Skip to main content
. Author manuscript; available in PMC: 2020 Apr 14.
Published in final edited form as: Hum Mutat. 2019 Sep;40(9):1519–1529. doi: 10.1002/humu.23875

Table 1.

A list of participating teams and submitted predictive models. Detailed model descriptions provided by participants are available as supplemental data. PSSM, position specific scoring matrices; MSA, multiple sequence alignments; ML, machine learning; SVM, support-vector machine; PMD, Protein Mutation Database; HGMD, Human Gene Mutation Database.

PI Model Name PubMed PolyPhen/SIFT/Provean Based Features Structure Based Features PSSM/MSA Based Features ML Method Training Database
Bromberg SNAP-1 Bromberg & Rost, 2007 Yes Yes Yes Neural Network PMD
Bromberg SNAP-2 Bromberg & Rost, 2007 Yes Yes Yes Neural Network PMD
Moult Moult Consensus Yin, Kundu, Pal, & Moult, 2017 Yes Yes Yes Support Vector Regression
Lichtarge Evolutionary Action Katsonis & Lichtarge, 2014 No No Yes None
Wei iFish Wang & Wei, 2016 Yes Yes Yes SVM
Mooney MutPred Li et al., 2009 Yes No Yes Random Forest HGMD
Mooney MutPred2 w/o homology Pejaver et al., 2017 Yes No Yes Neural Network Ensemble HGMD 2013
Mooney MutPred2 w homology Pejaver et al., 2017 Yes No Yes Neural Network Ensemble HGMD 2013
Jones HHblits w/ real contacts Remmert, Biegert, Hauser, & Soding, 2011 No Yes Yes Logistic regression
Jones HHblits w/ predicted contacts Remmert et al., 2011 No No Yes Logistic regression
Jones HHblits w/o contacts Remmert et al., 2011 No No No Logistic regression
Jones PAM250 PSSM No No Yes Logistic regression
Ford PolyPhen2 Random Forest Ford, Uppal, Nodzak, & Shi, 2019 Yes No Yes Random Forest 1000 Genomes, NCBI, wANNOVAR
Casadio INPS3D Savojardo, Fariselli, Martelli, & Casadio, 2016 No Yes Yes SVM
Casadio SNPs&GO Capriotti et al., 2013 No Yes Yes SVM
Zhou EASE-MM Folkman, Stantic, Sattar, & Zhou, 2016 No No Yes Support Vector Regression ProTherm
Dunbrack Dunbrack-SVM Wei, Xu, & Dunbrack, 2013 Yes Yes Yes SVM