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Abstract

Pairing in vivo imaging and computational modeling of dendritic arborization (da) neurons from 

the fruit fly larva provides a unique window into neuronal growth and underlying molecular 

processes. We image, reconstruct, and analyze the morphology of wild type, RNAi-silenced, and 

mutant da neurons. We then use local and global rule-based stochastic simulations to generate 

artificial arbors, and identify the parameters that statistically best approximate the real data. We 

observe structural homeostasis in all da classes, where an increase in size of one dendritic stem is 

compensated by a reduction in the other stems of the same neuron. Local rule models show that 

bifurcation probability is determined by branch order, while branch length depends on path 

distance from the soma. Global rule simulations suggest that most complex morphologies tend to 

be constrained by resource optimization, while simpler neuron classes privilege path distance 

conservation. Genetic manipulations affect both the local and global optimal parameters, 

demonstrating functional perturbations in growth mechanisms.
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Introduction

The diversity of dendritic morphology among neuron types affects neuronal connectivity, 

synaptic integration, and neuronal excitability (Mainen and Sejnowski 1996; Vetter et al. 

2001; London and Häusser 2005; Bird and Cuntz 2016). Given such functional and 

computational relevance, the fine regulation of dendritic arbor development by a multitude 

of intracellular, extracellular, and activity-dependent cascades (Jan and Jan 2010) is not 

surprising. However, how the exuberant complexity and variability in mature arbors emerges 

from class-specific convergence of these numerous mechanisms on the immediate molecular 

mediators of dendritic growth remains largely unknown (Ascoli 2002; Gao 2007).
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The sensory dendritic arborization (da) neurons from the larva peripheral nervous system 

(PNS) of Drosophila melanogaster constitute a powerful experimental system to study class 

specific dendritic development, including branching, elongation, global-scaling, tiling, and 

remodeling (Parrish et al. 2007; Corty et al. 2009; Singhania and Grueber 2014; Tavosanis 

2014; Couton et al. 2015). This animal model offers multiple advantages: it is genetically 

tractable, enabling both seamless fluorescent tagging and molecular manipulations; the 

neurons lie beneath a transparent cuticle, allowing straightforward in vivo optical 

microscopy; the relatively rapid larva-to-adult metamorphosis implies substantial structural 

dynamics over a contained temporal period; and readily identifiable neurons are reliably 

found in stereotypical anatomical locations across animals. Fruit fly da neurons are 

categorized into four well-defined morphological classes (I-IV) with increasing dendritic 

size and complexity (Fig. 1, 2a). Dendrites of Class I and II neurons exhibit selective 

coverage of the body wall, whereas Class III and IV neurons exhibit largely complete and 

non-overlapping dendritic coverage of the body wall, and display dendritic tiling via homo-

neuronal repulsion (Grueber et al. 2002). Each morphological class can be further divided 

into subtypes based upon their locations along the dorsal-ventral axis of the animal and the 

dendritic territories their arbors cover (e.g. dorsal, lateral, ventral domains). Moreover, at a 

molecular level, studies have demonstrated that even within a subclass (e.g. Class IV da 

neurons), different genetic programs operate in regulating subtype specific dendritic 

architecture (Iyer et al. 2013).

Distinct computational methods exist for studying dendritic morphology and development. 

In segmental rate models, dendrites grow out of the soma in a time-dependent manner and 

the dynamics of growth cones present at the branch terminals regulate branch bifurcation 

and extension (van Pelt and Schierwagen 2004). This type of stochastic simulation is not 

generally informed by real tree morphometrics, but can reproduce the observed variability in 

dendritic terminals from various neuron types (van Pelt and Uylings 2002) and is suitable to 

create large-scale networks of realistic neuronal morphology (Koene et al. 2009).

Data driven models constitute an alternative computational framework focusing on the 

outcome of dendritic growth rather than the dynamic process of development. This approach 

integrates simulations with experimental data to quantify the consequences of hypothesized 

sub-cellular interactions of local molecular cues controlling structural development. This 

method is thus complementary to traditional qualitative observations and morphometric 

quantifications. In particular, local rule-based stochastic models fit growth parameters 

measured from real neurons to statistical distributions and resample them to generate virtual 

dendrites (Burke et al. 1992; Uemura et al. 1995; Ascoli and Krichmar 2000; Donohue and 

Ascoli 2008). Global rule-based simulations, in contrast, implement fundamental wiring 

constraints to optimize the long-theorized balance between resource conservation and 

conduction time (Ramón y Cajal 1995; Cuntz et al. 2010). Surprisingly, computational 

simulations have never been used in the experimentally conducive system of da neurons in 

the fly larva PNS.

Here we image, reconstruct, and openly share different classes of dendritic arborization 

neurons, and complement this new dataset with previously available digital tracings 

(Sulkowski et al. 2011; Wang et al. 2013) from NeuroMorpho.Org (Ascoli et al. 2007). We 
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then measure dendritic arbor size and complexity across neuronal classes. Using the 

GAL4/UAS binary expression system, we disrupt specific Drosophila genes in Class IV da 

neurons by RNA interference (RNAi) and digitally reconstruct and analyze the altered 

morphologies of these neuronal subtypes. We then apply the aforementioned local rule-

based (Donohue and Ascoli 2008) and global rule-based (Cuntz et al. 2010) models to 

simulate artificial dendritic morphologies for all wild type (WT) and genetically altered 

neuron groups. The optimal parameters we identify for each simulation strategy reveal 

distinct morphological determinants of mature dendritic arbors. Finally, we compare these 

results to those obtained with a complementary segmental rate outgrowth simulation (van 

Pelt et al. 1997).

Materials and Methods

All analyzed da neuron morphologies were either reconstructed for this study (N=127) or 

downloaded from the Cox (N=67) and Ye (N=5) archives of NeuroMorpho.Org. Specifically, 

the complete dataset studied here consists of the following cells: 25 Class I ddaD (21 new, 4 

Cox) and 25 Class I ddaE (21 new, 4 Cox); 18 (Cox) Class II (2 ddaB, 4 ldaA, 6 vdaA, 6 

vdaC); 9 new Class III (8 vdaD, 1 v’pda) and 25 from Cox (7 ddaA, 5 ddaF, 5 ldaB, 4 vdaD, 

4 v’pda); 34 wild type Class IV (13 new ddaC, 5 Ye ddaC, 6 Cox ddaC, 7 Cox v’ada, 3 Cox 

vdaB); and 63 new mutant Class IV (7 RpS2-IR, 6 RpS13-IR, 6 RpS17-IR, 12 Ank2-IR, 12 

RhoGAP18B-IR, 9 wdb-IR, 11 SkpA-IR). Unless otherwise noted, neuronal subtypes were 

pooled within each morphological class. All newly reconstructed cells will be freely 

available through the Ascoli and Cox archives of NeuroMorpho.Org.

The fluorescently labeled da neurons of wild type (Class I, Class II, Class III, and Class IV) 

and RNAi-knockdown phenotypes (Class IV only) were imaged via in vivo confocal 

microscopy using a previously published protocol (Iyer et al. 2013). To visualize the 

dendritic membrane, the following GAL4-UAS recombinant transgenic strains were used: 

GAL4221,UAS-mCD8::GFP (Class I; Grueber et al. 2003); GAL4GMR37B02,UAS-
mCD8::GFP (Class II; Turner et al. 2016); GAL419–12,UAS-mCD8::GFP (Class III; Xiang 

et al. 2010); and GAL4477,UAS-mCD8::GFP; ppk-GAL4,UAS-mCD8::GFP (Class IV; Iyer 

et al. 2013). In brief, for live confocal analyses, larvae were placed on a microscope slide, 

immersed in 1:5 (v/v) diethyl ether to halocarbon oil and covered with a 22×50 mm glass 

coverslip. Neurons expressing fluorescently tagged markers were visualized on a Zeiss LSM 

780 confocal microscope with a 20X dry objective (420650–9901 Plan Apo M27, NA 0.8) 

and 1 Airy Unit for the pinhole. Images were collected as z-stacks at a step-size of 1.0–2.0 

μm and 1024×1024 resolution. Altering the step sizes affected only slightly the overall 

morphometric measurements, and these differences were negligible relative to cell type 

specific morphological differences (See Suppl. Fig. 3). Neurons from a specific cell group 

were imaged at fixed step size. Increasing the objective magnification from 20X to 63X did 

not reveal any additional thin dendritic branches (See Suppl. Fig. 2). Gene-specific UAS-
RNAi transgenic lines (IRs) were obtained from the TRiP collection at the Bloomington 

stock center (NIH P40OD018537) and two independent lines were tested for each gene, 

wherever possible. These transgenic strains include: 53319 (UAS-RpS2-IR); 34820 (UAS-
RpS13-IR); 42656 (UAS-RpS17-IR); 33414 (UAS-Ank2-IR); 31165 (UAS-RhoGAP18B-
IR); 38950 (UAS-wdb-IR); and 32991 (UAS-SkpA-IR). Representative images and 
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reconstructions were performed using these RNAi transgenes, which produced consistent 

phenotypes.

Image stacks were manually reconstructed in Vaa3D (Peng et al. 2014) and edited in 

NeuTube (Feng et al. 2015). Branch thickness was estimated automatically using the neuron 

radius plug-in of Vaa3D. The program computes the local diameter of each tracing node 

based on the planar (X-Y) spread of the signal with an intensity threshold of 15 on a 0–255 

scale. Further topological errors were programmatically resolved using TREES Toolbox 

(Cuntz et al. 2010). Morphometric analyses were carried out with L-Measure (Scorcioni et 

al. 2008). For quantification of morphological homeostasis, individual trees were 

stochastically recombined in the MATLAB environment (MathWorks, Natick, MA).

The local rule-based model of artificial tree generation followed the same algorithm 

previously designed for vertebrate neurons (Donohue and Ascoli 2008; Java code publicly 

available at senselab.med.yale.edu/modeldb with accession number 114310). In brief, five 

basic morphological parameters (1. taper rate; 2. the diameter ratio between the parent 

branch and the thicker daughter branch; and 3. the diameter ratio between the two daughter 

branches; 4. branch path length; and 5. probability of bifurcation) were measured from each 

group of real neurons. Each parameter was binned by three fundamental determinants (FDs): 

local radius, branch order, and path distance from the soma. Here branch order is classically 

defined as the number of bifurcations along the path to the soma and is distinct from the 

Strahler number (Strahler 1953; Uylings et al. 1975). The measured data in every bin were 

then reduced to statistical distributions selected for each case as the best fits among 

Gaussian, uniform, and gamma functions. Next, the five basic parameters (BPs) were 

randomly sampled from each of the relevant bins (based on the current radius, branch order 

or path distance from soma) using a recursive tree generation algorithm. Out of the three 

fundamental determinants, branch radius is the one potentially most sensitive to the imaging 

resolution. However, the majority of the measured dendritic thickness values in the fly larva 

da neurons lie above the diffraction limit of light microscopy. Each of the five BPs was 

constrained by one of the three FDs, creating a total of 35 or 243 model variants. We then 

selected the ten variants that best matched the total number of bifurcation, total surface area, 

bifurcation asymmetry, and surface asymmetry (Donohue and Ascoli 2008) measured from 

the corresponding real cell group. As overall measure of statistical proximity between each 

model variant and the real data, we averaged the four Welch test t-scores (Welch 1947).

In the global rule based simulation (Cuntz et al. 2010), the artificial dendritic arbor shape is 

constrained by the “density profile” of a neuron group and by a balancing factor (bf) that 

weighs two demands: the minimization of resource and the minimization of conduction 

time. Higher bf values correspond to increased importance of conduction time minimization 

relative to resource minimization and vice versa. The global simulation was carried out 

using the TREES Toolbox package (Cuntz et al. 2010) in the MATLAB environment (v1.15, 

code freely available at treestoolbox.org). Each neuron was resampled at 1 μm inter-nodal 

distance before generating the artificial trees. Eleven different balancing factors from 0 to 1 

were used in steps of 0.1.
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To identify the best performing local and global model parameters for each cell class, we 

used the distributions of dendritic length against path distance from soma and of number of 

tips against branch order as selection criteria. Specifically, for each of these two curves, we 

averaged over all data points the absolute difference between a real neuron group and each 

of the corresponding artificial groups. If the (real and simulated) distributions consist of n 
data pair points Xi, Yi {\displaystyle (x_{i},y_{i})\!}(i = 1… n), where {\displaystyle x_{i}
\!}Xi is either branch order or path distance and {\displaystyle y_{i}\!}Yi is either number of 

tips or total length, then we calculate S for each curve as

S = ∑
i = 1

n
abs Y ir − Y is / ∑

i = 1

n
Y ir

Where Yir is real and Yis is simulated. The averages of the two S values were used to rank 

the top local and global model variants. The results from the best parameter(s) for each 

neuron group are displayed in the Results (Fig. 4, 5, 6 and Table 1).

For the simplest (Class I) and the most complex (Class IV) neuron types, we also 

implemented as an alternative the ‘BE’ model (van Pelt et al. 1997). In this approach, the 

dynamic behavior of the growth cones is time-dependent and defined by two parameters: the 

expected number of bifurcation events on a branch (B) and the influence of the total number 

of terminal at any given time on bifurcation probability (E). These two parameters represent 

respectively the intrinsic drive for branching and the competition among growth cones for 

cellular resources. We programmed the BE model in the Matlab environment and identified 

the optimal parameters B and E values for three wild-type (Class I, Class III and Class IV) 

and two genetically altered (UAS-RpS2-IR and UAS-SkpA-IR) neuron types.

Results

Dendritic arborization (da) neurons are highly diverse in branching complexity, area 

covered, and overall shape. Neuronal images and reconstructions from all classes of WT da 

neurons, as well as three RNAi Class IV ddaC neuronal reconstructions (showing 

substantially reduced, slightly increased, and relatively unchanged examples of mutant 

phenotypes) are represented in Fig. 1. These characteristics can be operationally quantified 

in terms of total arbor length and number of terminal tips as well as of the distribution of 

those two measures across the arbors, reflecting the amount and allocation of used resources. 

The distributions of dendritic length over path distance exhibit significant differences among 

morphological classes, consistent with previous studies (Grueber et al. 2002). Class IV 

neurons are the most complex, and Class I neurons are the simplest; Class II and Class III 

neurons have intermediate levels of size and complexity (Fig. 2a). Within Class IV, subtypes 

ddaC, v’ada, and vdaB differ slightly from each other (Fig. 2a inset). The ddaC phenotypes 

in which genes were disrupted using RNA interference (RNAi) with inverted repeats also 

show considerable morphological diversity (Fig. 2b). These genes were selected for analyses 

based upon neurogenomic investigations that identified putative downstream effectors of the 

Cut and/or Knot transcription factors, which regulate class-specific patterns of da neuron 

dendrite morphogenesis (Grueber et al. 2003; Jinushi-Nakao et al. 2007). Of the seven 
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RNAi-knockdown phenotypes reconstructed here, three (Ank2-IR, RhoGAP18B-IR and 

wdb-IR) are very similar and show slightly reduced complexity, with a distal shift in peak 

length distribution relative to wild type (Fig. 2b top inset). Three others (RpS2-IR, RpS13-
IR, and RpS17-IR) show dramatically reduced arbor complexity (Fig. 2b bottom inset). In 

contrast, RNAi-knockdown of SkpA (SkpA-IR) shows increased complexity relative to wild 

type.

All wild type da neuron classes demonstrate intrinsic structural homeostasis (Samsonovich 

and Ascoli 2006), where an increase in size and complexity in one of the dendritic stems is 

compensated by the other dendritic stems within the same neuronal arbor (Fig. 3). Class I 

neurons have two or three stems emerging from the soma (Fig. 3b), while Class IV neurons 

can have one to five stems (Fig. 3e). As the number of stems (in both Class I and Class IV) 

per neuron increases, the average size (total length) and complexity (total number of tips) of 

the sub-trees pertaining to each stem decrease (Fig. 3b, 3e). The same results were observed 

in Class II and Class III da neurons (not illustrated). This is consistent with the notion of 

neurons growing until they reach a certain total length and number of branches independent 

of the number of stems among which the cable is distributed. To evaluate whether this 

homeostatic behavior could be observed at the tree-by-tree level within neurons, we virtually 

shuffled the dendritic stems in all possible combinations among neurons with the same 

number of stems. We then grouped these virtual neurons randomly (each group containing 

equivalent number of neurons to the real group) and calculated the standard deviation of the 

total neuron length for each group. The standard deviation of the real Class I neuron group is 

substantially lower than all of the corresponding virtual groups (Fig. 3c), and the same holds 

true for Class II and Class III neurons (not illustrated). In contrast, the standard deviation of 

real Class IV group lies close to the middle of the histogram (Fig. 3f). Thus, while da 

neurons in Classes I-III demonstrate morphological homeostasis both at the whole-cell level 

and on a tree-by-tree basis, Class IV neurons only tend to balance overall size by 

compensating for the variable number of trees. This distinction is also corroborated by the 

higher variability among trees within Class IV relative to the other three classes (coefficient 

of variation for total length in Class IV neurons: 0.28, compared to 0.23 for Class I).

In light of the demonstrated morphological homeostasis, we opted to model the entire 

arborization of each individual neuron instead of the individual subtrees separately. After 

generating artificial neurons using all the model variants, we compare two distributions that 

represent size (dendritic branch length against path distance from soma) and complexity 

(number of tips against branch order), between each artificial group and the corresponding 

real neuron group. We then select the variant that overall approximates the two real 

distributions best as the optimal model variant for that neuron type. We assume that the 

parameters (or a single parameter in case of the global model) that make up the top 

performing model variant is representative of the biological growth rules that establish the 

size and shape of that neuron type. For example, the model variant that best fits Class IV 

neuron group is 75_ PD_BO_BO_PD_BO (Fig. 4 e, f, g, h), which describes that it is the 

75th (out of 243) local variant where the five basic parameters (1) taper rate, (2) parent-

daughter ratio, (3) daughter ratio, (4) branch path length and (5) bifurcation probability are 

best determined by path distance from soma, branch order, branch order, path distance from 

soma, and branch order respectively. The model that best fits Class I neurons is 
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3_PD_PD_PD_PD_BO (Fig. 4 a, b, c, d), where all basic parameters are best determined by 

path distance from soma, except bifurcation probability, which is determined by branch 

order. Analyzing the determinants of the two main basic parameters (branch path length and 

probability of bifurcation) reveal that for all the WT da neuron groups, branch order is the 

best determinant of bifurcation probability (Fig. 4, Table 1). Branch path length is best 

constrained by path distance from the soma in WT Class I, III and IV neurons, whereas for 

Class II neurons, branch order is a better constraint (Table1 and Fig. 4). Overall, path 

distance from the soma has a greater influence on Class I (Fig. 4 a, b, c, d), and branch order 

on Class IV (Fig. 4 e, f, g, h). Four of the five basic parameters for Class I are most affected 

by path distance from the soma (Fig. 4 a, b, c, d), and three of the five basic parameters in 

Class IV are best constrained by branch order (Fig. 4 e, f, g, h).

In global-rule based simulation, randomly generated points within the average spread of a 

neuron group are connected using a minimum spanning tree algorithm, where the single bf 

parameter balances the relative influence of wiring minimization (or minimization of 

cytoplasmic resource) and conduction time minimization (or minimization of path distance 

from root to each point of interest). Increasing the balancing factor gradually increases the 

relative influence of conduction time minimization (Cuntz et al. 2010). Analyzing the best 

global variants shows that Class I artificial neurons are best generated using a balancing 

factor of 0.6 (Fig. 5 a, b, c, d), whereas for Class IVs the optimal balancing factor is 0.3 (Fig. 

5 e, f, g, h). This indicates that the demand of conduction time (path distance minimization) 

is more influential for Class I, which is consistent with their selective innervation property. 

In contrast, the importance of resource optimization is greater in Class IV neurons, 

consistent with their space filling nature that puts substantial demands on wiring 

minimization.

Next we analyze RNAi knockdown phenotypes for genes that either severely reduce (RpS2-
IR) or augment (SkpA-IR) Class IV (ddaC) dendritic complexity relative to WT controls. In 

the optimal local model for RpS2-IR (204_BO_RD_RD_RD_BO, Fig. 6 d, Table 1), branch 

radius, which is correlated with microtubule density (Hillman, 1979; Brill et al. 2016), 

determines branch path length in addition to two other basic parameters. However, branch 

order is still a better predictor of bifurcation probability (Fig. 6 c, d, e, and f; Table 1). In the 

global model, a balancing factor of 0.2 generates the optimal artificial RpS2-IR neuron 

morphology (Fig. 6 a, b, e, f, Table 1), suggesting a greater need for resource optimization in 

this phenotype than in WT. In contrast, both probability of bifurcation and branch path 

length of artificial ddaC neurons from SkpA-IR are optimally constrained by branch order 

(Fig. 6 i, j, k, l; Table 1), indicating that the distribution of resource is the primary 

determinant of size and complexity in this mutant. The optimal balancing factor in global 

simulation of the SkpA-IR dendritic phenotype was 0.3, the same value as in WT (Fig. 6 g, 

h, k, l). The average total length and number of tips along with the optimal local and global 

simulation parameters for all other neuron groups, including Class II, Class III, and the 

remaining RNAi knockdowns are included for completeness in Table 1.

Finally, we use a segmental rate outgrowth model (van Pelt et al. 1997) to describe the 

distribution of terminals for both wild-type (Class I, Class III and Class IV) as well as 

genetically altered (ddaC SkpA-IR and RpS2-IR) da neurons. This framework does not 
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make use of the local information of branch order, path distance, and radius. The dynamic 

behavior of the growth cones is instead time-dependent and influenced by two parameters 

(see Methods). As expected, we observe a progression in the expected number of 

bifurcations (parameter B) from simpler to more complex da neurons (Suppl. Fig. 1 a, b, c, 

d, e). The higher variability in number of terminals for Class III da neurons (when compared 

to Class I da neurons as described earlier and in Suppl. Fig. 2 b and f) can be reproduced by 

reducing the influence of the number of existing terminals at any given time on branching 

probability (parameter E). Interestingly, the relationship between the average branch order of 

all branches and parameter B depends on partition asymmetry (Suppl. Fig. 1 f) due to the 

influence of short terminal branches. Parameter B is higher than the average branch order in 

symmetric tree structures (Class I, Class IV and ddaC SkpA-IR), lower for ddaC RpS2-IR, 

and much lower for Class III da neurons, which have many short terminals branches and is 

highly asymmetric.

Discussion

Complex and varied molecular processes are involved in the dendritic development of 

different cell types, leading to diverse class-specific morphologies (Nguyen et al. 2004). 

This exquisitely controlled variation in dendritic shape is in turn highly relevant in nervous 

system functioning, due to its profound effects on synaptic integration, neuronal excitability, 

and circuit connectivity. Comparative studies of da neurons can aid the discovery of crucial 

elements directing the growth and maintenance of class-specific neuronal arborizations. The 

convenient anatomical position of these dendritic arbors underneath a thin, translucent 

cuticular epithelium facilitates high-resolution live cell imaging, and the highly advanced 

genetic tools available in the fruit fly system allow for sophisticated investigation of 

molecular and neural functions.

Extensive investigations have uncovered numerous genetic and cellular systems that direct 

class-specific dendrite growth. These include transcriptional regulation, cell signaling 

pathways, endocytic and secretory pathways, modulation of cytoskeletal proteins, RNA 

targeting and local translation, and activity-dependent plasticity of dendritic structure (Jan 

and Jan 2010; Tavosanis 2014). In this study and for the first time in da neurons, we use 

computational modeling in parallel with experimental molecular perturbations.

The morphometric analyses in this study highlight the inter-class and inter-subclass 

variability in dendritic size among da neurons (Fig. 2a). We also observe subtle as well as 

drastic changes in dendritic size for genetically altered ddaC morphologies (Fig. 2b). 

Disruptions of the small ribosomal subunits encoding genes RpS2, RpS13, and RpS17 leads 

to severe reductions in Class IV dendritic complexity suggesting that these neurons are 

highly sensitive to impairment of ribosomal function. Defects in cytoskeletal regulatory 

molecules Ankyrin2 (Ank2) and RhoGAP18B, as well as the PP2A phosphatase complex 

regulatory subunit widerborst (wdb) lead to alterations in branching architecture with 

reduced proximal arborization near the soma, in favor of a distal shift in peak length 

distribution resulting in clustered short terminal branching. Finally, defects in the ubiquitin 

ligase complex subunit SkpA lead to excessive arborization, indicative of a role for ubiquitin 

proteasomal degradation in restricting arborization complexity.
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We demonstrated that dendritic size (in total length) and complexity (in total number of tips) 

in da neurons are under intrinsic homeostatic regulation, where fluctuations in one tree of a 

neuron are compensated by the other trees (Fig. 3b, 3e). We also observe this behavior at the 

tree-by-tree level for Classes I, II, and III (but not IV), whereas the inter-neuron variability 

of real neurons is markedly lower than would be expected if trees were assembled 

independently among somata (Fig. 3c, 3f).

Our observations in da neurons are consistent with structural homeostasis observed in the 

mammalian cortex (Samsonovich and Ascoli 2006). In mammals, regular 

electrophysiological activities are also sustained through homeostatic mechanisms that adapt 

synaptic strengths to maintain functional stability (Turrigiano and Nelson 2004), even when 

animals were exposed to chronic psychosocial stress (Kole et al. 2004). Moreover, previous 

studies in Drosophila have shown that dendritic arbors can adjust their structure in response 

to the level and distribution of their received inputs (Tripodi et al. 2008).

The local rule-based simulation used in this study is essentially a mixture of several models. 

Historically three fundamental determinants have been proposed to locally constrain growth: 

branch radius, branch order, and path distance from the soma (Donohue and Ascoli 2008). 

These three determinants closely approximate actual biological processes. Radius can be 

correlated with the density of microtubules (Hillman 1979; van Beuningen et al. 2015) and 

has been used to simulate real-like features of dendritic growth in several neuron types 

(Burke et al. 1992; Donohue and Ascoli 2005). Branch order indexes the split of cytoplasmic 

resources at each bifurcation and has been employed to model the distribution of 

morphological properties in many simulation systems (Uemura et al. 1995; van Pelt et al. 

1997). Path distance from the soma alters the time required for intracellular signaling and 

transport, both to and from the soma, and was found to appropriately constrain the artificial 

growth of spinal motor neurons and hippocampal pyramidal cells (Burke et al. 1992; 

Samsonovich and Ascoli 2005).

From the simulations presented here we observe that the probability of bifurcation is best 

determined by branch order in all wild type da neurons. This finding indicates that these 

neurons may have the capacity to determine the amount of available cytoplasmic resource 

locally after each bifurcation. Path distance from soma generally performs better in 

constraining branch path length, implying that distance and time required for subcellular 

transport may affect the length of dendritic branches.

Neurons have finite amounts of cytoskeletal resources to approximate the ideal shape and 

topology best suited for their functional role in the circuit. The global simulation assumes 

that the demand of a desired morphology determines how the cytoskeletal resources are 

distributed during dendritic outgrowth and branching (Cuntz et al. 2010). In our global 

simulation, raising bf from 0 to 1 in 0.1 steps gradually increases the relative influence of 

conduction time minimization while reducing the relative demand for resource 

minimization. A lower balancing factor usually leads to a more branched structure, where 

the neuron tries to utilize its cytoskeletal resources to the fullest, to fill up a large space. 

With a higher balancing factor, there are fewer bifurcations as each point of input (for 
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example, spines or regions of direct sensory reception) demand a relatively direct connection 

with the soma.

Our local model results demonstrate that Class I neurons are overall more influenced by path 

distance from the soma, which controls four of the five basic parameters of top local model 

variant (3_PD_PD_PD_PD_BO). This observation is consistent with the results of the global 

simulations, in which the virtual Class I neurons are better generated with a higher balancing 

factor (0.6), which signifies conduction time minimization. Altogether, these results indicate 

a greater emphasis on path distance minimization, and is consistent with the selective 

innervation characteristic of Class I neurons. Class IV neurons in contrast are space-filling 

multisensory neurons with tiling properties. Naturally, these highly branched structures have 

tremendous cytoplasmic resource demands and hence are best generated in global simulation 

at a lower balancing factor (0.3), and with branch order overall exerting greater influence in 

local simulation.

RpS2-IR ddaC neurons have significantly reduced complexity, and their branch path lengths 

are best determined by radius. This may be caused by lower levels of microtubules in these 

mutants, which correlates with branch diameter (Burke et al. 1992; van Beuningen and 

Hoogenraad 2016). The RpS2 morphological phenotype is also best approximated in global 

simulations with the slightly lower bf of 0.2, possibly revealing a greater need to conserve 

resources than wild type. These simulation findings are well aligned to the functional role of 

RpS2 as a component of the small ribosomal subunit. A disruption in ribosomal function 

could negatively impact protein translation leading to limited resources, including 

cytoskeletal building blocks such as α- and β-tubulin needed for microtubule assembly. 

SkpA-IR ddaC neurons have increased complexity, and both bifurcation probability and 

branch path length are constrained by branch order, feasibly signifying that the distribution 

of resources overwhelms all other constraints in altered phenotypes with increased 

cytoplasmic resources. However, no change in optimal bf is observed, implying intrinsic 

maintenance of the normal connectivity patterns, even at an excess of resources. Again, the 

modeling predictions align well with known functions of SkpA, which encodes a component 

of the Skp, Cullin, F-box (SCF)-containing ubiquitin ligase complex. This factor has been 

previously shown to function in dendritic pruning of Class IV da neurons during pupal 

metamorphosis (Wong et al. 2013). Here, in larval development, SkpA knockdown leads to 

increased complexity, suggestive of an involvement of ubiquitin-linked proteasomal 

degradation in containing Class IV arborization, possibly by restricting or turning over 

excess cytoplasmic resources.

We also observe evidence of innate scaling of size and complexity in Class IV neurons. 

First, our analysis of homeostasis detected a tight interaction between stem-specific changes 

in length and in the number of terminals (Fig. 3e). Second, comparing WT ddaC with all 

ddaC mutants (Table 1) reveals that a decrease in total length is also accompanied with a 

reduction in total number of bifurcations, and vice versa. This shows that dendritic scaling 

occurs in ddaC neurons independent of RNAi knockdowns, consistent with previously 

observed innate dendritic scaling properties for Class IV mutants (Iyer et al. 2013).
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The above results complement those obtained with a segmental rate growth model (van Pelt 

et al. 1997), in which local information of branch order, branch thickness or distance from 

the soma have no direct influence over the dynamic behavior of growth cones. Not 

surprisingly, a steady increase of parameter B (controlling the expected number of 

bifurcation in a branch) reproduced the distributions observed in progressively more 

complex trees structures. For example, the optimal parameter B for the SkpA knockdown, a 

phenotype with increased complexity, was much higher than ddaC RpS2, which has highly 

reduced branch complexity (18.1 vs 8.9 with WT ddaC at 15.5). Higher variability in Class 

III tree complexity (when compared with Class I) was reproduced with a lower value for 

parameter E, expressing the reduced influence of the total number of terminals at any time 

point over growth cone bifurcation. When comparing these results against previous analyses 

of dendritic arbors (van Pelt and Schierwagen 2004), E values (representing competition 

among individual growth cones) are in the range of many other neuron types (0.2–0.45, but 

not pyramidal neurons) except in the case of Class I. Parameter B is larger than many of the 

previous neuron types analyzed, illustrating a higher degree of intrinsic drive for branching 

in the Drosophila DA neurons.

Overall, these results support the notion that the total amount and the distributions of 

cytoplasmic resources play significant roles in defining arbor morphology. Unfortunately, we 

presently lack arbor-wide quantifications of subcellular structures regulating growth. In 

earlier work, we finessed this limitation by incorporating “hidden” parameters in local 

models (Samsonovich and Ascoli 2005). Here, we reverted to using morphological 

determinants of the mature shape instead of attempting to simulate the biochemical cascades 

underlying developmental dynamics. In particular, the interplay of growth mediator 

molecules such as microtubules and neurofilaments are likely to play a prominent role in this 

process (van Beuningen et al. 2015; Brill et al. 2016). We speculate that the microtubule to 

neurofilament proportion may systematically vary across and within dendritic branches, as 

well as between neurons groups with different optimum balancing factors. In order to test 

this hypothesis, and build more powerful and predictive computational models, local 

densities of these cytoplasmic resources have to be quantified across whole dendritic arbors. 

Using the arbor-wide local quantity of cytoskeletal substrates directly as determinants of 

growth in simulations will allow us to gain a much deeper and more reliable understanding 

of dendritic development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Reconstructions of dendritic arborization (da) neurons, superimposed on the image 
stacks: three wild type (WT) cell classes and three RNA-silenced phenotypes of ddaC.
(a) Class I (ddaD); (b) Class II (ldaA) (c) Class III (v’pda); (d) Class IV (ddaC); (e) RpS2-IR 
(ddaC): reduction in complexity; (f) SkpA-IR (ddaC): Increase in complexity; (g) Ank2-IR 
(ddaC): Overall similar to WT ddaC, with moderate reduction in branch numbers close to 

the soma and tufted branching at distal dendritic terminals. All scale bars are 100 μm.
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Fig. 2: Quantitative morphometry of the four wild type da neuron cell classes and of the 
genetically altered phenotypes of Class IV subtype ddaC.
(a) Four da neuron cell classes are compared by the distribution of dendritic length against 

path distance from soma. Inset: comparison of all Class IV subtypes, with the blue dotted 

line indicating the ddaC data newly reconstructed for this study. (b) Comparison of WT 

ddaC with all RNAi silenced (IR) ddaC phenotypes analyzed in the study. Inset 1 (green 

arrow): three IR ddaC phenotypes that are only slightly less complex than WT ddaC, but 

distally shifted. Inset 2 (purple arrow): three IR phenotypes with significantly reduced arbor 

complexity.
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Fig. 3: Morphological homeostasis in da neurons.
(a) Reconstruction of a Class I (ddaD) neuron, with two individual stems (green and purple) 

of slightly different sizes, emerging from the soma. (b) Average length and average number 

of terminals for each dendritic stem as a function of the total number of stems in individual 

Class I neurons. (c) Distribution of standard deviations of the total length of artificial Class I 

cell groups, created by shuffling individual trees among real neurons. Trees were only 

shuffled among neurons with the same number of stems, and then pooled together and 

randomly grouped. The red bar is the standard deviation of total dendritic length in real 

Class I neurons. (d) Reconstruction of a Class IV (ddaC) neuron, with four individual stems 

(green, purple, sky-blue, and red) of different complexities, emerging from the soma. (e) 

Same as (b) for Class IV neurons. (f) Same as (c) for Class IV neurons.
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Fig. 4: Generation of artificial da neurons using local rule-based simulation.
(a) Distribution of the number of tips against branch order for real Class I neurons (blue line) 

and for artificial Class I neurons (red line) generated using the optimal local model variant. 

(b) Distribution of dendritic length against path distance from soma, for real Class I neurons 

(blue) and for artificial Class I neurons (red). (c) Dendrogram of a real Class I neuron. (d) 

Dendrogram of a simulated Class I neuron. (e) Same as (a) for Class IV neurons. (f) Same as 

(b) for Class IV neurons. (g) Dendrogram of a real Class IV neuron. (h) Dendrogram of a 

simulated Class IV neuron. The local model variant names in this figure and for all 

following figures describe the index of the model variant, followed by the series of FDs that 

constrained the five BPs (taper rate, daughter ratio, parent daughter ratio, branch path length, 
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bifurcation probability). PD: path distance from soma; RD: radius; BO: branch order. The 

terminal spacing for all dendrograms in this and subsequent figures is 1 μm; thus, X-axis 

approximates the total number of terminals. The dendrogram Y-axis represents path distance 

from soma.
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Fig. 5: Generation of artificial da neurons using global rule-based simulation.
(a) Example of a real Class I da neuron. (b) Example of an artificial Class I neuron generated 

using a balancing factor (bf) of 0.6. (c) Distribution of number of tips against branch order 

and (d) of dendritic length against path distance in real Class I neurons (blue) and artificial 

Class I neurons generated with a bf of 0.6 (red). (e) Example of real Class IV da neuron. (f) 

Example of an artificial Class IV neuron generated with a balancing factor of 0.3. (g) 

Distribution of the number of tips against branch order and (h) of dendritic length against 

path distance in real Class IV neurons (blue) and artificial Class IV neurons generated with a 

bf of 0.3 (red).
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Fig. 6: Comparing the morphology of two RNA-silenced ddaC phenotypes (RpS2-IR: reduced 
complexity; SkpA-IR: increased complexity) using local and global rule-based simulations.
(a) Example of a real RpS2-IR neuron. (b) Example of an artificial RpS2-IR neuron 

generated at the balancing factor of 0.2. (c) Dendrogram of a real RpS2-IR neuron. (d) 

Dendrogram of an artificial RpS2-IR neuron generated using the optimal local parameters 

(204_BO_RD_RD_RD_BO). (e) Distribution of tips against branch order and (f) of length 

against path distance for real RpS2-IR (blue), and optimum-local (red) and optimum-global 

(green) artificial RpS2-IR neuron groups. (g) Example of a real SkpA-IR neuron. (h) 

Example of an artificial SkpA-IR neuron generated at the balancing factor of 0.3. (i) 

Dendrogram of real SkpA-IR neuron. (j) Dendrogram of an artificial SkpA-IR neuron 

generated using the optimal local parameters (27_PD_PD_BO_BO_BO). (k) Distribution of 

tips against branch order and (l) of length against path distance from soma for real SkpA-IR 
(blue), and optimum-local (red) and optimum-global (green) artificial SkpA-IR neuron 

groups.
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Table 1:

Number of neurons, number of terminal tips, total dendritic length, and optimum global and local parameters 

of all modeled tree groups.

Neuron groups Number of 
neurons

Average 
no of tips

Std. 
dev. of 
tips

Average 
total 
length

Std. dev. 
of length

Global 
balancing 
factor

Branch path 
length 
determinant

Biff prob. 
determinant

Class I 50 28.8 8 1919.8 419.7 0.6 PD BO

Class II 18 112.4 28 3067 761.8 0.3 BO BO

Class III 34 366.5 132.8 5241.9 904.4 0.0 PD BO

Class IV 34 616.8 219 19,241 5292.8 0.3 PD BO

Class IV ddaC

WT 13 417.7 96.9 16,163.8 1976.9 0.3 PD BO

RpS2-IR 7 177 79.4 8565.2 3140.3 0.2 RD BO

RpS13-IR 6 136 26.6 6276.4 1318 0.2 BO BO

RpS17-IR 6 150.83 23 7441.7 755 0.2 RD PD

Ank2-IR 12 388.8 119.9 14,031.1 2745.1 0.4 PD BO

RhoGAP18B-IR 12 382.5 51.2 14,652 1131.2 0.3 RD BO

wdb-IR 9 374 82.9 14,643.1 1949.3 0.3 PD BO

SkpA-IR 11 473.3 88.9 19,039 1939.1 0.3 BO BO
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