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Abstract

Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental 

disorder that emerges in childhood and persists into adulthood in a sizeable portion of afflicted 

individuals. The persistence of ADHD symptoms elevates the risk of adverse outcomes that result 

in substantial individual and societal burden. The objective of this study was to delineate 

neuroanatomical substrates associated with the diversity of adult outcomes of childhood ADHD, 

which may have considerable value for development of novel interventions that target mechanisms 

associated with recovery. Structural MRI and diffusion tensor imaging data from 32 young adults 

who were diagnosed with ADHD combined-type during childhood and 35 group-matched controls 

were analyzed. Adults with childhood ADHD were divided into 16 remitters and 16 persisters 

based on DSM-IV criteria. Compared to the controls, ADHD probands showed significantly 

reduced gray matter (GM) volume in right putamen and white matter (WM) volume in left parieto-

insular fiber tracts. Within the ADHD probands, the remitters, as compared to persisters, showed 

significantly greater volume of right hippocampo-frontal and right parieto-insular WM fiber tracts, 

and those connecting caudate with the frontal, parietal, occipital, temporal, and insular cortices. 

Among ADHD probands, increased fractional anisotropy value of left caudate-parietal tract was 

significantly correlated with reduced hyperactive/impulsive symptoms. These findings suggest that 

optimal structural development in the WM tracts that connect caudate with cortical areas, 
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especially in the caudate-parietal path, may play an important role in symptom remission in young 

adults with childhood ADHD.
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INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

neurodevelopmental disorders with a prevalence of approximately 9.5% in school-age 

children in the United States (Pastor, et al., 2015; Visser, et al., 2014). It is characterized by 

pervasive symptoms of inattentiveness, hyperactivity, and impulsivity, and a wide-range of 

behavioral and cognitive impairments in working memory, inhibitory control, and 

motivation (Sonuga-Barke, 2002). Approximately 65% of the children with ADHD have 

persistent impairing symptoms into adulthood, which elevates the risk of adverse outcomes 

linked to substantial individual and societal burden (Faraone, et al., 2006). Neural 

determinants of the diverse adult outcomes of childhood ADHD remain unknown. 

Elucidation of these mechanisms could set the stage for the development of novel 

interventions that yield enduring benefits and improve long-term outcomes.

A large number of existing studies suggest that ADHD symptoms in children are associated 

with widespread neuroanatomical and functional alterations of brain. Structural 

neuroimaging studies have found ADHD symptoms in childhood to be associated with 

decreased regional gray matter (GM) volume in frontal cortex, striatum and cerebellum 

(Bledsoe, et al., 2011; Ellison-Wright, et al., 2008; Mahone, et al., 2011). Reduced regional 

cortical GM thickness in frontal and parietal cortices have also been linked with ADHD 

symptoms (Almeida Montes, et al., 2013; Batty, et al., 2010). White matter (WM) structural 

deficits, especially reduced WM volume and/or fractional anisotropy (FA) in the fronto-

parietal, fronto-limbic, corona radiate, cerebellar- and temporo-occipital, and internal 

capsule fiber tracts have been consistently demonstrated in children with ADHD (Durston, et 

al., 2004; Nagel, et al., 2011; Peterson, et al., 2011; Qiu, et al., 2011; Xia, et al., 2012). 

Additionally, a number of task-based functional MRI (fMRI) studies have reported 

significantly reduced task-responsive activation in frontal and parietal areas, dorsal anterior 

cingulate cortex (dACC), thalamus, and striatum in children with ADHD relative to the 

group-matched controls, when performing behavioral tasks that assess attentional and 

inhibitory control functions (such as the go/no-go task, stop signal task, continuous 

performance task, stroop task, etc) (Booth, et al., 2005; Durston, et al., 2007; Durston, et al., 

2006; Durston, et al., 2003; Li, et al., 2013; Li, et al., 2012; Pliszka, et al., 2006; Smith, et 

al., 2006; Suskauer, et al., 2008). Significantly reduced activation in these cortical and 

subcortical regions have also been consistently reported in children with ADHD relative to 

controls, when performing tasks assessing working memory, decision making, reward 

processing, and interference control functions (Cao, et al., 2008; Konrad, et al., 2006; 

Vaidya, et al., 2005; Vance, et al., 2007). A meta-analysis of 55 task-based fMRI studies 
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reported significantly decreased activation in frontoparietal and ventral attentional networks 

in children with ADHD, compared to the group-matched controls (Cortese, et al., 2012).

The majority of existing clinical and neuroimaging studies in ADHD have focused on 

understanding the neural correlates of symptoms in cross-sectional samples of children or 

young adults. Far fewer studies have examined neural substrates associated with the diverse 

adult outcomes of childhood ADHD. Compared to group-matched controls, Schneider et al. 

reported that adults with childhood ADHD showed significantly reduced activation in 

caudate, ACC, parietal regions, and increased activation in insular during cognitive control 

processing, with these functional anomalies positively associated with increased levels of 

inattentive and hyperactive/impulsive symptoms (Schneider, et al., 2010). In a sample of 

children with ADHD followed into adulthood, Schulz et al. found lower orbitofrontal, 

inferior frontal, anterior cingulate and parietal activation in probands with persistent ADHD 

relative to both probands with remitted ADHD and comparison subjects, with no differences 

between remitters and comparison subjects (Schulz, et al., 2017). In the same longitudinal 

sample of adults with childhood ADHD, Clerkin et al. found lower thalamo-frontal 

functional connectivity in the ADHD persisters relative to remitters during a cued-reaction 

time task (Clerkin, et al., 2013); and Luo et al. further depicted decreased nodal efficiency in 

middle frontal gyri (MFG) in the functional brain network for cue-evoked attention 

processing in the ADHD persisters relative to the remitters (Luo, et al., 2018). Finally, 

resting-state fMRI studies found that higher fronto-ACC connectivity in the executive 

control network may contribute to symptom reduction in adults with childhood ADHD 

(Francx, et al., 2015; Mattfeld, et al., 2014).

Neuroanatomical studies showed diverse results in adults with childhood ADHD. With 

structural MRI, Proal et al. found that compared to matched controls, ADHD probands had 

significantly decreased GM volume in prefrontal lobe, cerebellum, thalamus, and caudate, 

regardless of ADHD symptom remission or persistence (Proal, et al., 2011); while Shaw et 

al. showed that significantly reduced cortical thickness was linked with symptom persistence 

(Shaw, et al., 2013). A diffusion tensor imaging (DTI) study suggested that ADHD probands 

had WM disruptions in the superior longitudinal fasciculus (SLF) and cortico-limbic areas 

regardless of symptom remission or persistence (Gehricke, et al., 2017); another study found 

that greater adult inattentiveness, but not hyperactivity/impulsivity, was associated with 

lower FA in inferior occipito-frontal fasciculus and uncinated fasciculus (Shaw, et al., 2015); 

while Cortese et al. indicated no significant WM differences between the ADHD-remitters 

and -persisters (Cortese, et al., 2013). The inconsistent findings from these neuroimaging 

studies in adults with childhood ADHD may be partially explained by differences in 

imaging modalities, analytic methods, and study cohorts. These existing studies have 

demonstrated neuroanatomical alterations in adults with childhood ADHD. However, most 

of them applied only single imaging modality (either structural MRI or DTI) to investigate 

GM morphometrical or WM integrity properties, without reporting both the GM and WM 

patterns in the same study cohort, and their potential impact on the adult outcome of 

childhood ADHD. This study aimed to fill this gap by applying both structural MRI and DTI 

in the same study sample to identify the structural markers in GM and WM, that are 

associated with symptom persistence and remission in young adults with childhood ADHD. 

Based on findings of previous studies from our group and others, we hypothesized that more 
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optimal structural development associated with the frontal and parietal lobes, such as greater 

regional GM thickness, higher FA of the WM tracts that connect subcortical structures (i.e. 

thalamus, caudate) and frontal/parietal cortices, may play an important role in symptom 

remission in young adults with childhood ADHD.

METHOD

Participants

The initial sample consisted of 106 young adults who had been clinically followed since 

childhood, including 60 probands who were diagnosed with ADHD combined-type (ADHD-

C) when they were 7 – 11 years of age and 46 group-matched comparison subjects with no 

history of ADHD. Among the 60 ADHD probands, 16 were classified as ADHD persisters 

(ADHD-P) and 16 as ADHD remitters (ADHD-R), and were able to provide usable T1-

weighted and DTI data. Those adults with ADHD-P endorsed at least five inattentive and/or 

hyperactive/impulsive symptoms and had a minimum of 3 symptoms in each domain. Those 

classified as ADHD-R endorsed no more than 3 inattentive or 3 hyperactive/impulsive 

symptoms in adulthood and had no more than 5 symptoms in total, to allow separation from 

the ADHD-P group.

Among the 46 young adults who were previously classified as non-ADHD, 35 had no more 

than three inattentive or hyperactive/impulsive symptoms and provided usable clinical and 

neuroimaging data. Therefore, 67 subjects (32 ADHD proband and 35 controls) were 

included in group-level clinical and neuroimaging data analyses.

Childhood diagnoses were based upon teacher ratings using the IOWA Conners’ Teachers 

Rating Scale (Loney and Milich, 1982) and parent interview using the Diagnostic Interview 

Schedule for Children version 2 (Shaffer, et al., 1989). The exclusion criteria in childhood 

were chronic medical illness; neurological disorder; diagnosis of schizophrenia, autism 

spectrum disorder, or chronic tic disorder; Full Scale IQ < 70; and not speaking English. The 

social economic status (SES) of each child was assessed using the Nakao-Treas 

Socioeconomic Prestige Index (Nakao and Treas, 1994).

Adult psychiatric status was assessed using the Structured Clinical Interview for DSM-IV 

Axis I Disorders (SCID) (First, et al., 2002), supplemented by a semi-structured interview 

for ADHD that was adapted from the Schedule for Affective Disorders and Schizophrenia 

for School-Age Children (K- SADS) (Kaufman, et al., 1997) and the Conners’ Adult ADHD 

Diagnostic Interview for DSM-IV (Epstein, et al., 2006). Exclusion criteria in adulthood 

were psychotropic medication that could not be discontinued and conditions that would 

preclude MRI (e.g., metal in body, pregnancy, too obese to fit in scanner). Clinical and 

demographic information are listed in Table 1.

All the ADHD probands had a history of treatment with short-acting psychostimulants. 

Mean duration of treatment was 2.03 years (SD = 3.21) for the subgroup of ADHD-R and 

4.18 years (SD = 4.12) for the subgroup of ADHD-P (t = −1.604, p = 0.12). There were two 

subjects in the ADHD-P subgroup who were taking psychostimulants at the time of this 

study, and had a 48-hour medication wash-out period before MRI acquisition.
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The study received Institutional Review Board Approval at the participating institutions. 

Participants provided signed informed consent and were reimbursed for their time and travel 

expenses.

MRI acquisition protocol

High resolution 3-dimensional T1-weighted structural MRI and DTI data were acquired 

using the same 3T Siemens Allegra (Siemens, Erlangen, Germany) head-dedicated MRI 

scanner. T1-weighted data was acquired using magnetization prepared rapid gradient echo 

(MPRAGE) pulse sequence with the following parameters: repetition time (TR) = 2.5 s, 

echo time (TE) = 4.38 ms, inversion time (TI) = 1.1 s, flip angle = 8°, voxel size = 0.94 mm 

× 0.94 mm × 1 mm, field of view (FOV) = 256 mm × 256 mm × 256 mm. DTI data was 

acquired using an echo planar imaging (EPI) pulse sequence with a b-value = 1250 s/mm2 

along 12 independent, as well as a reference volume without diffusion-weighting b = 0 s/ 

mm2, non-collinear orientations with the following parameters: TR = 5.2 s, TE = 80 ms, flip 

angle = 90°, voxel size = 1.875 mm × 1.875 mm × 4 mm, FOV = 128 mm × 128 mm, 

imaging matrix = 128 × 96, number of slices = 63.

Individual-level structural MRI data analyses

T1-weighted data were reconstructed into a 3-dimensional cortical model for thickness and 

area estimations using FreeSurfer v.5.3.0 (https://surfer.nmr.mgh.harvard.edu). Each data 

point was first registered with the Talairach atlas to compute the transformation matrix using 

an affine registration method, which was developed and distributed by the Montreal 

Neurological Institute (MNI). Then intensity variations caused by magnetic field 

inhomogeneities were corrected using Voronoi partitioning algorithm. The skull was 

stripped using a deformable template model. Cutting planes were defined to separate the left 

and right hemispheres and to remove the cerebellum and brainstem. Two mess surfaces 

(mess of grids created using surface tessellation technique) were then generated between 

WM and GM (white matter surface), as well as between GM and cerebrospinal fluid (pial 

surface). The distance between the two closest vertices of the white matter and pial surfaces 

presented the cortical thickness at that specific location, validated using training data (Rosas, 

et al., 2002). Regional cortical thickness and area in 68 bilateral cortical regions were 

estimated based on the Desikan atlas (Desikan, et al., 2006).

Each of 37 subcortical structures/nuclei was first labelled after the initial registration with 

the Talairach atlas, and then refined based on a manually labelled model constructed 

according to prior knowledge of spatial relationships acquired with a training data set 

(Fischl, et al., 2002). Volume of each subcortical structure was then calculated.

To adjust head-size variation related influence on these cortical and subcortical GM 

measures, the head-size scaling factor of each subject was calculated by normalizing the T1-

weighted data with the template provided in FSL/SIENA (Smith, et al., 2002). The 

normalized thickness and area of each cortical region and volume of each subcortical 

structure were finally estimated by multiplying the original value with the scaling factor of 

that subject.
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Individual-level DTI data analyses

DTI data from each subject was first processed using the Diffusion Toolbox (FDT Version 

3.0) from FSL (Behrens, et al., 2007). After eddy current and head motion corrections, the 

diffusion-weight images were registered to the additionally acquired non-diffusion-weighted 

reference image (b0 image) using an affine, 12 degrees of freedom registration. The FA 

value and principle diffusion direction at each brain voxel were calculated. WM probabilistic 

tractography between each pair of 18 regions-of- interest (ROIs) was constructed using the 

FSL/BEDPOSTX toolbox (Behrens, et al., 2007). These 18 ROIs (including thalamus, 

putamen and caudate nuclei from striatum, hippocampus, and frontal, parietal, occipital, 

temporal, and insular cortices in both hemispheres) were created based on the Harvard-

Oxford Cortical Atlases and the Julich Histological Atlas from the MNI standard space, and 

mapped to the DTI data. We used the multi-fiber probabilistic connectivity-based method to 

determine the number of pathways between each seed and target ROIs. The default setting of 

parameters for Markov Chain Monte Carlo estimation of the probabilistic tractography was 

utilized: 5000 individual pathways were drawn on the principle fiber direction of each voxel 

within the seed ROI; curvature threshold of 80° to exclude implausible pathways; a 

maximum number of 2000 travel steps of each sample pathway and a 0.2 mm step length. 

The number of pathways that existed through each voxel from the remainder of the brain 

was labeled. The non-zero labeling voxels were taken as the initial elements of the tracts 

between the seed and target ROIs. The brain voxels with low probability of connection were 

removed from the tract, if one had a number of pathways that was less than the average of 

the pathway numbers from all the non-zero labeling voxels. A total of 20 cortico-cortical 

(including bilateral fronto-parietal, fronto-occipital, fronto-temporal, fronto-insular, parieto-

occipital, parieto-temporal, parieto-insular, occipito-temporal, occipito-insular, temporo-

insular) and 40 subcortico-cortical (including bilateral thalamo-frontal, thalamo-parietal, 

thalamo-occipital, thalamo-temporal, thalamo-insular, putamen-frontal, putamen-parietal, 

putamen-occipital, putamen-temporal, putamen-insular, caudate-frontal, caudate-parietal, 

caudate-occipital, caudate-temporal, caudate-insular, hippocampo-frontal, hippocampo-

parietal, hippocampo-occipital, hippocampo-temporal, hippocampo-insular) WM fiber tracts 

were generated. Average FA and volume (number of voxels times voxel size) of each 

identified WM tract were estimated.

Group statistical analyses

The clinical, neurocognitive and demographic measures were compared using chi-square 

tests for discrete variables and unpaired two-sample t-tests for continuous variables, between 

groups of controls and ADHD probands, and further between the two ADHD subgroups 

(ADHD-R and ADHD-P) using SPSS18 (SPSS Inc, Somers, NY).

The structural MRI- and DTI-based neuroimaging measures (including regional cortical 

thickness, surface area, volume of each subcortical structure, FA and volume of each WM 

fiber tract) were compared between the groups of controls and ADHD probands, as well as 

between the subgroups of ADHD-R and ADHD-P, using analysis of covariance (ANCOVA) 

with gender, age, IQ and SES as covariates. Bonferroni correction for multiple comparisons 

(at a corrected α = 0.05) was applied to control potential false positive results of these group 

comparisons. For group comparisons in the structural MRI-based measures, we controlled 
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alpha for 105 ROIs (i.e., 68 bilateral cortical regions and 37 subcortical structures). For the 

DTI-based measures, we controlled alpha for the 60 WM tracts analyzed. The brain-

behavior association analyses controlled for the 18 partial correlation procedures conducted.

Partial correlation analysis was utilized to assess associations between the GM and WM 

brain measures that showed between-group differences (measures listed in Tables 2 and 3) 

and the clinical symptom measures (the raw scores for inattentive and hyperactive-impulsive 

symptoms derived from the CAARS collected during the visit of MRI scan) in the group of 

ADHD probands. Age, gender, IQ and SES were added as covariates. Bonferroni correction 

was used to correct the number of partial correlation procedures (a total of 16) at a corrected 

α = 0.05.

RESULTS

As shown in Table 1, there were no significant demographic differences between the groups 

although relative to controls, ADHD probands tended to have lower IQ and SES.

Significantly decreased volume in right putamen was observed in ADHD probands when 

compared to controls (p = 0.045). Compared to the ADHD-P group, those with ADHD-R 

showed significantly increased cortical surface area in bilateral parahippocampal gyri (Left: 

p = 0.05; Right: p = 0.008), left paracentral gyrus (p = 0.012), and right transverse temporal 

gyrus (p = 0.037) (see Table 2). Group comparisons of the WM measures showed 

significantly decreased volume of the left parieto-insular fiber tract (p = 0.041) in ADHD 

probands relative to controls. Compared to ADHD-R, the subgroup of ADHD-P showed 

significantly decreased volume in two cortico-cortical fiber tracts (right hippocampo-frontal 

(p = 0.037) and right parieto-insular (p = 0.038)), and in the WM tracts connecting bilateral 

caudate nuclei of the striatum with all the five cortical ROIs of the same hemispheres (p < 

0.001) (see Table 3).

Dimensional analyses between the GM and WM measures (listed in Tables 2 and 3) and the 

clinical symptom measures indicated that among the ADHD probands, greater FA of the left 

caudate-parietal WM fiber tract was significantly associated with reduced hyperactive/

impulsive symptoms (Figure 1, r = −0.402, p = 0.031).

DISCUSSION

The present study investigated GM and WM structural differences between young adults 

with childhood ADHD and group-matched controls, and between the subgroups of remitters 

and persisters within the ADHD probands. Compared to controls, significantly reduced GM 

volume of the putamen in right hemisphere was observed in the ADHD probands. The 

putamen and caudate nucleus together form the dorsal striatum, and play a key role in the 

cortico-thalamo-striatal-cortical (CTSC) loops for attention and higher order cognitive 

processes (Alexander, et al., 1986; Ring and Serra-Mestres, 2002). A large number of 

structural MRI and fMRI studies have reported the linkage of putamen-related anatomical 

and functional abnormalities and onset of ADHD in children (Ellison-Wright, et al., 2008; 

Frodl and Skokauskas, 2012; Max, et al., 2002; Nakao, et al., 2011). Putamen-related 

structural alterations have also been tested in neuroimaging studies focusing on adults with 

Luo et al. Page 7

Eur Neuropsychopharmacol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ADHD which yielded inconsistent results, with some reports of reduced putamen volume in 

adults with ADHD (Onnink, et al., 2014; Seidman, et al., 2011), and others reporting 

increased putamen volume (Greven, et al., 2015) or no significant differences (Seidman, et 

al., 2006) when compared to group-matched controls. The inconsistency of these existing 

studies may have been caused by technical differences for putamen extractions, and sample-

related biases such as the very wide age ranges involved in these studies (Greven, et al., 

2015). Adding to the literature, our result of significantly reduced putamen GM volume in 

young adults with childhood ADHD (regardless of their clinical outcomes) suggests its 

significant linkage with the emergence of ADHD during their childhood.

Compared to controls, we also found that the ADHD probands had significantly reduced 

volume of the left hemisphere parieto-insular WM tract; while relative to the ADHD 

remitters, the persisters had significantly smaller volume of the right hemisphere parieto-

insular WM tract. The parieto-insular WM fiber tract is an important structural component 

of the vestibular system, and has been suggested to link with static and dynamic balance 

control (Frank and Greenlee, 2018; Perennou, et al., 2000; Shum and Pang, 2009; Ustinova, 

et al., 2001). Vestibular system deficiency, which can cause inappropriate postural condition 

or impaired balance function, has been found to be associated with cognitive deficits and 

behavioral symptoms in ADHD patients (Clark, et al., 2008; Haghshenas, et al., 2014; Shum 

and Pang, 2009). Merging with the results of existing studies, our findings of the 

underdeveloped parieto-insular WM fiber tracts in adults with childhood ADHD, especially 

in those with persistent ADHD symptoms, suggest that parieto-insular WM structural 

alterations may interact with the vestibular system functional alterations, and together 

contribute to the onset and symptom persistence of ADHD.

Within the probands, we further found that the ADHD remitters had significantly larger 

surface area in bilateral parahippocampal, left paracentral, and right transverse temporal 

gyri, as well as significantly greater volume of WM fiber tracts connecting caudate with the 

frontal, parietal, occipital, temporal, and insular cortices when compared to the persisters. 

Existing studies have reported that ADHD remitters had increased parahippocampal cortical 

thickness compared to ADHD persisters (Proal, et al., 2011). Further studies have implicated 

that parahippocampal gyrus interacts with the ventralateral prefrontal cortex (VLPFC), both 

significantly contribute to appropriate inhibitory control (Deacon, et al., 1983; Schulz, et al., 

2005). Parahippocampal cortical volume reduction has been observed in both children and 

adolescents with ADHD, compared to group-matched controls (Carmona, et al., 2005; 

Noordermeer, et al., 2017).

Caudate plays a critically important role in cognitive control (Chiu, et al., 2017; Grahn, et 

al., 2008). Structural and functional deficits associated with caudate have been widely 

observed in children and adults with ADHD (Frodl and Skokauskas, 2012; Onnink, et al., 

2014; Szekely, et al., 2017). Substantial structural MRI studies have revealed that children 

with ADHD had smaller caudate volume relative to controls (Castellanos, et al., 2002). 

Task-based fMRI studies showed significantly decreased caudate activation in children with 

ADHD (Vaidya, et al., 2005) and adults with childhood ADHD (Szekely, et al., 2017), 

during attention and inhibitory control processes. Our findings of significantly smaller 

volume of the WM fiber tracts connecting caudate with all five cortices bilaterally in the 
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ADHD persisters suggest that caudate-associated widespread WM underdevelopment may 

play important roles in symptom persistence of ADHD. This hypothesis can also be 

supported by multiple existing DTI studies that showed immature WM organizations 

involving caudate and cortical structures in children and adults with ADHD (Ashtari, et al., 

2005; Casey, et al., 1997; Castellanos, et al., 2002; Shang, et al., 2013).

In addition, we found that the FA of left caudate-parietal tracts was significantly negatively 

correlated with the CAARS raw score for hyperactive/impulsive symptoms in ADHD 

probands. The caudate-parietal WM tract is one of the most important structural component 

of the CTSC loops, which subserves maintaining the modifications of spatial attention via 

reinforcement learning, and supports the integration of reward, attention, and executive 

control (Jarbo and Verstynen, 2015). Reduced parietal activation during cognitive control 

has been linked to the persistence of ADHD symptoms in adults with childhood ADHD 

(Schulz, et al., 2017; Szekely, et al., 2017). Reduced caudate and parietal lobe activation 

during inhibitory control processing were found to be associated with increased inattentive 

and impulsive symptoms in adults with ADHD diagnosed in childhood (Schneider, et al., 

2010). Together with these existing findings, we suggest that optimal structural development 

in the caudate-parietal WM tract may partially modulate the functional integrity of caudate 

and parietal cortex, and together contribute to symptom remission in adults with childhood 

ADHD.

In summary, together with existing findings, results of this study suggest that WM structural 

development in tracts that connect caudate with cortical areas, especially in the caudate-

parietal path, is a critical determining factor of outcomes in adults with childhood ADHD. 

The current study has some limitations. First, our cohort consisted of both male and female 

subjects, but many more males. It is still unclear whether the neuropathological 

underpinnings of ADHD differ between males and females. To partially remove gender-

related effects, sex was added as a fixed effect covariate in the group-level analyses. Second, 

the sample size of this study is relatively small. Therefore, the findings must be considered 

preliminary. Future work will need a much larger cohort from a longitudinal study consisting 

of multi-scan neuroimaging data, to determine the neural underpinnings of longitudinal 

trajectories of childhood ADHD.
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Figure 1: 
In the group of ADHD probands, greater fractional anisotropy of the left caudate-parietal 

white matter fiber tract was significantly associated with reduced hyperactive-impulsive 

symptoms.
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Table 1:

Demographical, neurocognitive and clinical characteristics in groups of controls and ADHD probands 

(including ADHD remitters and persisters).

Controls
(N = 35)

ADHD
(N = 32)

Remitters
(N=16)

Persisters
(N=16)

Mean (SD Mean (SD) P Mean (SD) Mean (SD) p

Age 24.24 (2.3) 24.60 (2.1) 0.51 24.81 (2.3) 24.39 (1.9) 0.57

Full-scale IQ 104.21 (15) 96.81 (14.3) 0.07 99.58 (14.2) 94.11 (11.5) 0.24

Socioeconomic status 51.59 (14.8) 43.73 (17.2) 0.06 43.28 (14.9) 40.56 (19.8) 0.57

CAARS (raw score)

 Inattentive 4.03 (3.5) 8.09 (5.1) <0.001 5.75 (4.9) 10.44 (4.3) 0.007

 Hyperacitive/impuls 4.58 (2.6) 8.66 (4.9) <0.001 5.88 (3.8) 11.44 (4.3) 0.001

 ADHD Total 8.82 (5.2) 16.59 (9.2) <0.001 11.94 (8.2) 21.25 (7.9) 0.003

N (%) N (%) P N (%) N (%) P

Male 30 (85.7) 27 (84.4) 0.88 14 (87.5) 13 (81.3) 0.63

Right-handed 31 (88.6) 28 (87.5) 0.89 14 (87.5) 14 (87./5) 1

Race 0.41 0.70

 Caucasian 14 (40.0) 17 (53.1) 8 (50.0) 9 (56.3)

 African American 13 (37.1) 7 (21.9) 4 (25.0) 3 (18.8)

 More than one race 6 (17.1) 8 (25) 4 (25.0) 4 (25.0)

 Asian 2 (5.7) 0 (0) 0 (0) 0 (0)

Ethnicity 0.21 0.72

 Hispanic/Latino 12 (34.3) 15 (46.9) 7 (43.8) 8 (50.0)

CAARS: Conners’ Adult ADHD Rating Scale
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Table 2:

Gray matter neuroimaging measures that show significant between-group differences with age, gender, IQ and 

social economic status as covariates.

Group Anatomical location Measure F-value p-value after Bonferroni 
correction

CON > PRO R. Putamen Volume 8.892 0.045

ADHD-R > ADHD-P

L./R. Parahippocampal gyrus

Regional Cortical Surface Area

7.921/12.947 0.05/0.008

L. Paracentral gyrus 12.283 0.012

R. Transverse temporal gyrus 8.494 0.037

CON: group of controls; PRO: group of ADHD probands; ADHD-R: subgroup of ADHD remitters; ADHD-P: subgroup of ADHD persisters. L.: 
left hemisphere; R.: right hemisphere; p values were corrected using Bonferroni correction.
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Table 3:

White matter neuroimaging measures that show significant between-group differences with age, gender, IQ 

and social economic status as covariates.

Group White matter fiber tract Measure F-value p-value after Bonferroni correction

CON > PRO L. parieto-insular tract Volume 9.928 0.041

ADHD-R > ADHD-P

L./R. caudate-frontal tracts

Volume

42.755/32.576 <0.001/<0.001

L./R. caudate-parietal tracts 51.553/31.62 <0.001/<0.001

L./R. caudate-occipital tracts 55.169/31.593 <0.001/<0.001

L./R. caudate-temporal tracts 55.088/31.564 <0.001/<0.001

L./R. caudate-insular tracts 55.155/31.527 <0.001/<0.001

R. hippocampo-frontal tract 13.228 0.037

R. parieto-insular 12.785 0.038

CON: group of controls; PRO: group of ADHD probands; ADHD-R: subgroup of ADHD remitters; ADHD-P: subgroup of ADHD persisters. L.: 
left hemisphere; R.: right hemisphere; p values were corrected using Bonferroni correction.
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