measurements for each respective patient. Specifically, for patient P1 

(Figs. 8e and 8f), the mean ICP measurement is 12.8 mmHg and the mean of TCD-

augmented ICP prediction is 11.2 mmHg. And for patient P2 (Figs. 8g and 8h), the mean 

ICP measurement is 16.2 mmHg and the mean of TCD-augmented ICP prediction is 15.9 

mmHg. For both patients, the prediction error in mean ICP is within 2 mmHg, which is the 

clinically-accepted ICP error standard44. Moreover, it is interesting to note that the posterior 

ICP samples exhibit relative scatter although the corresponding CBFV samples are mostly 

converged. This is because no direct ICP measurements are used in the assimilation and thus 

relatively larger epistemic uncertainties are expected. Although mean ICP appears well 

predicted and significantly improved using the framework proposed herein, the predicted 

ICP waveform shape significantly differs from the measured triphasic shape. This 

discrepancy is discussed below.

4 Discussion

We have presented a data-augmented, theory-based modeling approach for noninvasive 

intracranial pressure estimation, based on a multiscale intracranial model and assimilation of 

clinically-available TCD CBFV data. A regularizing iterative ensemble Kalman method is 

employed for fusing the computational model with measurement data. The proposed 

framework has been examined through both synthetic tests and tests with actual patient data, 

both of which demonstrated that the presented assimilation procedure was able to 

significantly improve mean ICP prediction.

The tests using synthetic data were conducted to verify implementations of the framework 

and analyze the identifiability of the unknown parameters and hidden variables. When both 

the forward intracranial model and measurement data are precise (i.e., no error in the model 

or synthetic data), all the unknown parameters and hidden states including unobserved 

CBFV and ICP can be precisely recovered by only assimilating CBFV data at the MCAs and 

associated uncertainties due to prior perturbations in model parameters can be nearly 

eliminated. For a more realistic condition, where both the forward model and measurement 

data were made imprecise through the introduction of a 10% error, strong performance of 

ICP prediction was maintained. Namely, the posterior mean of the ICP agreed well with the 

ground truth, however uncertainty in the posterior ICP prediction increased due to the 

uncertainties introduced by the model inadequacy and measurement noise. Nonetheless, the 

results demonstrate that overall the ICP prediction can be significantly improved by 

incorporating noninvasive CBFV data, and uncertainties associated with the data and model 

can be naturally considered within the Bayesian framework presented.

Wang et al. Page 13

Ann Biomed Eng. Author manuscript; available in PMC 2020 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on the results of the synthetic tests, CBFV data at MCAs were demonstrated to be 

informative to ICP predictions. However, they appeared less informative to CBFV at other 

unobserved arterials, e.g., ACAs, when data were corrupted by random noise. Although ICP 

can be accurately predicted, the improvement of posterior predictions of CBFV at 

unobserved arterials was not remarkable and uncertainties remained considerable after data 

assimilation. However, by additionally incorporating ABP data along with CBFV data at 

MCAs, predictions of CBFV at ACAs were significantly improved. These results indicate 

that assimilating more independent information can further enhance hidden state estimation 

and reduce associated epistemic uncertainties. The assimilations of multiple noninvasive 

signals is something to be further explored to broaden or further improve the utility of this 

framework.

Actual TCD and invasive ICP measurements from two patients with approximate 

homeostatic intracranial dynamics were used to examine the feasibility of the proposed 

approach toward clinical application. The performance of the proposed approach in these 

patient-based cases was promising. The data assimilation procedure led to significant 

improvement in mean ICP prediction, with a posterior estimate of mean ICP close to the 

invasively measured mean value and within the current clinical standard for ICP error. These 

results indicate that noninvasive ICP prediction can be informed by CBFV data, and implies 

that the perfusion blood flow distribution among the six major vascular territories appears to 

be a significant factor in steady-state ICP dynamics. While the focus of this paper is the 

theoretic basis and methodology of the data-augmented nICP framework, these clinical 

comparisons, although limited, demonstrate feasibility of the proposed approach. 

Nonetheless, additional validations are needed to properly establish clinical viability of this 

approach.

It should be noted that although mean ICP prediction matched reasonably with that from 

invasive measurement, the shape of the measured ICP waveform was not well replicated. 

This may be expected for several reasons. First, the shape of the posterior prediction for the 

MCA CBFV waveform differed (albeit to less degree) from the measured waveform (Figs. 

8b and 8d). This is potentially due to the simplified sinusoidal waveform used at the aortic 

root, which essentially drives waveform dynamics to the rest of the model. While it is 

possible to impose a more physiologic waveform at the aortic root, ideally these dynamics 

should arise naturally from the model assuming that an appropriate “unadulterated” 

waveform can be imposed, since the measured aortic waveform already contains reflected 

waves, which would be confounded by reflections generated from the 1D network model. 

Second, ICP modeling herein was highly simplified, which likely contributes to the damped 

dynamics of the ICP waveform. In our model, intracranial pressure and CSF was modeled as 

spatially uniform and shared by the six distal vascular beds. CFS (and hence ICP) dynamics 

were governed by simple conductances at the capillary outlets and venous return. This is a 

significant simplification and in reality ICP dynamics is likely influenced by the multi-

ventricular flow of CSF and dynamic coupling with brain tissue and different arterial 

territories. Hence, it is expected that the forward model should be geared toward improved 

ICP dynamics modeling by considering expanded modeling of the CFS circulation and 

dynamic coupling with the brain and other tissues. (Indeed, the computed and measured 

CBFV waveforms agreed much more closely, even without calibration, as the intracranial 
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model employed was more hemodynamics-oriented.) This is a significant undertaking and 

will be pursued in a separate work, however, it is important to note that mean ICP is 

generally used clinically for diagnosis of intracranial hypertension. Nonetheless, it is 

expected that improved modeling of CSF and ICP dynamics will improve the predictive 

capabilities of even mean ICP, and moreover emerging research8,3 is recognizing the 

importance of ICP waveform analysis for diagnosis and differentiation of cerebral 

pathologies and treatment management.

In regards to numerical implementation, the majority of the forward intracranial model 

dynamics is implemented in C++, where the 1D distributed network is solved using an in-

house finite volume solver and the LP intracranial portion is solved using an open-source 

ODE solver of a C++ library SUNDIALS36. The in-house data assimilation solver, i.e., 

IEnKM, was implemented in Python. The computational cost of this implementation mainly 

depends on the number of samples used for Kalman updates, since each sample involves a 

forward simulation. As mentioned above, Ns = 20 samples are used in this work and 

approximately three to five iterations are needed to achieve statistical convergence. 

Therefore, each data assimilation case may involve approximately 100 forward model 

evaluations, which entails running the model until it reaches homeostatic intracranial state. If 

starting from the steady state of the baseline case, each perturbed case typically converges in 

less than five cardiac cycles. On a single CPU core, it takes about 40 seconds to simulate one 

cardiac cycle. However, the propagation of case ensemble can be done in parallel. In this 

work, a dual-processor with 20 CPU cores was used and thus each data assimilation case 

took approximately 15 minutes. However, computational efficiency has not yet been a focus, 

since the objective of this work has been to explore feasibility.

A Algorithm: regularizing iterative ensemble Kalman method

Prior sampling: Use Latin hypercube sampling method to generate the prior state 

ensemble xj
0

j = 1
Ns

, where xj is jth sample of the augmented state, including major arterials’ 

CBFV and ABP, ICP, and unknown parameters. Let ρ ϵ (0, 1) and τ = 1/ρ.

For n = 1 : nmax

1. Forward prediction:

a. Evaluate the forward intracranial model with the initial physical state, boundary 

conditions, and model parameters, which are updated in the last iteration. 

Namely, the analyzed state xj
n  at iteration step n is propagated through the 

forward model ℱ at (n + 1)th iteration,

xj
n + 1 = ℱ xj

n . (14)

b.
Obtain the perturbed ensemble of observation data yj

0
j = 1
Ns

 based on the data 

uncertainty level σd.

Wang et al. Page 15

Ann Biomed Eng. Author manuscript; available in PMC 2020 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c. Calculate statistical information of predicted state and observation data. We first 

calculate the sample means of state and data as,

x n + 1 = 1
Ns

∑
j = 1

Ns
xj

n + 1 (15)

y n + 1 = 1
Ns

∑
j = 1

Ns
yj

n + 1 . (16)

The error covariances of the predicted state and observation data can then be 

obtained,

Pm
n + 1 = 1

Ns − 1 ∑
j = 1

N
xj

n + 1 − x xj
n + 1 − x n + 1 T

(17)

Pd
n + 1 = 1

Ns − 1 ∑
j = 1

N
yj

n + 1 − y yj
n + 1 − y n + 1 T

(18)

2. Regularizing Bayesian analysis:  Calculate the control variable αi
n + 1  by following 

sequence,

αi
n + 1 = 2i + 1α0, (19)

where an initial guess of α0 = 1 is used in this work. The αn+1 is obtained as 

α n + 1 ≡ αN
n + 1 , where N is the first integer when the inequality defined by Eq. 13 is 

satisfied. (b) Compute regularized Kalman gain matrix as,

K n + 1 = Pm
n + 1 HT HPm

n + 1 HT + α n + 1 Pd
n + 1 −1, (20)

(c) Update each state sample as follows,

xj
n + 1 = xj

n + 1 + K n + 1 y n + 1 − Hxj
n + 1 , (21)

3. Stopping criteria:  If

Pd
n + 1 −1/2 y n + 1 − Hx n + 1 ≤ τσd, (22)

then, stop the iteration.σd represents noise level of observation data.
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Figure 1: 
Schematic of the proposed data-augmented, theory-based framework for ICP dynamics. By 

assimilating noninvasively measurable data (e.g., CBFV and/or ABP at certain vessels) into 

the theory-based physiological model, predictions of the unobservable states (e.g., ICP) can 

be significantly improved.
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Figure 2: 
Schematic of the multiscale cerebrovascular model coupling (a) a distributed 1D propagation 

network model for major systemic arteries and (b) a lumped parameter (LP) network for 

intracranial dynamics. Outflow in the 1D portion marked with open circles are coupled with 

the LP network in (right), and boundaries marked with closed circles are coupled to 3-

element Windkessel models. The bounding box represents intracranial space. Adapted 

from34
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Figure 3: 
Schematic of the iterative ensemble Kalman method. (1) Initial ensemble is obtained by 

sampling the prior parameter space and (2) is propagated through the forward intracranial 

model. (3) The propagated state will be updated by assimilating TCD measurement data by 

Bayesian analysis. Steps (2) and (3) will be conducted iteratively until reaching the 

statistical convergence.
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Figure 4: 
Iteration histories of unknown parameters (i.e., target flow rates qn, n = 1⋯, 6) by 

assimilating noise-free synthetic TCD data. The prior ensemble of each parameter is biased 

from the respect truth.
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Figure 5: 
Comparison of (a) prior ICP prediction and posterior ICP predictions following (b) noise-

free, two MCAs, (c) noisy, two MCAs, (d) noise-free, right MCA and (e) noisy, right MCA 

CBFV data assimilations.
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Figure 6: 
Comparison of prior and posterior predictions of CBFV at right ACA following noisy 

synthetic data assimilation. In (b) CBFV data at two MCAs with 10% Gaussian noises are 

assimilated; In (c) Both CBFV and ABP data at two MCAs with 10% Gaussian noises are 

assimilated.
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Figure 7: 
TCD CBFV data. (a) Raw TCD-based CBFV signals at right MCA of the patient P1 over 

260 cardiac cycles. (b-c) Aggregated CBFV pulses at the right MCA and its ensemble 

averaged for (b) patient P1 and (c) patient P2.
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Figure 8: 
CBFV predictions (a-d) and ICP predictions (e-h) following assimilation of TCD CBFV 

measurements.
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Table 1:

Sensitivity of primary model parameters to CBFV and ICP. Specifically, each parameter is uniformly 

perturbed by 20 percent of its baseline value, and the corresponding perturbations of CBFV and ICP are 

presented.

Parameters rd0 σe0 Kσ σcoll η T0 tCA GCA qn

CBFV 1:25% 0:02% 0:05% 0:60% 0:28% 3:58% 0:01% 0:16% 35:57%

ICP 0:90% 0:03% 0:04% 0:52% 0:03% 2:89% 0:02% 0:05% 30:83%
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Table 2:

Primary parameters of forward model and data assimilation

Baseline values of forward intracranial model

rd0 = 0:015 cm σe0 = 0:1425 cm Kσ = 10:0

σcoll = 62:79 mm Hg η = 232 mm Hg T0 = 2:16 mm Hg cm

rt = 0:018 cm rm = 0:027 cm tCA = 10 s

GCA = 10 mm Hg−1 qn = 2:2 (MCAs), 1:48 (ACAs), 1:14 (PCAs) ml s−1

Parameters of data assimilation (IEnKM)

prior uncertaintiy  20% uniformly random perturbation

number of samples Ns  20

regularization parameters  ρ = 0:6; α0 = 1
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