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Transcription factor cyclic Adenosine monophosphate response-element binding protein plays a
critical role in the cyclic AMP response pathway via its intrinsically disordered kinase inducible
transactivation domain (KID). KID is one of the most studied intrinsically disordered proteins (IDPs),
although most previous studies focus on characterizing its disordered state structures. An interest-
ing question that remains to be answered is how the order-disorder transition occurs at experimental
conditions. Thanks to the newly developed IDP-specific force field ff 14IDPSFF, the quality of con-
former sampling for IDPs has been dramatically improved. In this study, molecular dynamics (MD)
simulations were used to study the order-to-disorder transition kinetics of KID based on the good
agreement with the experiment on its disordered-state properties. Specifically, we tested four force
fields, ff 99SBildn, ff 99IDPs, ff 14IDPSFF, and ff 14IDPs in the simulations of KID and found that
ff 14IDPSFF can generate more diversified disordered conformers and also reproduce more accu-
rate experimental secondary chemical shifts. Kinetics analysis of MD simulations demonstrates
that the order-disorder transition of KID obeys the first-order kinetics, and the transition nucleus is
I127/L128/L141. The possible transition pathways from the nucleus to the last folded residues were
identified as I127-R125-L138-L141-S143-A145 and L128-R125-L138-L141-S143-A145 based on
a residue-level dynamical network analysis. These computational studies not only provide testable
prediction/hypothesis on the order-disorder transition of KID but also confirm that the ff 14IDPSFF
force field can be used to explore the correlation between the structure and function of IDPs. Published
by AIP Publishing. https://doi.org/10.1063/1.5027869

INTRODUCTION

A transcription factor is a protein that specifically binds
to the minor or major groove of DNA to control gene tran-
scription,1 which is very important to all living organisms.
Cyclic AMP (cAMP) response-element binding (CREB) pro-
tein and its coactivator CREB binding protein (CBP) play
essential roles in cAMP signaling pathways.2 Mutations of
CBP may cause human diseases such as cancer, leukemia,
and neurological disorders.3 CREB can also interact with the
kinase-inducible domain interacting (KIX) domain of CBP
via its phosphorylated kinase inducible domain (p-KID), an
intrinsically disordered protein (IDP).4 p-KID forms two sta-
ble helices upon binding with KIX.5,6 Specifically, phospho-
rylation of Ser-133 was found to be vital to the binding of
CREB and CBP,5,7 which increases the affinity by two orders
of magnitude.8

The effect of phosphorylation upon the conforma-
tional change in p-KID was investigated by both NMR
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experiments9 and molecular dynamics (MD) simulations.10

In addition, Bomblies et al. investigated the binding mecha-
nism of p-KID/KIX in MD simulations.11 However, existing
generic protein force fields were known to be limited when
applied to IDP simulations for the lack of consideration of the
intrinsically disordered state. Indeed, simulations with generic
protein force fields usually do not agree well with NMR
observables. To address this problem, we have developed sev-
eral generations of special-purpose Assisted Model Building
with Energy Refinement (AMBER) force fields ff 99IDPs,12,13

ff 14IDPs,14 and ff 14IDPSFF15 to improve the modeling of
the disordered state of IDPs. In these special-purpose force
fields, grid-based energy correction map (CMAP) terms are
applied to correct the backbone dihedral terms for better sam-
pling of IDPs. In our previous generations of IDPs-specific
force fields, ff 99IDPs and ff 14IDPs, only backbone dihedrals
of eight disorder-promoting amino acids were corrected, while
in the latest generation force field, ff 14IDPSFF, all 20 naturally
occurring amino acids were corrected to further optimize the
force field, which was found to lead to an excellent agreement
with NMR experiments for a range of IDPs.15

KID is one of the most extensively characterized IDPs
and can serve as a paradigm for understanding the relationship
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between the structure and function for IDPs.4 Previous compu-
tational studies mainly focus on characterizing its disordered
state structures with either simulated annealing or replica
exchange simulation.4,16 An interesting question that remains
to be answered is how the order-disorder transition occurs at
experimental conditions. Thus room temperature MD sim-
ulation was used in this study to reveal the order-disorder
transition kinetics of KID. Specifically, we simulated KID
starting from the folded structure as in its complex with KIX.
We characterized its disordered state with four different force
fields, ff 99SBildn,17 ff 99IDPs, ff 14IDPs, and ff 14IDPSFF,
and compared their performances in reproducing experimen-
tal observables of KID. This is followed with an analysis of
the order-disorder transition kinetics with the trajectories in
the best-performing force field.

MATERIAL AND METHODS
Molecular dynamics simulations

The initial structure of KID was downloaded from the
Protein Data Bank (PDB) database (PDB code: 1KDX18).
Molecular dynamics simulations were set up and performed
by AMBER12.19 Hydrogen atoms were added to the crystal
structure. Counter-ions were also added to maintain system
neutrality. A buffer of 10 Å of TIP3P water molecules was
used to solvate the free KID.20 Direct Coulomb and van der
Waals interactions were computed with a cutoff distance of
8 Å. Long-range electrostatic interactions were treated with
the Particle Mesh Ewald (PME) method.21 The ff 99SBildn,
ff 99IDPs, ff 14IDPs, and ff 14IDPSFF force fields were used
to model the intramolecular interactions. Before starting the
MD simulations, the solvated system was relaxed first by the
steepest descent minimization and then by the conjugate gra-
dient minimization up to 2000 steps. Next 400 ps MD was
used to heat up the system to 298 K in the constant volume
and with the Langevin thermostat. This is followed by 200 ps
equilibration in the NPT ensemble at 298 K. The equilibration
and production simulations were simulated in the Berendsen
thermostat.22 In order to sufficiently sample the disordered

conformers of KID, ten independent trajectories of 300 ns
each were simulated in each of the four tested force fields,
ff 99SBildn, ff 99IDPs, ff 14IDPs, and ff 14IDPSFF. A total of
12 µs production trajectories were collected. NVIDIA® Tesla
K20 was used to accelerate all MD simulations.

Basic data analysis

The Amber12/PTRAJ module was used to calculate
Cα root-mean-square deviations (RMSDs).23 The Multiscale
Modeling Tools for Structural Biology (MMTSB) toolset
was used to perform the conformer cluster based on phi/psi
dihedral.24 In-house tools were used to calculate native con-
tacts.25–27 The assignment of secondary structures was based
on the Definition of Secondary Structure of Proteins (DSSP)
algorithm.28 The secondary chemical shift data were calcu-
lated with SPARTA 1.01.29 Experimental chemical shifts were
taken from Radhakrishnan et al.6 PyMOL 1.7 was used to
visualize all structures.

Dynamical correlation network analysis

In our dynamical correlation network analyses, one node
represents one residue. Equation (1) was first used to calculate
the fluctuation covariance matrix element between a pair of
nodes i and j as

Cij =
〈∆−→ri (t) · ∆

−→rj (t)〉√(
〈∆−→ri (t)2〉〈∆−→rj (t)2〉

) , (1)

where ∆−→ri (t) =
−→ri (t) − 〈

−→ri (t)〉 and −→ri (t) is the position of node
i at time t. With the matrix defined in (1) as input, the dynami-
cal correlation network method has been successfully used in
multiple systems in many previous studies with more details
explained therein.30–35 Briefly, all trajectories were used to
calculate the matrix elements. An edge is defined to exist
between any two nodes if they are not covalently bonded and
their heavy atoms are closer than 4.5 Å over 75% of the sam-
pling time.30–35 The strength of the edge is defined as the
absolute value of the matrix element (Cij). Network topolog-
ical parameters were calculated with Cytoscape 3.1.1.36 The

FIG. 1. RMSD for MD simulations
under ff 99SBildn, ff 99IDPs, ff 14IDPs,
and ff 14IDPSFF force fields.
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Floyd-Warshall algorithm was used to identify the shortest
path between two nodes.37

RESULTS
Disordered state properties: Validation of force fields
against experiment

To validate the performance of selected force fields in MD
simulations of KID, we studied their performance in reproduc-
ing experimental observables (i.e., NMR secondary chemical
shift and helicity) for KID. Additional structural prosperi-
ties were also monitored via the backbone root mean square
deviation (RMSD), conformer clustering, helical content, and

other thermodynamic parameters to evaluate the performance
of these force fields.

Backbone RMSD profiles were first calculated to check
if the simulations of four force fields reached equilibration
starting from KID’s folded structure as in the complex. Figure 1
shows the RMSDs from four force fields. Figure 1 suggests
that the sampling amount of 10 independent trajectories of
300 ns each is sufficient for the transition to equilibration and
equilibrium sampling afterwards.

To evaluate the sampling convergence under differ-
ent force fields, the radius of gyration (Rg), the fraction
of secondary structures, and the numbers of clusters that
occupy 70% of all simulated conformers were calculated. As

FIG. 2. The convergence analysis of molecular dynamic simulations under four ff 99SBildn, ff 99IDPs, ff 14IDPs, and ff 14IDPSFF force fields. (a) Rg of KID
protein for MD simulations under four force fields. (b) Fractions of the secondary structure for MD simulations under four force fields. (c) Accumulated numbers
of unique clusters for MD simulations under four force fields.

FIG. 3. Top 10 cluster confomers and their popula-
tions under four ff 99SBildn, ff 99IDPs, ff 14IDPs, and
ff 14IDPSFF force fields.



225101-4 Liu et al. J. Chem. Phys. 148, 225101 (2018)

shown in Fig. 2(a), the values of Rg are stable during the
simulation under these four force fields, except several fluc-
tuating trajectories of ff 14IDPSFF. In Fig. 2(b), the fraction
of helix in KID under four force fields are decreasing to their
converged values, which indicates the process of unfolding.
The increasing fraction of β strands was only observed in the
simulation under ff 14IDPSFF, where some disordered con-
formers were converted into β strands after 80 ns. In addition,
the cluster numbers reach plateaus within 300 ns, although
ff 99SBildn and ff 14IDPs reach the plateau much earlier than
other two [shown in Fig. 2(c)]. This indicates that sampling
was converged in our simulation setup.

Top 10 conformer clusters and their populations were
identified and are shown in Fig. 3. Overall, they each occupy
38.44%, 32.20%, 26.34%, and 14.16% in the ff 99SBildn,
ff 99IDPs, ff 14IDPs, and ff 14IDPSFF simulations, respec-
tively. The results show that the ff 14IDPSFF snapshots are
the most diversified among the tested force fields, and the
ff 99SBildn snapshots are the least diversified. Most top clus-
ters from the ff 14IDPSFF simulations include high popula-
tions of disordered structures and little native helical elements,
especially in the terminal regions.

In order to understand the characteristics of the disor-
dered KID conformers, it is also interesting to see how much

FIG. 4. Representative conformers of intrinsically disordered KID simulated
in ff 14IDPSFF. (a) native pre-molten globule state. (b) native random coil
state.

of the disordered conformers can be clustered into the native
random coil state, native pre-molten globule state, or native
molten globule state as proposed in the literature.38 Based on
the conformer clustering and the secondary structure analysis,
the clusters were classified into the two suggested types and
are shown in Fig. 4. The pre-molten globule state is with partly
disordered and helical or beta-sheet conformers, and the native

FIG. 5. PMF free energy landscapes. (a) Landscapes of RMSD and Rg. (b) Landscapes of PC1 and PC2 of native contact.

FIG. 6. Helicity profiles in simulations with ff 99SBildn,
ff 99IDPs, ff 14IDPs, and ff 14IDPSFF force fields.
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TABLE I. Average helicity for αA and αB.

αA (%) αB (%)

Expt. 50–60 10–15
ff 99SBildn 44.17 ± 14.97 28.57 ± 16.55
ff 99IDPs 24.95 ± 15.66 28.68 ± 11.90
ff 14IDPs 34.60 ± 20.18 62.62 ± 6.96
ff 14IDPSFF 16.89 ± 6.5 6.13 ± 2.48

random coil state is full of intrinsically disordered conformers.
This indicates that the distribution of KID conformer is
different from that as proposed in the literature.

In order to investigate the conformational sampling space
of the KID protein, the Potential Means of Force (PMF)
free energy landscapes were calculated for the four tested
force fields with respect to the backbone RMSD, Rg, and
the principal component analysis (PCA) of the interresidue
contact map. In recent studies,39,40 the contact PCA method
was successfully applied to two well-established proteins
and proven to be useful in studying protein dynamics. Fig-
ure 5(a) indicates that sampled conformers in ff 99SBildn
are with RMSD in the range of 2–10 Å and Rg in the
range of 8–16 Å, those in ff 99IDPs are with RMSD of
4–12 Å and Rg of 8–12 Å, those in ff 14IDPs are with RMSD of
3–10 Å and Rg of 8–20 Å, and those in ff 14IDPSFF are with
RMSD of 4–12 Å and Rg of 8–22 Å. In addition, Fig. 5(b)
shows landscape maps in terms of first and second principal
components. It is obvious that ff 14IDPSFF leads to more diver-
sified sampling than other three force fields. This suggests that
the sampling space is the largest in ff 14IDPSFF, in agreement
with the RMSD and clustering analyses.

The average helicity of each residue was next calculated,
as shown in Fig. 6. The average helicity αA of in ff 99SBildn
is much higher than those in the other three force fields, while
the average helicity of αB in ff 14IDPs ranks the highest.
According to the report of Radhakrishnan et al., the estimated
helical population of KID for helix αA (residues 120-129) is
50%–60%, while that for helix αB (residues 134-144) is only
10%–15%.6 As shown in Table I, the average helical con-
tent of KID for αA under ff 99SBildn, ff 99IDPs, ff 14IDPs,
and ff 14IDPSFF is 44.17%, 24.95%, 24.60%, and 16.89%,
respectively, while that forαB is 28.57%, 28.68%, 62.62%, and
6.13%, respectively. This shows that ff 14IDPSFF best repro-
duces the helicity of αB, although ff 99SBildn best reproduces
the helicity of αA.

To evaluate the performance of different force fields,
the secondary Cα chemical shifts were also calculated and
compared with the experiment, as shown in Fig. 7. The RMSDs
between experiment and simulations in ff 99SBildn, ff 99IDPs,
ff 14IDPs, and ff 14IDPSFF are 0.79 ppm, 0.93 ppm, 1.42 ppm,
and 0.76 ppm, respectively. These results indicate that the per-
formance of ff 14IDPSFF is the best one among the four tested
force fields for sampling the disordered conformers of KID.

DISCUSSION
Order-disorder transition kinetics analysis

Our above analysis shows that the overall ff 14IDPSFF
reproduces the observed structural properties better than other
tested force fields. Therefore, the trajectories in ff 14IDPSFF
were chosen to study the order-disorder transition kinetics
for KID. First, the native helical content (Qh) and native ter-
tiary contacts (Qf) were used to measure the transition time
scales of secondary and tertiary structures, respectively. The
regression analysis of Qf and Qh for KID is shown in Fig. 8.
The figure shows that a bi-exponential function can be used
to fit the tertiary and a single exponential function for sec-
ondary transition kinetics curves. The kinetics parameters from
the nonlinear regression are listed in Table II. The analysis
indicates that the transition processes obey the second-order
kinetics at the room-temperature simulation conditions for
tertiary structures and first-order kinetics for secondary struc-
tures. This is similar with the findings in unfolding simulations
at high temperature.25–27,41,42 The kinetic analysis also demon-
strates that the transition half times are 0.705 ± 0.064 ns and
38.300 ± 1.074 ns for tertiary contacts and 44.958 ± 0.756 ns
for helical structures. This indicates that the unfolding of the
secondary structure is slower than that of the tertiary contacts,
supporting the findings that noticeable secondary components
exist in the disordered state in the clustering analysis.

Residue-level dynamical network analysis

Dynamical fluctuation correlation networks were also
constructed to monitor the transition kinetics of KID. To con-
struct a fluctuation correlation network, we first calculated
fluctuation covariance matrices and constructed the fluctuation
correlation networks as in our previous studies.30,31,33,34,43–45

According to the half times of tertiary and secondary struc-
tures, the transition process of KID can be classified into
four stages. Here the last 150 ns represents the equilibrated

FIG. 7. Secondary chemical shifts from experiments
and simulations in ff 99SBildn, ff 99IDPs, ff 14IDPs, and
ff 14IDPSFF.
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FIG. 8. Order-disorder transition kinetics of KID in ff 14IDPSFF simulations:
(a) helicity content and (b) native contact.

disordered state based on the kinetics time scale (three times
the longest time decay constant involved). Therefore, we
constructed four correlation networks for all four stages and
utilized the analysis tools in the social network and associated
algorithms to compare the different networks.

We first analyzed the topological parameters for the four
networks. Specifically, the clustering coefficient is a ratio of
the number of edges between the neighbors of node and the
maximum number of edges that could possibly exist between
the neighbors of node. Network centralization indicates how

TABLE II. Kinetics parameters for KID.

Native contact Helicity

y = A1e−x/τ1 + A2e−x/τ2 + B y = A1e−x/τ1 + B

A1 9.495 ± 0.314 A1 0.621 ± 0.006
τ1 0.705 ± 0.064 τ1 44.958 ± 0.756
A2 6.383 ± 0.111
τ2 38.300 ± 1.074
B 1.186 ± 0.024 B 0.005 ± 0.002
R2 0.969 R2 0.983

TABLE III. Topology parameters for four correlation networks.

Parameter 0–38 ns 38–45 ns 45–150 ns 150–300 ns

Clustering coefficient 0.123 0.206 0.077 0.230
Network centralization 0.131 0.140 0.083 0.168
Average no. of neighbors 3.714 3.500 1.929 3.786
Network density 0.138 0.130 0.071 0.140
Network heterogeneity 0.454 0.486 0.498 0.609

centralized the central nodes are within a network. The aver-
age number of neighbors indicates the average degree of a
node. Network density quantifies the proportion of actual
edges out of all possible edges, which indicates how easily the
information can be transferred in the network. Heterogeneity
measures the uniformity of the network, with a higher hetero-
geneity value indicating that the network consists of different
components. These network topology parameters are listed in
Table III.

FIG. 9. Dynamical correlation networks of KID for the four stages: (a) 0–38 ns, (b) 38–45 ns, (c) 45–150 ns, and (d) 150–300 ns. The nodes with degree higher
than 5 are marked in pink.
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Table III shows that the average number of neighbors and
the density of the first-stage network are the largest, while
the third-stage network is the most heterogeneous during the
order-disorder transition. Interestingly the disordered state net-
work was observed to have higher topological parameters than
the three networks during the transition. This is due to the
formation of beta strands in this state, even if the overall
conformers are quite disordered, as shown in the clustering
analysis of Fig. 3. Overall the four networks are quite different
from each other, and their differences indicate different inter-
residue dynamical correlation in the process of order-disorder
transition.

The four dynamical networks are shown in Fig. 9. The pro-
tein dynamical networks can be viewed as scale-free networks
that have many nodes with low degrees but also allow nodes
with high degrees. These high-degree nodes play key roles in
inter-residue information transfer.46 In this study, nodes with
degrees higher than 5 are termed hub nodes. There are 9 hub
nodes in the first-stage network: R124, R125, E126, I127,
L128, S129, R135, I137, and L138. There are 6 hub nodes
in the second-stage network: Q122, R124, R125, E126, I127,
and I137, where nodes L128, S129, R135, and L138 are down-
graded into non-hub nodes, although node Q122 becomes a
new hub node. The third-stage network was found to disinte-
grate into several isolated sub-networks with little information
transfer. There are no hub nodes any more although R125-
R130 are still important in this fragmented network. The low
information flow in the third-stage network suggests that the
order-disorder transition of KID is almost finished. Interest-
ingly, refolding was also observed during the last 150 ns of the
trajectories, leading to 9 hub nodes in the last-stage network:
T119, R124, R125, E126, I127, R130, S142, S143, and D144.
Given the strong presence of nodes R125-R130 in all four net-
works, these residues may act as a nucleus in the order-disorder
transition of KID.

In order to confirm the nucleus in the order-disorder transi-
tion, we analyzed the representative conformers in each kinetic
stage defined in Table III. Here the representative conformers
were chosen to be snapshots closest to the mean main-chain
structure in each stage. The representative conformers can be

FIG. 10. The order-disorder transition pathway of KID.

FIG. 11. The shortest paths from the transition nucleus to the latest folded
residues.

used to illustrate the transition pathway of KID (Fig. 10). It is
clear that residues with native contacts are hub nodes in the
dynamical network analysis, and there is a noticeable nucleus
surrounding I127, L128, and L141; this is consistent with the
dynamical network analysis above. The nucleus apparently
is important for the KID stability and may also be involved
in additional biological functions in the binding interactions
of KID to its partners. For example, the previous experi-
ment shows that L128A increases the binding to KIX by over
10-fold and L141 interacts with the groove of KIX;47 both are
important for the functions of KID.

Finally, we identified the shortest pathways from the tran-
sition nucleus to the last folded residues in the first-stage
network, using the shortest pathway algorithm in the social
network analysis. The shortest pathways are shown in Fig. 11,
as I127-R125-L138-L141-S143-A145 and L128-R125-L138-
L141-S143-A145. It is clear that I127, L128, and L141 share
the same shortest path and almost all these residues are hub
nodes in the dynamical networks and are involved in native
contact interaction networks (Fig. 10).

CONCLUSION

In this study, we conducted extensive MD simulations
with ff 14IDPs, ff 99IDPs, ff 14IDPSFF, and ff 99SBildn force
fields to quantify the intrinsically disordered state of KID. Our
simulations show that ff 14IDPSFF can produce more disor-
dered and diverse conformers of KID than the other tested
force fields. In addition, the calculated secondary chemical
shift based on the ff 14IDPSFF simulation agrees the best
with experiment. It is interesting to note that the ff 14IDPSFF
simulation samples typical IDP conformers such as molten
globule, pre-molten globule state, and random coil conform-
ers, as proposed in the literature. Kinetic analysis indicates
that the order-disorder transition of KID proceeds via a two-
state process and the tertiary transition happens first. This is
followed by the helical transition. It is worth pointing out
that a few key residues play important roles in stabilizing
the disordered state and are also found to be important in
binding to their partner proteins. In summary, the computa-
tional studies reported here not only provide testable predic-
tion/hypothesis on the order-disorder transition of KID but
also confirm that the ff 14IDPSFF force field can be used to
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explore the correlation between the structure and function of
IDPs.

ACKNOWLEDGMENTS

This work was supported by the Center for HPC at
Shanghai Jiao Tong University, the National Key Research
and Development Program of China (No. 2017YFE0103300),
the National Natural Science Foundation of China (Nos.
31770771 and 31620103901), the Medical Engineering Cross
Fund of Shanghai Jiao Tong University (Nos. YG2015MS56
and YG2017MS08), and National Institutes of Health/NIGMS
(Nos. GM093040 and GM079383).

Conflict of interest: none.

1D. S. Latchman, “Transcription factors: An overview,” Int. J. Biochem. Cell
Biol. 29, 1305–1312 (1997).

2B. Mayr and M. Montminy, “Transcriptional regulation by the
phosphorylation-dependent factor CREB,” Nat. Rev. Mol. Cell Biol. 2,
599–609 (2001).

3C. Rouaux, J. P. Loeffler, and A. L. Boutillier, “Targeting CREB-binding
protein (CBP) loss of function as a therapeutic strategy in neurological
disorders,” Biochem. Pharmacol. 68, 1157–1164 (2004).

4D. Ganguly and J. Chen, “Atomistic details of the disordered states of KID
and pKID. Implications in coupled binding and folding,” J. Am. Chem. Soc.
131, 5214–5223 (2009).

5D. Parker, K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koer-
ber, C. Hoeger, and M. R. Montminy, “Phosphorylation of CREB at ser-
133 induces complex formation with CREB-binding protein via a direct
mechanism,” Mol. Cell. Biol. 16, 694–703 (1996).
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