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Abstract
Background
Transient loss of consciousness (TLOC) is a common reason for pre-
sentation to primary/emergency care; over 90% are because of epilepsy,
syncope, or psychogenic non-epileptic seizures (PNES). Misdiagnoses
are common, and there are currently no validated decision rules to aid
diagnosis and management. We seek to explore the utility of machine-
learning techniques to develop a short diagnostic instrument by
extracting features with optimal discriminatory values from responses to
detailed questionnaires about TLOC manifestations and comorbidities
(86 questions to patients, 31 to TLOC witnesses).

Methods
Multi-center retrospective self- and witness-report questionnaire study in secondary care set-
tings. Feature selection was performed by an iterative algorithm based on random forest
analysis. Data were randomly divided in a 2:1 ratio into training and validation sets (163:86 for
all data; 208:92 for analysis excluding witness reports).

Results
Three hundred patients with proven diagnoses (100 each: epilepsy, syncope and PNES) were
recruited from epilepsy and syncope services. Two hundred forty-nine completed patient and
witness questionnaires: 86 epilepsy (64 female), 84 PNES (61 female), and 79 syncope
(59 female). Responses to 36 questions optimally predicted diagnoses. A classifier trained on
these features classified 74/86 (86.0% [95% confidence interval 76.9%–92.6%]) of patients
correctly in validation (100 [86.7%–100%] syncope, 85.7 [67.3%–96.0%] epilepsy,
75.0 [56.6%–88.5%] PNES). Excluding witness reports, 34 features provided optimal pre-
diction (classifier accuracy of 72/92 [78.3 (68.4%–86.2%)] in validation, 83.8 [68.0%–93.8%]
syncope, 81.5 [61.9%–93.7%] epilepsy, 67.9 [47.7%–84.1%] PNES).

Conclusions
A tool based on patient symptoms/comorbidities and witness reports separates well between
syncope and other common causes of TLOC. It can help to differentiate epilepsy and PNES.
Validated decision rules may improve diagnostic processes and reduce misdiagnosis rates.

Classification of evidence
This study provides Class III evidence that for patients with TLOC, patient and witness
questionnaires discriminate between syncope, epilepsy and PNES.
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Transient loss of consciousness (TLOC)—impairment of
consciousness with real or apparent loss of awareness, am-
nesia for the period of unconsciousness, abnormal motor
control, loss of responsiveness, and a short duration, with full
spontaneous recovery, not because of head trauma1,2—is
a commonly presenting complaint, accounting for 3% of UK
emergency department (ED) attendances.3 Estimated life-
time prevalence is 50%.4 Over 90% are explained by one of 3
aetiologies: syncope, epilepsy, and psychogenic non-
epileptic seizures (PNES). Diagnosis can be difficult as
most patients are asymptomatic with no examination ab-
normalities by the time they are assessed by a clinician.3,5

Inter-ictal investigations are often uninformative or
misleading.5,6 Individual features in a patient’s history or
witness descriptions (e.g., acquisition of ictal injuries or ap-
parent occurrence from sleep) have been shown to distin-
guish between syncope and tonic-clonic seizures, but their
ability to distinguish between the common diagnoses in
unselected patient populations (including those with PNES
or other types of epileptic seizures causing impaired conscious-
ness) is unproven.7,8 Misdiagnoses are common, with estimates
ranging from 25% to 42%.9–11 Correct diagnoses, especially of
PNES, are often delayed by several years.12 Diagnostic errors put
patients at risk of iatrogenic injury and death.12,13

Despite low sensitivity or specificity of individual clinical
features in the differential diagnosis of TLOC, clusters of
such features can discriminate between syncope, epilepsy,
and PNES.8,14–17 The use of such clusters can be oper-
ationalised via clinical decision rules (CDRs) that quantify
the contribution of different features to a pre-defined clinical
threshold and provide criteria for different courses of action.
Correctly employed in the appropriate setting, CDRs can
improve clinical decision-making.18 While candidate CDRs
for the diagnosis of TLOC have been suggested,16 none is
endorsed in current management guidelines.4 Guidelines do,
however, exist for risk stratification and management of
syncope and seizures on first presentation,2,4 highlighting the
importance for clinicians of reaching a working initial di-
agnosis for appropriate triage and ongoing management.
There are a considerable range of candidate clinical features
to discriminate between causes, but prospective validation of
most is lacking.19 A CDR appropriate for use in primary care
or ED settings would require a modest number of features
jointly to discriminate between common diagnoses with
a sufficient level of accuracy. We previously demonstrated
that comprehensive TLOC symptom or witness observation
profiles (captured by the 86-item Paroxysmal Event Profile
[PEP] and the 31-item Paroxysmal Event Observer [PEO]
questionnaire) could separate with a high level of accuracy
between the 3 commonest causes of TLOC.14,20

One challenge in developing a CDR for TLOC is that simple
scores assume features combine linearly—that a given clin-
ical feature counts for or against a given diagnosis to the same
degree irrespective of the presence/absence of other fea-
tures. However, clinicians working with patients who

experience TLOC will interpret features very differently
depending on what others are also present (e.g., pre-ictal
palpitations when accompanied by pallor and sweating may
suggest syncope, but point to PNES when associated with
a fear of dying). Such nonlinear combinations are hard to
incorporate into simple scoring rules, but are easily handled
by automated classifiers. A range of such tools is available in
the machine learning literature, and previous work demon-
strates their applicability to differentiating between causes of
TLOC.15 While the more complex decision rules used by
such classifiers require computer-based implementation, in
an era of widespread smartphone availability and increasing
use of electronic patient records, this should not present
a barrier to implementation. Indeed, such computerized
tools are widely used for other clinical problems in both
primary care (e.g., QRISK21) and emergency (e.g., NELA
[National Emergency Laparotomy Audit]22 and P-POSSUM
[Portsmouth Physiological and Operative Severity Score for
the enumeration of Mortality and morbidity]23) settings.

The purpose of the present study is to identify a manageable
set of features suitable for a CDR for patients first presenting
with TLOC and to evaluate the diagnostic performance of
a classifier trained on these features. We perform this both for
clinical scenarios in which a TLOC observer can provide
witness information and for presentations in which TLOC
occurred unobserved. The identification of a modest subset of
diagnostic features from the extensive PEP and PEO ques-
tionnaires would help future development and validation of
a CDR for TLOC in primary and emergency care settings.

Methods
Primary research question
We sought to determine whether a questionnaire based on
witness and symptom reports of TLOC could be used to train
a diagnostic classifier that could reliably distinguish between
epilepsy, syncope, and PNES.

Patient recruitment
This study is based on data previously used to explore the
discriminatory potential of TLOC symptom and witness
observation profiles.14,20 Patients with diagnoses of epilepsy
or documented PNES24 were identified from the clinical
databases of the Department of Clinical Neurophysiology,
Royal Hallamshire Hospital in Sheffield, UK, and the Na-
tional Hospital of Neurology and Neurosurgery in London,
UK. Typical episodes involving TLOC had been captured in
all participants by video-EEG. Clinical diagnoses were made
by a neurologist with a particular interest in seizure disorders
and based on video-EEG findings as well as all other available
clinical data. Some patients with syncope were identified
from the same sources, but most had been diagnosed by the
Falls and Syncope Service, Newcastle upon Tyne, UK. All
diagnoses were made by experts, supported by pathophysi-
ologic evidence (e.g., tilt-table testing results consistent with
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the diagnosis, or syncopal or presyncopal symptoms co-
occurring with explanatory ECG or blood pressure changes).
We have given further details on the recruitment method and
formulation of “gold standard” diagnoses previously.14

From 2004 to 2009 we approached patients ≥16 years old
with TLOC and a confirmed diagnosis of epilepsy, syncope,
or PNES by post until we had received 100 completed
questionnaires for each group. We asked participants to
identify an observer of their events and ask them to complete
and return a questionnaire about witness-observable TLOC
manifestations.

Sample size
Neither our research question nor our proposed method of
data analysis (see below) straightforwardly permits sample
size calculations. Given the large number of potential pre-
dictor variables, we use methods designed for analysis of
small-n large-p data sets (sample size n <<< number of
predictor variables p) that demonstrate robust performance
with smaller sample sizes and more predictors than in our
data set.25

Questionnaires
Clinical and demographic features
Patients were asked to provide information about basic de-
mographic features (age, sex), family history of blackouts,
and 17 selected common cardiovascular or neurologic
comorbidities.

Paroxysmal Event Profile
We asked patients to report the presence or absence of peri-
episodal symptoms using the PEP, an 86-item questionnaire
describing frequency of symptoms on a 5-point Likert scale
(“always” to “never”). Construction, content, and diagnostic
contribution of the PEP are described elsewhere.14 The PEP
is available online (appendix 1, links.lww.com/CPJ/A131).

PEO questionnaire
We asked witnesses to describe episodes using the PEO
questionnaire. The PEO includes questions on the duration
of witness’ acquaintance with the patient and the number of
witnessed episodes, followed by 31 observable episode
manifestations classified on a 5-point (“always” to “never”)
Likert scale. Construction, content, and diagnostic contri-
bution of the PEO are described elsewhere.20 The PEO is
available online (appendix 2, links.lww.com/CPJ/A131).

Statistical analysis
To reflect the likelihood of many patients presenting with
TLOC only having experienced one or very few episodes, we
recoded Likert-scale frequency responses used in the PEP
and PEO into binary “ever” (“always,” “sometimes,” “fre-
quently,” “rarely”) or “never” (“never”) responses. We ex-
cluded questionnaire responses for items that would be
unintelligible at first seizure presentation (e.g., age at onset,
previous hospitalisations because of episodes), and also

excluded age since we recruited syncope patients from
a healthcare setting primarily attracting older adults.14 We
then randomly assigned respondents to training and valida-
tion data sets in a 2:1 ratio (Using a sequence S = {s1,… sN}
ofN pseudo-random numbers [Mersenne Twister, seed = 0]
with uniform distribution over the real-number interval
[0,1]; nth patient was assigned to the training group iff sn ≤=
2/3; otherwise, the patient was assigned to validation).

For variable reduction, we utilised a technique recommended
in consensus guidance on CDR construction:26 ensemble
bootstrap-aggregation (using ensembles of classification
trees, AKA a “random forest,” RF).27 We employed an it-
erative algorithm designed for small-n large-p genomics data
sets based on RFs.28 Decision trees provide an easily in-
terpretable supervised learning method for classification
problems, but fitting algorithms tend to be unstable in their
selection of variables in large-p data sets.28 Constructing
ensembles of trees using bootstrap sampling and aggregation
improves performance significantly.27 For feature selection,
we trained a RF of 1000 trees (allowing all predictors to be
sampled at each node split to improve discrimination be-
tween variables)25 and ranked predictor importance by an
increase in out-of-bag prediction error with permutation of
predictor values. We then trained progressively smaller RFs
by removing the least-important 20% of predictors at each
step and calculated the out-of-bag error for each RF. The
selected set of variables is that which minimises the out-of-
bag error (“0 standard error rule”). We performed this
procedure twice: once using history, symptom, and witness
report data (“witness–patient,” reflecting scenarios in which
a TLOC patient presents with an observer of the event); and
once using only history and symptoms (“patient-only,” to
reflect scenarios in which no such observer is available). To
evaluate predictive performance of the reduced-dimension
model, we used the resulting RFs to classify patients in the
validation sample into diagnoses of epilepsy, syncope, or
PNES, and compared these to reference standard diagnoses.

All analyses were performed using MATLAB R2017b with
Statistics and Machine Learning Toolbox (The MathWorks,
Natick, MA). All code, including RF classifiers, is available
from the authors on request.

Standard protocol approvals, registrations,
and patient consents
Ethical approval for this study was granted by the Northern
and Yorkshire Multi-Centre Research Ethics Committee.

Invitations, information sheets, and questionnaires were sent
to potential participants as previously described,14 with
specific information that return of completed questionnaires
would be interpreted as consent to participate.

Data availability
All data and statistical analyses are available from the authors
on request.
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Results
Descriptive analysis
Three hundred respondents returned PEP questionnaires
(219 female), 100 with each diagnosis. Of these, 249 also
returned PEO (witness) questionnaires: 86 (64 female) had
diagnoses of epilepsy, 84 PNES (61 female), and 79 syncope
(59 female). The demographic characteristics of this sub-
population are similar to those of the whole study sample
reported previously.14,20 Further details of between-group
differences on individual PEP and PEO items are described
elsewhere.14,20

For patient-only analysis the training group comprised 208
participants (73 epilepsy, 72 PNES, 63 syncope), of whom
149 were female, with the remaining participants assigned to
validation. For witness/patient, the training group comprised
163 participants (58 epilepsy, 52 PNES, 53 syncope), of
whom 114 were female; the validation group comprised the
remainder.

Although 96.3% of questionnaire items were answered by
respondents, 104/249 (41.8%) of participants had at least
one missing value in their responses. RF analysis with sur-
rogate splitting is robust to missing values.27

Feature selection
Witness/patient
RF-based iterative feature selection identified 36 features that
were jointly predictive of diagnosis (figure 1). These in-
cluded: 6 historical or non-ictal complaints (35.3% of his-
torical features inquired about); 20 peri-ictal symptoms
(23.3% of PEP items); and 10 witness-reported signs (29.4%
of PEO items). Relative importance of selected predictors is
shown in figure 2A.

Patient-only
Feature selection identified 34 features (figure 3): 8 historical
(47.1% of history questionnaire features) and 26 peri-ictal
symptoms (30.2% PEP items). Relative importance is shown
in figure 2B.

Predictor performance on validation sample
Witness/patient
The 36-feature RF classified 74/86 (86.0%; 95% confidence
intervals [CIs] 76.9%–92.6%) of patients in the validation
sample correctly. Hundred percent of syncope diagnoses
were identified correctly, 85.7% epilepsy and 75.0% PNES.
Full predictor performance by diagnosis is summarised in
table 1. Of patients who were incorrectly classified, equal
numbers of patients with epilepsy were classified as syncope
or PNES, while slightly more patients with PNES were
classified as epilepsy than syncope (table 2).

Patient-only
The 34-feature RF classified 72/92 (78.3%; 95% CI
68.4%–86.2%) of patients in the validation sample correctly

(83.8% syncope, 81.5% epilepsy, 67.9% PNES). Of patients
who were incorrectly classified, both PNES and syncope
patients were more commonly classified as epilepsy than the
alternative, while one more epilepsy patient was classified as
having PNES than syncope (table 2).

Comparison of classifiers and
sensitivity analysis
Comparison to regression-based classification
We compared the performance of the witness/patient RF
against a multinomial logistic regressionmodel that used the 36
predictors selected in our witness/patient variable reduction
procedure. The RF outperformed the regression model (clas-
sification accuracy 77.9% vs 86.0%; McNemar’s test for differ-
ence in performance p = 0.096). We provide further details in
appendix e-3 (links.lww.com/CPJ/A131) (section 1).

Sensitivity analysis
We report post-hoc sensitivity analyses of the effects of se-
lected witness and patient variables on classifier accuracy in
appendix e-3 (links.lww.com/CPJ/A131) (section 2). Du-
ration of witness acquaintance, number of events witnessed
influenced, and time since onset of blackouts did not affect
classifier accuracy. We found an association between number
of events in the past year and classifier accuracy, which may
be a consequence of the over-representation of PNES
amongst participants reporting higher frequency of events.

Discussion
Our results demonstrate that, when both patient and witness
reports are available, a CDR with a modest number of
questions distinguishes very well between syncope and the 2
types of seizures. Pending validation, such a tool could be
usefully employed in the ED or primary care to direct patients
to either cardiological or neurologic investigation and re-
ferral. The CDR also provides some guidance for differenti-
ating epilepsy from PNES. Previous studies suggest that
questions about other domains (for instance, previous
trauma, coping styles, current psychopathology) could im-
prove the discrimination between epilepsy and PNES19;
however, the inclusion of such questions might reduce pa-
tient acceptability of the CDR.15,29,30

Our results demonstrate that when

both patient and witness reports are

available, a CDR with a modest

number of questions distinguishes

very well between syncope and the 2

types of seizures.
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The reduction in performance seen with patient-only
classification emphasises the clinical importance of the
collateral history. Included witness report features corre-
sponded to semiological features previously used in the
differential diagnosis of TLOC31; assessment of these
features in witness reports thus remains clinically valu-
able, despite the fact that when considered individually,
untrained observers may not report their presence
reliably.7,32

Automated classification using RFs successfully reduces the
number of predictor variables without sacrificing accuracy.
Our RF classifier improved upon classification accuracy rel-
ative to regression-based methods using all features, even
using a separate validation sample to control for overfitting.20

This may be because of the ability of machine learning
methods such as RFs to exploit nonlinear interactions be-
tween predictors.15 The importance of nonlinear inter-
actions to RF classification can explain some apparently

Figure 1 Features selected from patient and witness report data (N = 249)

Counts display percentage of patients reporting each feature by diagnosis. A darker colour indicates higher percentage reporting the feature as present.

Figure 2 Predictor importance (relative change in classification error with predictor permutation) for witness and patient
data (A) and patient-only (B)

.
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anomalous divergences between features selected by our
witness–patient and patient-only classifiers, for example that
post-ictal unawareness or confusion are important features in
the patient-only classifier but not selected in the witness-
patient classifier. This suggests that when no witness data are
available, these features contribute importantly to diagnosis,
but in combination with information available from wit-
nesses, other features become relatively more important.

Several previous attempts have been made to derive CDRs
for diagnosis of TLOC although, to date, these have con-
centrated on the simpler problem of binary classification, as
opposed to our 3-category approach which provides a finer
classification. Direct performance comparison against these
previously published offerings is therefore difficult; however,
our results are largely consistent while offering notable the-
oretical and practical advantages. Our 36-feature RF includes
all items of the 9-point regression-based CDR presented by
Sheldon et al.16 except episodal diaphoresis (the PEP does
not include pre-episodal sweating; post-episodal sweating
had a negative predictor importance score on our analysis,
indicating a negative contribution to correct classification).
Sheldon et al. claim 94% sensitivity and specificity for the
distinction between syncope and epilepsy (86.5% sensitivity
and 92.1% specificity in independent prospective valida-
tion),33 but their CDR does not discriminate between
epilepsy and PNES, their epilepsy group only included tonic-
clonic seizures, and diagnoses in their study were not sup-
ported by objective findings during typical episodes. These
limitations also apply to Hoefnagels et al.’s 4-feature
regression-based score,34 which includes age as a predictor
(we could not include age in our analysis because of sampling
bias, as discussed further below). While our classifier was less
successful in distinguishing epilepsy and PNES than syncope
from either, results are comparable to those of Syed et al.15

who used a similar variable-reduction followed by machine-
learning classification to use 53 questionnaire items to dis-
tinguish PNES from epilepsy with a sensitivity of 85%–94%

Figure 3 Features selected using only patient reports (N = 300)

Counts display percentage of patients reporting each feature by diagnosis. A darker color indicates higher percentage reporting the feature as present.

Table 1 Predictor performance of RF models (with 95%
CIs) by reference diagnosis for witness-patient
(N = 86) and patient-only (N = 92) classifiers
(see text for definition of groups)

Epilepsy PNES Syncope

Witness + patient

Sensitivity (%) 85.7 (67.3–96.0) 75 (56.6–88.5) 100 (86.7–100)

Specificity (%) 91.4 (81.0–97.1) 96.3 (87.3–100) 91.7 (81.6–97.2)

Patient only

Sensitivity (%) 81.5 (61.9–93.7) 67.9 (47.7–84.1) 83.8 (68.0–93.8)

Specificity (%) 80.0 (68.2–88.9) 93.8 (84.8–98.3) 94.5 (84.9–98.9)

Abbreviations: CI = confidence interval; PNES = psychogenic non-epileptic
seizures; RF = random forest.
Terms are defined as follows, where TP = true positives, FP = false positives,
TN = true negatives, FN = false negatives: sensitivity = TP/(TP + FN);
specificity = TN/(FP + TN).
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and specificity of 83%–85%: more sensitive but less specific
than ours (though their analysis included no syncope group).
Their classifier included more extensive demographic details
and a range of psychosocial variables, suggesting the po-
tential for further improvement of performance through
consideration of other non-historical variables.

Our feature selection identified important contributions to
differential diagnosis from patient symptoms, past medical
history, and witness reports. Consistent with previous
reports, PNES patients endorsed a higher number of
comorbid complaints.35,36 The classifiers included several
features suggesting a greater preservation or fluctuating level
of ictal consciousness in PNES patients than those with
epilepsy, consistent with previous reports of post-event recall
of ictal events and quantitative studies of ictal impairment of
consciousness in epilepsy and PNES.37–39 Both classifiers
highlighted the relevance of ictal panic and dissociative
symptoms to identifying PNES, an association previously
identified.14,40,41 Reported onset during sleep contributed to
diagnosis in the symptoms-only model, being predictive of
both epilepsy and PNES. This observation might be con-
sidered surprising given differences in sleep patterns between
epilepsy and PNES42; however, while onset during EEG-
confirmed sleep is highly predictive of epilepsy, onset from
sleep-like states (“pre-ictal pseudosleep”) is common in
PNES.31 Given our focus on original presentation, dis-
tinguishing between such states may be of limited value in
this context,43 though potentially of importance in ongoing
management.42

We stress the difference between diagnostic triage and risk
stratification tools. Our CDR provides the former and may
help to enable non-expert clinicians to consider whether
a cardiological or neurologic diagnosis is more likely and so

direct investigations and referral appropriately. Each of our
diagnostic classes are, however, heterogeneous, and clinicians
need to consider underlying aetiology and risk stratification
within each condition. Existing guidance and candidate
CDRs exist to help clinicians once they have established
a working TLOC cause2,4,44,45; the function of tools such as
ours is to aid clinicians in directing patients down the ap-
propriate TLOC pathway.

Several important limitations to this study should be
addressed in future work. Most notably, we recruited par-
ticipants from secondary/tertiary care settings to which
patients had been referred for further investigation of TLOC.
These patients are likely to differ from those at first pre-
sentation of TLOC in numerous respects, including: dura-
tion and severity of symptoms, diagnostic difficulty, response
to first-line treatment, and knowledge of their own diagnosis.
Given the difficulty in establishing gold-standard diagnoses
for causes of TLOC, these disparities are inevitable when
seeking to obtain a patient sample with objectively confirmed
diagnoses. It is important that certain groups may be under-
represented in our sample (e.g., “low-risk” reflex syncope not
requiring secondary care referral, idiopathic generalised ep-
ilepsies not requiring vEEG confirmation for clinically
established diagnosis, or patients with very infrequent seiz-
ures that would be unlikely to be captured during vEEG
assessment). Because of the case identification method,
focal-onset seizures and neutrally mediated syncope are
probably over-represented in our sample. This limitation
emphasises the need for stringent validation of any such tool
within the target clinical setting prior to routine application;
furthermore, differences between primary care settings need
also be taken into account.46 Our specific sampling pro-
cedure may also have introduced bias: age and population
prevalence are both important in determining prior proba-
bilities of different conditions,15,34 but because of sampling
bias in recruitment location for our syncope patients these
are not taken into account in our analysis. The sex distri-
bution of our respondents also does not match that seen in
the general population for all of the conditions; while it is
unclear why our recruitment procedure might have in-
troduced this bias, it may have influenced outcomes.

Another potential source of bias comes from the response
rate (28.2%), which is at the lower end of response rates for

Table 2 Validation set misclassifications by diagnosis for
witness-patient

RF classifier prediction

Reference standard diagnosis

Epilepsy PNES Syncope

Witness + patient

Epilepsy 24 5 0

PNES 2 24 0

Syncope 2 3 26

Patient only

Epilepsy 22 8 5

PNES 3 19 1

Syncope 2 1 31

Abbreviations: PNES = psychogenic non-epileptic seizures; RF = random
forest.
Cell counts represent the number of patients assigned to each diagnostic
group by reference standard diagnosis.

Our feature selection identified

important contributions to

differential diagnosis from patient

symptoms, past medical history, and

witness reports.
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medical research.47 This may in part be because of the
lengthy nature of the questionnaire and the potentially
sensitive nature of some of the questions included. The
variable reduction performed in this paper would permit
further research to utilise a shorter questionnaire, which
should improve response rates in future research.47,48 There
is also the potential for recall bias, as participants completed
the questionnaire up to 5 years after diagnostic confirmation.
However, only 16% of participants stated they had not had
a blackout in the last year, suggesting that recall should be
adequate in the majority of participants, and in our sensitivity
analysis not having experienced any seizures in the past year
did not affect classifier performance. In terms of analysis,
ideally we would have used separate samples for variable
selection, training, and validation; a larger total number of
participants would have permitted this.

To demonstrate its theoretical ability to distinguish all clas-
ses, the presented RF was trained on equi-sized diagnostic
classes and hence aims to minimize the overall error rate in
this context. However, in practical primary or emergency care
settings the proportion of patients presenting from each class
is unlikely to be equal. In addition, the consequences of pa-
tient misclassification are of differential seriousness. Higher
patient costs to misclassification of certain classes should also
be taken into account in a CDR. To provide the best di-
agnostic tool for clinical practice, the training of our RF can
be tuned to account for both these factors by reweighting/
adapting the bootstrap sampling accordingly.

The dependence of our classifier on computer-assisted data
processing could introduce applicability challenges. Future
research should explore whether predictors identified
through computer-based analyses can be used to develop
more easily interpretable algorithms suitable for use in
the ED (e.g., simple scores or single classification trees).
Alternatively, the increasing availability of portable
computer-assisted decision aids (e.g., through smart phone
applications) may make machine learning-based classifiers
more widely applicable in the primary care setting, and the
use of web-based decision aids could allow classifiers to learn
and improve over time.

Despite these limitations, our results demonstrate the feasi-
bility of developing a CDR utilising an easily implemented
machine learning algorithm capable of distinguishing accu-
rately between syncope and epilepsy or PNES. Pending val-
idation in target clinical settings, the CDR, administered
using an app and using a number of clinical features easily
manageable in most primary or emergency care settings,
should enable non-expert clinicians to direct patients to the
most appropriate cardiological or neurologic investigation
and management pathways. In addition to speeding up the
diagnostic process and reducing the risk of misdiagnosis and
inappropriate investigation or referral, the pre-test proba-
bility of particular diagnoses provided by such a CDR would
enhance clinician interpretation of inter-episodal

investigation findings (e.g., EEG, neuroimaging, ECG or tilt-
table abnormalities).49
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TAKE-HOME POINTS

Single symptoms or witness-reported features do
not reliably distinguish between causes of TLOC.

Machine learning techniques can identify clusters of
such features that more reliably indicate particular
diagnoses, and can exploit nonlinear interactions
that may outperform linear regression-based scor-
ing systems.

A 36-question patient and witness questionnaire
distinguished syncope from epilepsy and PNES with
100% sensitivity.

The classifier performed better when collateral
history from witnesses was available than when
relying solely on patient symptoms.

Computer-based classifiers could be useful in
improving diagnosis, referral, and treatment for
patients with TLOC.

Appendix Authors

Name Location Contribution

Alistair
Wardrope, MB
ChB, MPhysPhil

Sheffield Teaching
Hospitals NHS
Foundation Trust,
Sheffield

Conceptualization of
research project, analytic
strategy development,
statistical analysis, drafting
of manuscript

Jenny Jamnadas-
Khoda, MSc

University of
Nottingham,
Nottingham

Obtaining regulatory
approval, identifying
participants, data collection,
data entry, drafting of
manuscript

Mark
Broadhurst,
MBBS

Derbyshire
Healthcare NHS
Foundation Trust,
Chesterfield

Development of PEP and PEO
questionnaires, obtaining
regulatory approval, drafting
of manuscript

Continued

Neurology.org/CP Neurology: Clinical Practice | Volume 10, Number 2 | April 2020 103

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

https://cp.neurology.org/lookup/doi/10.1212/CPJ.0000000000000726
http://neurology.org/cp


References
1. O’Callaghan P. Transient loss of consciousness. Medicine (Baltimore) 2012;40:

427–430.
2. Brignole M, Moya A, Lange D, et al. 2018 ESC guidelines for the diagnosis and

management of syncope. Eur Heart J 2018;39:1883–1948.
3. Petkar S, Cooper P, Fitzpatrick AP. How to avoid a misdiagnosis in patients

presenting with transient loss of consciousness. Postgrad Med J 2006;82:
630–641.

4. NICE CG109. Transient Loss of Consciousness (“blackouts”) in over 16s: National
Institute for Health and Clinical Excellence; 2010. Available at nice.org.uk/guidance/
cg109/. Accessed January 26, 2017.

5. Angus-Leppan H. Diagnosing epilepsy in neurology clinics: a prospective study.
Seizure 2008;17:431–436.

6. Baron-Esquivias G, Martinez-Alday J, Martin A, et al. Epidemiological characteristics
and diagnostic approach in patients admitted to the emergency room for transient loss
of consciousness: Group for syncope study in the emergency room (GESINUR)
study. Europace 2010;12:869–876.

7. Syed TU, Arozullah AM, Suciu GP, et al. Do observer and self-reports of ictal eye
closure predict psychogenic nonepileptic seizures? Epilepsia 2008;49:898–904.

8. Schramke CJ, Kay KA, Valeriano JP, Kelly KM. Using patient history to distinguish
between patients with non-epileptic and patients with epileptic events. Epilepsy Behav
2010;19:478–482.

9. Leach JP, Lauder R,NicolsonA, SmithDF. Epilepsy in theUK:misdiagnosis, mistreatment,
and undertreatment? The Wrexham area epilepsy project. Seizure 2005;14:514–520.

10. Zaidi A, Clough P, Cooper P, Scheepers B, Fitzpatrick AP. Misdiagnosis of epilepsy:
many seizure-like attacks have a cardiovascular cause. J Am Coll Cardiol 2000;36:
181–184.

11. Malmgren K, Reuber M, Appleton R. Differential diagnosis of epilepsy. Oxford
Textbook of Epilepsy and Epileptic Seizures. Oxford, UK: Oxford University Press;
2012:81–94.

12. Reuber M, Fernández G, Bauer J, Helmstaedter C, Elger CE. Diagnostic delay in
psychogenic nonepileptic seizures. Neurology 2002;58:493–495.

13. Reuber M, Baker GA, Gill R, Smith DF, Chadwick DW. Failure to recognize psy-
chogenic nonepileptic seizures may cause death. Neurology 2004;62:834–835.

14. Reuber M, Chen M, Jamnadas-Khoda J, et al. Value of patient-reported symptoms in
the diagnosis of transient loss of consciousness. Neurology 2016;87:625–633.

15. Syed TU, Arozullah AM, Loparo KL, et al. A self-administered screening instrument
for psychogenic nonepileptic seizures. Neurology 2009;72:1646–1652.

16. Sheldon R, Rose S, Ritchie D, et al. Historical criteria that distinguish syncope from
seizures. J Am Coll Cardiol 2002;40:142–148.

17. Azar NJ, Pitiyanuvath N, Vittal NB, Wang L, Shi Y, Abou-Khalil BW. A structured
questionnaire predicts if convulsions are epileptic or nonepileptic. Epilepsy Behav
2010;19:462–466.

18. Stiell IG, Bennett C. Implementation of clinical decision rules in the emergency
department. Acad Emerg Med 2007;14:955–959.

19. Wardrope A, Newberry E, Reuber M. Diagnostic criteria to aid the differential di-
agnosis of patients presenting with transient loss of consciousness: a systematic re-
view. Seizure 2018;61:139–148.

20. Chen M, Jamnadas-Khoda J, Broadhurst M, et al. Value of witness observations in the
differential diagnosis of transient loss of consciousness. Neurology 2019;92:
e895–e904.

21. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk
prediction algorithms to estimate future risk of cardiovascular disease: prospective
cohort study. BMJ 2017;357:j2099.

22. National Emergency Laparotomy Audit. NELA Risk Calculator. Available at: data.
nela.org.uk/riskcalculator/. Accessed August 4, 2018.

23. Prytherch DR, Whiteley MS, Higgins B, Weaver PC, Prout WG, Powell SJ. POSSUM
and Portsmouth POSSUM for predicting mortality. Br J Surg 1998;85:1217–1220.

24. LaFrance WC, Baker GA, Duncan R, Goldstein LH, Reuber M. Minimum require-
ments for the diagnosis of psychogenic nonepileptic seizures: a staged approach.
Epilepsia 2013;54:2005–2018.

25. Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pat-
tern Recognit Lett 2010;31:2225–2236.

26. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a mul-
tivariable prediction model for individual prognosis or diagnosis (TRIPOD): the
TRIPOD statement. BMJ 2015;350:g7594.

27. Breiman L. Random forests. Mach Learn 2001;45:5–32.
28. Dı́az-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray

data using random forest. BMC Bioinformatics 2006;7:3.
29. Ramsay J, Richardson J, Carter YH, Davidson LL, Feder G. Should health pro-

fessionals screen women for domestic violence? Systematic review. BMJ 2002;325:
314.

30. Watson SB, Haynes SN. Brief screening for traumatic life events in female university
health service patients. Int J Clin Health Psychol 2007;7. Available at: redalyc.org/
resumen.oa?id=33717060001. Accessed February 16, 2018.

31. Avbersek A, Sisodiya S. Does the primary literature provide support for clinical signs
used to distinguish psychogenic nonepileptic seizures from epileptic seizures?
J Neurol Neurosurg Psychiatry 2010;81:719–725.

32. Rugg-Gunn FJ, Harrison NA, Duncan JS. Evaluation of the accuracy of seizure
descriptions by the relatives of patients with epilepsy. Epilepsy Res 2001;43:193–199.

33. Stojanov A, Lukic S, SpasicM, Peric Z. Historical criteria that distinguish seizures from
syncope: external validation of screening questionnaire. J Neurol 2014;261.

34. Hoefnagels WA, Padberg GW, Overweg J, van der Velde EA, Roos RA. Transient loss
of consciousness: the value of the history for distinguishing seizure from syncope.
J Neurol 1991;238:39–43.

35. Robles L, Chiang S, Haneef Z. Review-of-systems questionnaire as a predictive tool for
psychogenic nonepileptic seizures. Epilepsy Behav 2015;45:151–154.

36. Asadi-Pooya AA, Rabiei AH, Tinker J, Tracy J. Review of systems questionnaire helps
differentiate psychogenic nonepileptic seizures from epilepsy. J Clin Neurosci 2016;
34:105–107.

37. Spinhoven P, Van Dyck R, Kuyk J. Hypnotic recall: a positive criterion in the dif-
ferential diagnosis between epileptic and pseudoepileptic seizures. Epilepsia 1999;40:
485–491.

38. Ali F, Rickards H, Bagary M, Greenhill L, McCorry D, Cavanna AE. Ictal con-
sciousness in epilepsy and nonepileptic attack disorder. Epilepsy Behav 2010;19:
522–525.

39. Bell WL, Park YD, Thompson EA, Radtke RA. Ictal cognitive assessment of partial
seizures and pseudoseizures. Arch Neurol 1998;55:1456–1459.

40. Rawlings GH, Jamnadas-Khoda J, Broadhurst M, et al. Panic symptoms in transient
loss of consciousness: frequency and diagnostic value in psychogenic nonepileptic
seizures, epilepsy and syncope. Seizure 2017;48:22–27.

41. Hendrickson R, Popescu A, Ghearing G, Bagic A, Dixit R. Panic attack symptoms
differentiate patients with epilepsy from those with psychogenic nonepileptic spells
(PNES). Epilepsy Behav 2014;37:210–214.

42. Latreille V, Baslet G, Sarkis R, Pavlova M, Dworetzky BA. Sleep in psychogenic
nonepileptic seizures: time to raise a red flag. Epilepsy Behav 2018;86:6–8.

Appendix (continued)

Name Location Contribution

Richard A.
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