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Interplay between midbrain and dorsal anterior
cingulate regions arbitrates lingering reward effects
on memory encoding

Kristoffer Carl Aberg® '™ Emily Elizabeth Kramer?3 & Sophie Schwartz#>®

Rewarding events enhance memory encoding via dopaminergic influences on hippocampal
plasticity. Phasic dopamine release depends on immediate reward magnitude, but pre-
sumably also on tonic dopamine levels, which may vary as a function of the average accu-
mulation of reward over time. Using model-based fMRI in combination with a novel
associative memory task, we show that immediate reward magnitude exerts a monotonically
increasing influence on the nucleus accumbens, ventral tegmental area (VTA), and hippo-
campal activity during encoding, and enhances memory. By contrast, average reward levels
modulate feedback-related responses in the VTA and hippocampus in a non-linear (inverted
U-shape) fashion, with similar effects on memory performance. Additionally, the dorsal
anterior cingulate cortex (dACC) monotonically tracks average reward levels, while VTA-
dACC functional connectivity is non-linearly modulated (inverted U-shape) by average
reward. We propose that the dACC computes the net behavioral impact of average reward
and relays this information to memory circuitry via the VTA.
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he ability to remember details associated with reward

provides an adaptive advantage because it facilitates access

to, for example, food and water. Indeed, reward-related
information has priority in memory, as evidenced by studies
reporting better memory for information presented in trials
where a large reward was presented or anticipated (as compared
with smaller or no reward)!-8, Rewarding events, such as reward
feedbacks or cues predictive of reward, initiate phasic dopamine
release from the ventral tegmental area (VTA)>10, a midbrain
region with dopaminergic projections to the hippocampus (HC)
whose involvement in episodic memory encoding is well
established! 12, Thus, the prioritization of reward-related infor-
mation is presumably mediated by dopaminergic influences on
hippocampal plasticity!3:14,

Recent research suggests enhanced memory encoding beyond
the rewarded event itself. For example, Mather and Shoeke!®
reported that positive (as compared with negative) feedback
enhanced recognition memory for information presented in the
immediate trial, as well as in the two subsequent trials. Likewise,
we recently demonstrated better memory for associations enco-
ded in trials preceded by many (versus few) rewarded trials!®.
Such modulation of memory for information surrounding con-
texts associated with frequent rewards likely offers a unique
evolutionary advantage. For example, better memory for cues
encountered in the vicinity of a location with high food avail-
ability increases the probability of successfully finding ones” way
to this location in the future. Yet, the neural mechanisms
underlying these sustained effects of reward on memory forma-
tion remain poorly understood. On the one hand, it has been
proposed that average reward is encoded by tonic dopamine
levels!718, which may result from a sustained mode of dopamine
neuron activity that is capable of up- or downregulating phasic
dopamine release!?, and would thereby modulate memory
encoding. Related to this notion, one elegant study reported that
the anticipation of uncertain rewards, a condition which is known
to induce a sustained “ramping response” of dopamine neu-
rons?0, increased incidental memory encoding for images pre-
sented during the reward anticipation period?l. On the other
hand, recent evidence suggests that the VTA is under top-down
control from the anterior cingulate cortex (ACC)?223. The dorsal
ACC (dACC) supposedly integrates external and internal moti-
vational factors, such as those related to rewards*»2>. Moreover,
the dACC can modulate reward-related dopamine release by
directly interacting with the VTAZ?®. Thus, the dACC could
contribute to memory encoding by regulating VTA function
based on current average reward levels. It is also important to
note that the relationship between reward levels and memory
might not be linear. In particular, increased levels of dopamine
enhance memory encoding only up to a certain point, after which
additional dopamine may become detrimental for memory
encoding?”-28, Yet, it is currently unclear whether these effects of
dopamine on memory formation relate to changes in VTA
function and/or in other brain regions involved in memory for-
mation and motivation, such as the HC and the nucleus
accumbens (NAcc).

To elucidate the neural underpinnings of average reward effects
on memory encoding, here we combine model-based fMRI with a
recently developed associative memory paradigm that allows
control of immediate reward magnitude and average reward
levels on a trial-wise basis during encoding!®. To test whether
high levels of average reward impair (rather than promote)
learning, we include trials that yield higher relative reward as
compared with our previous study, in which we found a linear
relationship between average reward and memory encoding!®.
We predict that immediate reward magnitude and average reward
levels during encoding engage brain regions involved in reward

processing and motivation (i.e, the VTA and its downstream
target the NAcc) and memory formation (i.e., the HC and the
parahippocampal gyrus; PHG), and account for variance in
subsequently tested memory performance. However, because the
brain loci enabling a non-linear effect of dopamine on episodic
memory formation are unclear, we make no specific predictions
regarding a differential neuronal representation of linear versus
nonlinear effects of immediate and average reward.

In brief, we show that immediate reward-feedback magnitude
has a monotonically increasing influence on NAcc, VTA, and
hippocampal activity during encoding, and enhances memory
retention. Critically, average reward levels during encoding exert
a nonlinear modulation (i.e., an inverted U-shape) on: (1) activity
in the VTA, the HC, and the PHG, (2) functional connectivity
between the dACC and the VTA, and (3) subsequently tested
memory performance. By contrast, dACC activity negatively
correlates with average reward levels. While the present study
confirms a sustained influence of reward feedback on memory
encoding, via its modulation of average reward levels and phasic
responsivity of dopamine circuitry, these results also support the
notion that JACC-VTA interactions regulate motivated behavior.

Results

Brief task description. During fMRI scanning, 34 participants
performed an associative memory task consisting of one memory
encoding session followed by a memory test session. In each trial
of the encoding session, participants were presented with the face
of a cartoon character and one pair of objects (Fig. la), and
guessed which of the two objects the character preferred. Sub-
sequent feedback indicated how much the character liked the
selected object: very much (+5 feedback), moderately (+1 feed-
back), or disliked (—1 feedback; Fig. 1b, c). Participants were
instructed to learn the preferences that six different characters
had for ten different object pairs, because the memory for the
preferences would later be tested. Unbeknownst to participants,
the feedbacks were predetermined, such that two characters each
received on average high, medium, or low levels of reward (as
determined by the ratio between the number of +5 and +1
feedbacks, see Fig. 1d). In order to fully control the average level
of reward, each character-object pair was shown only once and
all ten preferences for one character was encoded before the ten
preferences for the next character was encoded, and so forth (i.e.,
60 encoding trials in total). The memory test session was largely
similar to the encoding session, but no feedback was provided and
the order of character-object pairs was pseudorandomized.
Points corresponded to a monetary bonus provided at the end of
the experiment (see “Methods” for further details).

Memory performance. Memory performance was assessed in the
test session, administered 20 min following the end of the
encoding session, during which participants had to recall and
select the preferred object in each of the ten object pairs for each
of the six characters. Performance was calculated as the propor-
tion of correct selections of character—object associations encoded
during positive (41, +5) feedback and correct rejections of
associations encoded during negative (—1) feedback. Memory
performance was analyzed for the different types of reward pre-
sented during the encoding, i.e., three levels of Feedback value
(—1, +1, +5) and three levels of Average reward (Lo, Me, Hi). A
linear mixed effects model with fixed effects Feedback value (—1,
+1, +5) and Average reward (Lo, Me, Hi) and participant as
random effect revealed a significant main effect of Feedback value
[Fig. le; F(2, 288) = 17.905, p < 0.001, ANOVA] because memory
was better for character-object associations encoded during +5
feedback [mean + SEM: 0.739 £0.028] as compared with +1
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Fig. 1 Stimuli and behavioral results. a During both encoding and testing, each trial started with the presentation of a cartoon character together with two
objects. During encoding trials, participants randomly selected one object and then received a feedback indicating how much the selected object was liked
by the character (see b). ¢ During encoding, three different feedback values were presented indicating whether a selected object was disliked (magenta
circle, —1), moderately liked (blue circle, +1), or very much liked (green circle, +5). d Average reward was the average of ten feedback values displayed for
a given character. Two characters were associated with high (Hi) average reward (one +1, five +5s), two with medium (Me) average reward (three +1s,
three +5s), and two with low (Lo) average reward (five +1s and one +5). e Memory performance (proportion correct) increased monotonically as a
function of feedback value. f. Memory performance increased nonlinearly (inverted U-shape) as a function of average reward. ***p < 0.001, **p < 0.01, *p <
0.05, ns not significant (p > 0.05), indicates the p value for paired t-tests. Horizontal lines in f and g indicate mean + SEM. Source data are provided as a
Source Data file. The images used to illustrate the paradigm in a, b were obtained from https://publicdomainvectors.org/ and http://www.

freestockphotos.biz/.

feedback [mean + SEM: 0.671 +0.019, #(32) = 2.545, p = 0.016, d
=0.490, 95% CI=0.014-0.122, paired t-test] and —1 feedback
[mean + SEM: 0.552 +0.025, #(32) =5.728, p<0.001, d=1.214,
95% CI = 0.120-0.253, paired t-test]. Associations encoded dur-
ing +1 feedback were also better remembered as compared with
—1 feedback [#(32)=4.039, p<0.001, d=0.929, 95% Cl=
0.059-0.179, paired t-test]. When tested separately, memory
performance was above change (memory performance > 0.5) for
all three types of feedback value [all three p values <0.05, one-
sample #-test].

The main effect of Average reward was also significant [Fig. 1f;
F(2,288) =4.792, p=0.009 ANOVA], with the highest memory
performance for associations encoded during Me average reward
[mean + SEM: 0.688 + 0.023], both as compared with Lo average

reward [mean + SEM: 0.623 £ 0.025, #(32) = 2.240, p = 0.032,d =
0.470, 95% CI=0.006-0.123, paired t-test], and Hi average
reward [mean + SEM: 0.620 £ 0.021, #(32) = 3.230, p = 0.003, d =
0.544, 95% CI=0.025-0.111, paired t-test]. There was no
difference in memory performance between Lo and Hi average
reward [#(32)=—0.138, p=0.891, d=0.027, 95% Cl=
—0.049-0.056, paired t-test]. The interaction between Feedback
value and Average reward was not significant [F(4,288) = 1.008,
p =0.404, ANOVA], suggesting independent contributions of
Feedback value and Average reward to memory formation. The
main effects of Feedback value and Average reward remained
significant when controlling for presentation order during
encoding, presentation order during testing, and cartoon
character identity (see Supplementary Note 1).
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Computational modeling. Computational modeling was used to
provide a more fine-grained (i.e., trial-wise) description of the
relationship between the different types of reward and memory
formation. The fits of different computational models to behavior
are displayed in Table 1 (for full details of these models, see
“Methods”). The best fit to behavior was provided by the Ry, -
model, which assumes linear and quadratic influences from
feedback value and average reward on memory formation,
respectively [the average Akaike’s information criterion (AIC) of 2|
this model was significantly smaller as compared with the average
AIC of each of the other models, all p values <0.05, paired ¢-
tests]. The Ry, ,» model also provided the most parsimonious fit
as compared with models fitting initial average reward levels and
learning rates for each character separately (see Supplementary
Note 2). NN

Figure 2a illustrates how average reward levels (7) change as a
function of recently received feedback. As expected, the highest
and the smallest accumulated level of average reward were
obtained in the Hi and Lo average reward categories, respectively
(Fig. 2b). Figure 2c illustrates the contribution of average reward
levels to the encoding probability (pg). pg increased with
increasing levels of average reward, until the “optimal” level of b
average reward (w), at which point additional levels of average
reward reduced the encoding probability (Fig. 2d).

The fit of the Ry > model to behavioral data is displayed in
Fig. 2e, f, and shows the same significant effects as actual behavior
(Fig. 1f, g see Supplementary Note 3). Of note, the level of
average reward was not constrained to particular character
identities, as the Ry » model provided a better fit as compared
with other models fitting (1) one baseline value of average reward
which was reset whenever a new character was presented during
encoding (see the Ry . with C,; model), or (2) six different
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Fig. 2 Computational model. a-d illustrates how parameter values in the computational model derive from the behavioral data, here for one representative
participant. a The average reward level (, black line) tracks preceding feedback values as an exponential running average. The average r of ten trials within
the different average reward categories (Hi, Me, and Lo) are respectively indicated by white, gray, and black bars. b. The average ¥ across average reward
categories in (a). ¢ When the encoding probability (pg, green line) is nonlinearly (inverted U-shape) modulated by average reward levels (¥, black line), pg
increases when r approaches the optimal level of average reward (w, dashed line). By contrast, pg decreases whenever r becomes larger or smaller than w.
To further illustrate the nonlinear contribution of 7 to pg, the quadratic term (F — w)2 is displayed as a red line. White, gray, and black bars respectively
illustrate the average pg of the ten trials within each average reward category. d The average pg across the average reward categories in (c). e Across
participants, the most parsimonious model indicates that the encoding probability pg increases monotonically as a function of feedback value, but is
nonlinearly modulated by average reward (f). g On average the model predicts higher encoding probabilities for subsequent hits as compared with misses.
***p < 0.001, ns not significant (i.e., p > 0.05), indicates the p value for paired t-test. The horizontal lines in e, f, and g indicate mean = SEM. Source data are
provided as a Source Data file.

additional analysis using a conservative ROI approach in a PHG clusters (Fig. 4 and Table 3). Because average reward
functionally defined VTA ROIL This VTA ROI was based on levels contributed significantly to memory encoding (inverted
coordinates obtained from a previous study looking at reward- U-shape; Figs. 1g and 2f), this result suggests that average
related memory enhancements®, and we previously used this reward influences memory encoding by engaging dopaminergic
VTA ROI to test prediction error encoding in the dopaminergic ~memory circuitry. Sagittal views of these activations are pro-
midbrain?®. This supplementary analysis revealed that BOLD vided in the Supplementary Note 6. Additional supplementary
signal in this VTA ROI indeed correlated with feedback values analyses, using a more conservative ROI approach, confirmed
(see Supplementary Note 4). the robustness of the effect of average reward on VTA activity

Because feedback values modulated memory performance across different VTA ROIs and smoothing kernels (see Sup-
(Figs. 1f and 2e), these results are in accordance with previous plementary Note 5). Of note, a separate fMRI analysis con-
studies showing that reward-related effects on memory encoding firmed that average reward had no impact on BOLD signal
are associated with increased activity in the NAcc, the VTA, the during stimulus presentation (see Supplementary Note 7).
HC, and the PHG>?. Sagittal views of these activations are Moreover, the conjunction between the BOLD signal modu-
provided in the Supplementary Note 6. lated by average reward (inverted U-shape) and feedback value
revealed that no voxels in the a priori ROIs were significantly
modulated by both feedback value and average reward (the
conjunction was tested versus the “conjunction null hypoth-
esis”30 with an initial search threshold of p =0.001).

Non linear modulation of BOLD by average reward levels.
BOLD signal was modulated in an inverted U-shape fashion by
average reward in the VTA, the amygdala, and in bilateral HC/
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Fig. 3 Linear BOLD signal increases as a function of feedback value. BOLD signal in the bilateral NAcc ROl (a-¢), and the HC/PHG ROlIs (d-i) increased
monotonically with feedback value. For display purposes, the violin plots show the average % signal change extracted from 3-mm spheres centered on
peak voxel coordinates for each significant activation cluster. The horizontal lines indicate mean £ SEM. The BOLD signal is shown using an uncorrected
threshold of p < 0.001. NAcc nucleus accumbens ROI, HC hippocampus ROI, PHG parahippocampal gyrus ROI, Amygdala amygdala ROI. Source data are

provided as a Source Data file. T statistics were obtained from t-tests.

VTA-dACC interaction is modulated by average reward levels.
The dACC integrates different motivational factors, such as
reward and effort?»2>, and determines motivated behavior via
top-down modulations on the VTA2223 Tt has recently been
proposed that the dACC both keeps track of environmental
states, such as current availability of reward or effort needed to
obtain a goal, and regulates neuromodulatory systems (including
dopaminergic reward signals in the VTA) in order to respond
appropriately to changes in the environment?®. In the context of
the present study, we predicted that the dACC would encode
average reward levels (ie., environmental tracking) and com-
municate the behavioral impact of average reward to the VTA
(i.e., neuromodulatory regulation). Specifically, we investigated
these hypotheses by testing for linear correlations between aver-
age reward and dACC BOLD signal and nonlinear modulations
of VTA-dACC functional connectivity by average reward.
Using a generalized psychophysiological interaction (gPPI)
approach (seed ROI defined as the voxels within the VT'A ROI
that correlated non linearly with average reward; Fig. 5a, b), we
confirmed that the functional connectivity between the VTA and
the dACC was modulated in a nonlinear fashion by average
reward (inverted U-shape; Fig. 5a, ¢; peak MNI x y z=3 35 13;

T(32) =3.751; pSVC = 0.037). Moreover, dACC BOLD signal
significantly and linearly correlated with average reward levels
(Fig. 5d, e; peak MNI x y z=0 32 22; T(32) =4.155; pSVC =
0.016).

Discussion

We investigated the influence of reward feedback and average
accumulated reward on associative memory formation. Three
different levels of feedback value (—1, +1, +5) and average
reward (Lo, Me, Hi) during encoding were tested. Model-based
fMRI was used to assess how memory performance related to
trial-by-trial changes in neural activity under these reward
regimes during encoding.

Memory  performance increased monotonically  for
character-object associations encoded during —1, +1, and +5
feedbacks, respectively. This effect was mirrored by activity in the
NAcc, the VTA, the HC, and the PHG at encoding. These
memory effects primarily depended on the feedback value at
encoding (and not the expected reward at memory recall) because
associations encoded during +1 feedback were better remem-
bered than those encoded during —1 feedback, although correctly
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Table 2 BOLD signal showing positive correlation with increasing feedback values in a priori ROIs and the amygdala ROI.
Hemisphere MNI peak coordinate T(32) PewE, svc
x y z
Positive correlation with feedback value
Reward mask
Nucleus accumbens Left —18 5 —14 9.085 <0.001
Nucleus accumbens Right 15 8 -n 7.593 <0.001
VTA?
Memory mask
Hippocampus/parahippocampal gyrus Left -15 2 -20 6.724 <0.001
—24 -13 —-14 4.310 0.031
—21 -7 -20 0.032
Hippocampus/parahippocampal gyrus Left =21 —28 -8 4329 0.030
Hippocampus/parahippocampal gyrus Right 27 —-34 -5 5.004 0.006
18 5 -20 4522 0.019
Amygdala ROl (post-hoc)
Amygdalab Left -18 2 -23 6.147 <0.001
Amygdalab Right 18 2 20 4.069 0.017 ns
Prwe, svc indicates the p value resulting from family-wise error (FWE) small volume correction (SVC) on peak voxel activity within a priori ROls and the amygdala ROI. T-statistics were obtained from t-
rtﬂes?tns;)t significant.
aNo voxels within the anatomically defined VTA ROl included in the “reward mask” were significantly activated by feedback value. However, a complimentary ROl analysis using a slightly different and
functionally defined VTA ROI showed that VTA BOLD signal significantly tracked feedback value (see Supplementary Note 4 for details).
bThe amygdala was not part of the initial hypotheses, thus a stricter (Bonferroni-corrected) statistical threshold was applied in order to infer any involvement of the amygdala (a = 0.0167).

remembering both types of trials in the memory test would yield
+1 point. One plausible explanation for these results can be
derived from studies showing that unexpected positive or nega-
tive feedbacks elicit phasic increases (bursts) or decreases (dips)
in dopamine neuron activity, respectively®!0, Dopamine neurons
project to the NAcc, which is anatomically and functionally
linked to the HC3*31:32 Accordingly, differences in phasic
dopamine neuron activity during encoding may explain why
associations are better remembered following +1 feedback, as
compared with —1 feedback (and similarly why +5 feedbacks
caused even better memory performance)!®. The monotonically
increasing relationship between three levels of feedback value and
memory formation extends previous research showing better
memory for information encoded during the presentation or
expectation of binary (ie., large versus small) rewards, with
neural correlates overlapping those obtained in the present
study?3°8,

Moreover, our results support previous studies reporting better
memory for information presented in association with feedback,
such as positive versus negative feedback!>16, larger feedback
prediction errors!®21:3334 or the unsigned feedback prediction
error>*. However, some other studies report that memory was not
modulated by feedback magnitude!?! or feedback prediction
error?®, or was negatively influenced by the feedback prediction
error’®. Unfortunately, these studies, although being just a
handful, present a large variety in experimental parameters which
may have contributed to these seemingly discrepant results. To
name a few: encoding type (incidental versus intentional),
memory type (associative versus recognition memory), encoding-
testing delay period (short versus long), sleep during the delay
period (with versus without sleep), task relevance of memoranda,
timing of stimuli, and reinforcement learning paradigm (Pavlo-
vian versus instrumental). While the potential influence of these
factors on reward-related memory have been discussed
elsewhere!®3%, we note that many of the studies reporting a
positive impact of feedback value on memory formation
(including ours), presented the information to be remembered
(i.e., the memoranda) in close temporal vicinity to the
feedback!6:21:33:34 while those reporting no or a negative impact
of feedback value presented the memoranda prior to the

feedback3>36, For example, Jang et al.3® presented rewards either
before memoranda (to induce reward anticipation), during
memoranda (to elicit what the authors termed an “image pre-
diction error”), or after memoranda (to elicit a feedback predic-
tion error). Strikingly, while neither the feedback prediction error
nor the reward anticipation impacted on subsequent memory
performance, the image prediction error, elicited by the pre-
sentation of memoranda, correlated positively with subsequent
memory performance3®. Thus, reward delivery might influence
memory encoding in a limited time window, perhaps constrained
by the rapid phasic response of dopamine neurons to reward
delivery (<500 ms;”19). Yet, because a few other studies showed
that activating the reward system before and after memoranda
also increased subsequent memory performance>3, further
research needs to determine to what extent memory formation
depends on the relative timing between memoranda and different
aspects of reward, and how these relate to the different response
profiles of the dopamine system, i.e., phasic bursts and dips, tonic
activity, and sustained ramping responses!421,

During memory encoding, activity in the VTA and brain
regions implicated in memory formation (i.e., HC and PHG) was
modulated by average reward in a nonlinear fashion (i.e., inverted
U-shape). Memory performance (as tested in a subsequent
memory test) showed the same (inverted U-shape) modulation by
average reward, whereby intermediate levels of average reward
yielded best memory retention. The finding that average reward
modulates feedback-related neural activity in the VTA and the
HC during encoding, with similar impact on subsequently tested
memory performance, supports theories postulating that reward
enhances memory formation via dopaminergic influences on HC
plasticity! L12. Yet, reward feedback induces rapid phasic bursting
activity of dopamine neurons®0, while average reward is pre-
sumably encoded by slower changes in tonic dopamine
levels!7:18:37. These seemingly discrepant findings can be recon-
ciled by animal research showing that the overall phasic dopa-
mine response scales with the number of “active” dopamine
neurons, while the number of active dopamine neurons is
reflected in tonic dopamine levels!®-38,

Notably, this interpretation suggests that the HC loci for the
effects of feedback value and immediate reward on memory
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Fig. 4 BOLD signal as a function of the average reward level. BOLD signal in the VTA ROI (a, b), and the HC/PHG ROls (c-h) was modulated in a
nonlinear fashion with increasing levels of average reward. For display purposes, the violin plots show the average % signal change extracted from 3 mm
spheres centered on peak voxel coordinates for each significant activation cluster. The horizontal lines indicate mean £ SEM. The BOLD signal is shown
using an uncorrected threshold of p < 0.001. VTA ventral tegmental area ROI, HC hippocampus ROI, PHG parahippocampal gyrus ROIl. Amygdala amygdala
ROI. Source data are provided as a Source Data file. T-statistics were obtained from t-tests.

Table 3 BOLD signal correlating non-linearly (inverted U-shape) with changes in average reward levels in a priori ROIls and the
amygdala ROL.
Hemisphere MNI peak coordinate T(32) Pewe, svc
X y z
Nonlinear modulation by average reward (inverted U-shape)
Reward mask
Ventral tegmental area Right 3 -16 -8 3.504 0.033
Memory mask
Hippocampus/parahippocampal gyrus Left -30 —25 —26 4.486 0.024
Hippocampus/parahippocampal gyrus Left —21 —4 —26 4326 0.035
Hippocampus/parahippocampal gyrus Right 21 -4 —26 5.435 0.002
27 -16 -29 5.216 0.004
30 -19 —26 5.193 0.004
Amygdala ROI (post-hoc)
Amygdala? Left —21 -4 —26 4.326 0.0Mm
Amygdala? Right 21 4 —26 5.435 <0.001
Prwe, svc indicates the p value resulting from family-wise error (FWE) small volume correction (SVC) on peak voxel activity within a priori ROls and the amygdala ROI. T-statistics were obtained from t-
tests.
ns, not significant.
3The amygdala was not part of the initial hypotheses, thus a stricter (Bonferroni-corrected) statistical threshold was applied in order to infer any involvement of the amygdala (a = 0.0167).
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Fig. 5 VTA-dACC functional connectivity and dACC BOLD signal as a function of the average reward level. a Functional connectivity between the VTA
seed ROI (see b, same figure for a zoomed-in display of the VTA seed ROI) and the dACC was nonlinearly modulated by average reward levels (see ¢,
same figure for extracted beta parameters). b Zoomed-in display of the VTA seed ROI. ¢ Nonlinear modulation (inverted U-shape) of VTA-dACC
functional connectivity by average reward levels. d, e BOLD signal in the dACC decreased monotonically with average reward levels. The violin plots show
the average strength of functional connectivity (¢) and average % signal change (e) extracted from 3-mm spheres centered on the peak voxel coordinates
within the dACC ROl in a and d, respectively. The horizontal lines indicate mean + SEM. Activations are shown using an uncorrected threshold of p < 0.001.
dACC dorsal anterior cingulate ROI. Source data are provided as a Source Data file. T-statistics were obtained from t-tests.

encoding should overlap, yet a conjunction analysis revealed no
significant voxel overlap between the different contrasts. Seen
through the lenses of phasic and tonic dopamine, such a result
has been predicted by previous literature based on notions that
different types of dopamine receptors show different degrees of
affinity and are heterogeneously distributed throughout the HC.
For example, Shohamy and Adcock!# theorized that tonic
dopamine acts on D5 receptors, which are mainly extrasynaptic,
while phasic dopamine is restricted to engage other types of
dopamine receptors located within a synapse. Moreover, Edel-
mann and Lessman3® suggested that tonic dopamine firing only
activates high-affinity D2 receptors, while phasic dopamine firing
additionally and briefly activates low-affinity D1 and D5 recep-
tors. In addition, Rosen et al.*0 showed that the flow of infor-
mation between regions of the HC may be controlled by the
dopaminergic midbrain. Specifically, optogenetic stimulation of
the VTA that simulated tonic/phasic mode of dopamine release
caused inhibition/facilitation of postsynaptic potentials in CAl
pyramidal neurons following Schaffer collateral stimulation, thus
suggesting that information flow within the HC is determined by
the current mode of dopamine activity. Because this effect was
specifically dependent on D4 receptors, the impact of tonic/phasic
dopamine activity might be most pronounced in regions of the
HC with a higher density of D4 receptors. In summary, phasic
and tonic dopamine activity may engage different regions of the
HC by acting upon different dopamine receptors spread hetero-
geneously across the HC.

Beyond average reward, a sustained “ramping” dopaminergic
response, consistent with tonic dopamine activity, can be trig-
gered by the anticipation of uncertain rewards?). One study
showed that memory for images presented during periods of
uncertain reward anticipation was enhanced when tested after

both short and long delays?l. Another study reported better
memory, as tested after a short delay only, for items encoded
during high-risk (versus low-risk) contexts, where risk was
determined by the variance of the reward magnitude34. While the
authors speculated that differences in arousal mediated the effect
of risk on memory encoding, it is tempting to propose that tonic
dopamine activity, induced by uncertain reward anticipation
(caused by a large variance in reward magnitude), may also have
contributed to this effect. Future neuroimaging studies need to
elucidate whether the effects of average reward, uncertain reward
anticipation, and risk on memory encoding are related to similar
engagement of the VTA.

Regarding the nonlinearity of the modulation by average
reward in the present study, it was previously shown in humans
that slightly increased levels of dopamine (achieved via L-DOPA
administration) enhanced memory formation, while excessive
dopamine levels had a detrimental impact (i.e., inverted U-
shape?’, see also?8). By increasing the overall level of average
reward, as compared with our previous study!6, we show that
elevated levels of average reward also impede memory formation.
What could explain this nonlinear influence of average reward
(and dopamine) on memory formation? Dopamine is important
for optimizing energy expenditure*!, and tonic dopamine may
signal opportunity costs!”>18, the value of work’’, or effort2.
Accordingly, low average reward (e.g., food scarcity during win-
ter) promotes sloth because the value of work is low, while
increasing levels of average reward (e.g., food availability during
spring) promotes action by signaling an increased value of work.
However, when rewards are bountiful (e.g., a domestic animal’s
constant access to food), the value of work is constant and hard
work is unnecessary. It therefore seems unreasonable that average
reward has a monotonously increasing impact on behavior.
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Instead, as detailed next, we propose that the behavioral impact of
average reward is first determined by the dACC, a brain region
involved in the integration of different motivational factors, and
then actuated via dACC-VTA interactions.

The dACC integrates different types of motivational informa-
tion, such as reward, effort, and punishment?425, and determines
behavior via top-down influences on the VTA2%23, The VTA is
well known for its role in enabling motivated behavior®3. A recent
elaborate model suggests that dACC function can be described by
two integrated modules*®. One module monitors environmental
states, such as the effort, risk, or reward associated with obtaining
a goal, and selects appropriate actions, while the other module
regulates the release of neuromodulators, including reward-
related dopamine release from the VTA. In line with this model,
we show a monotonic relationship between average reward levels
and dACC BOLD (in accordance with a dACC monitoring
function), and a nonlinear modulation by average reward on
VTA-dACC functional connectivity (which is compatible with a
dACC neuromodulatory regulation function). VTA-dACC
functional connectivity was highest for the intermediate level of
average reward during encoding, as was activity in the VTA and
subsequently tested memory performance. Of note, dACC activity
is increased by factors that reduce the expected value of future
rewards, including effort needed to obtain the rewards, uncer-
tainty associated with the reward outcome, error likelihood, and
perceived decision difficulty (for reviews, see refs. #44%). Thus,
because average reward levels estimate the current likelihood of
receiving a large reward, dACC activity should be negatively
correlated with average reward levels, a prediction corroborated
by the present results. Given our results in combination with
previous research, we propose that the dACC encodes average
reward, determines its behavioral impact (after considering other
concurrent factors), and then transmits this information to
memory circuitry via the VTA.

The neuronal mechanisms in the VTA that are impacted by a
dACC-VTA modulation are largely unknown, yet the ACC
projects directly to VTA dopamine neurons via glutamatergic
projections*®47, and glutamatergic afferents to dopamine neurons
supposedly control transitions between phasic and tonic
activity3®48. Moreover, shifting the balance between excitatory
glutamatergic and inhibitory GABAergic inputs to the VTA
increased the spontaneous activation of dopamine neurons#?, and
glutamate iontophoresis increased both the baseline firing rate
and the burst firing frequency of dopamine neurons>?. Thus, one
plausible mechanism, which certainly needs empirical confirma-
tion, is that top-down control of the VTA from the dACC occurs
via glutamatergic inputs to the VTA that alter tonic dopamine
activity by changing the number of spontaneously “active”
dopamine neurons (i.e., neurons that may elicit phasic burst fir-
ing), and thus also the overall phasic dopamine responsel®38.

Although not part of our initial hypotheses, post-hoc tests
indicated that feedback-related activation clusters (both mono-
tonically increasing by feedback value and nonlinearly modulated
by average reward) extended into the bilateral amygdala. Previous
studies looking at reward-related memory enhancements have
not reported the involvement of the amygdala!-3-%, which in some
cases may be due to highly constrained ROI analyses’”8. However,
amygdala’s involvement in reward-related memory encoding is
not surprising, given its role in emotion-related memory
enhancement. For example, the amygdala was activated bilaterally
when participants viewed pleasant and unpleasant images, and
the degree of amygdala activation correlated with subsequently
tested memory for these images®!. Moreover, the amygdala
modulates the formation of hippocampal-dependent episodic
memories®?, possibly via its ability to encode different aspects of
emotionality, such as valence and salience®3. Because the

amygdala is interconnected with both the HC and the VTA,
amygdala modulation of memory encoding in the present study
could be accomplished in (at least) two different ways. First, via
direct influences on hippocampal plasticity>®, or by regulating
VTA dopamine neurons that project to the HC, for example by
transmitting motivational salience signals to the VTA>. Future
research should further clarify the role of the amygdala in reward-
related memory enhancements.

The VTA encoded both feedback value and average reward
while the NAcc only encoded feedback value. At first glance, the
divergent encoding of average reward in the VTA and the NAcc is
surprising given the extensive dopaminergic input from the VTA
to the NAcc®’, in combination with results showing co-activation
of the VTA and the NAcc in the context of prediction errors$>?
and during rest®®. However, the NAcc receives input from many
brain regions besides the VTA31, and may therefore be influenced
by information beyond that transmitted by VTA dopamine
neurons®!. In line with this notion, one study alternated visual
and auditory cues as being the relevant feature to predict
upcoming rewards, and showed that the ventral striatum (of
which the NAcc is part) tracked the value of the currently rele-
vant stimulus only, and was activated by the correctness of the
response rather than the outcome’s value®?. In a related study,
participants learned the timing of reward outcomes rather than
their magnitudes, and while the VTA tracked parameters related
to both reward magnitudes and timings, the ventral striatum only
tracked the reward timings, ie., the task-relevant parameter.
Similarly, participants in the present study learned the value of
character-object associations, and this task-relevant feature was
tracked by both the VTA and the NAcc. By contrast, the task-
irrelevant average reward level was only tracked by the VTA.
Thus, the ventral striatum/NAcc may update the features of the
environment that are most relevant to drive behavior®3, a specific
role that is not shared by the VTA.

Some limitations of the present study needs to be acknowl-
edged. First, we show that average reward modulates the encod-
ing of character—object associations, yet it remains unknown to
what extent average reward modulates the encoding of other
types of information within a trial, such as memory for a parti-
cular character identity or objects. While the present study was
not designed to test memory for individual stimuli, the experi-
mental paradigm could easily be adapted to test such aspects by,
for example, replacing the associative memory test with a sti-
mulus recognition test. Another limitation, shared by many stu-
dies on human reward-related memory modulation, is that
memory was tested after a relatively short delay period (i.e., 20
min after encoding in the present study). Thus, it remains
unknown whether and how feedback value and average reward in
the present study may modulate subsequent dopamine-
dependent consolidation processes. Dopamine is believed to
enable consolidation of long-term potentiation (LTP)!1, a cellular
model of long-term memory®“. In brief, LTP posits that memories
are initially encoded by changes in synaptic strengths following
synaptic activation (early LTP), and that these changes, and thus
also the memories they encode, quickly vanish unless the
synapses undergo a stabilization/consolidation process that
involves the synthesis of plasticity-related proteins (late LTP)!112,
While experimental evidence suggests that dopamine is important
for both early and late LTP, it may be particularly relevant for late
LTP. For example, administering dopamine antagonists before
learning in a one-trial reward learning task impeded memory
when tested after 24 h, but not when tested after 30 min®>%°.
Accordingly, the impact of dopamine-releasing events during
encoding, such as reward, may be particularly evident when
memory is tested after long delays (i.e., after late LTP has
occurred). Some human research support this notion by showing
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that reward-related enhancements of memory emerged only
when tested after long delays (>24 h)%>21 or after a nap* (which
may allow for dopamine-related consolidation processes®”-08).
Yet, other studies report reward-related memory modulations
when tested both after short (<30 min) and long delays!®3>, or
when tested after short delays only!"1>34. The latter results sug-
gest that reward-related memory modulations do not always
pertain to consolidation processes, but may also act directly on
the encoding of a memory, a notion which is in line with the
present results. Yet, future studies need to address the impact of
average reward on later consolidation processes. A final limitation
is that the current fMRI approach cannot address what low-level
mechanism(s) could explain reward influences on memory
encoding. Some experimental evidence suggests that dopamine
lowers thresholds for LTP induction®. Another interesting
option relates to the notion of a three-factor rule of synaptic
plasticity”0. In brief, this theory posits that co-activation of pre-
and postsynaptic neurons sets an eligibility trace that allows
synaptic change, but only in the presence of a third modulating
factor. This modulatory factor may be dopamine, but could also
be any other neuromodulator known to impact learning, such as
acetylcholine, noreprinephrine, or serotonin. This rule explains
rapid behavioral change without the need for consolidation, and
is supported by recent experimental evidence obtained in the
striatum, the prefrontal and visual cortices, and in the HC (see
Gerstner et al.”0 for a recent review). Other mechanisms have also
been suggested, i.e., see Box 5 of Lisman et al.!! and Shohamy and
Adcock!4.

To summarize, we show that reward feedback exhibits (1) an
immediate and positive effect on memory encoding that engages
the NAcc, the VTA, and hippocampal brain regions, and (2) a
more sustained non-linear effect via its integration into average
reward levels, which in turn modulates neural responses within
the VTA-HC loop, as determined by the dACC and its interac-
tions with the VTA. These results demonstrate that the accu-
mulation of reward contributes to memory encoding success,
with intermediate levels of average reward providing the most
beneficial setting for memory encoding. The impact of average
reward across cognitive domains, and its interaction with inter-
individual differences related to dopamine functionality, remain
to be investigated.

Methods

Functional MRI data were acquired while participants performed an associative
memory task consisting of one memory encoding session and one memory test
session. We designed different computational models explaining how immediate
feedback value and average reward might differentially impact memory formation,
and then fitted them to memory performance during the test session. The para-
meters derived from the most parsimonious model were then combined with fMRI
data to uncover brain activity that correlated with the different dimensions of
reward delivery during memory encoding. Specific details about the experimental
procedures are presented below.

Participants. After having provided written and informed consent according to the
ethical regulations of the Geneva University Hospital, 34 participants joined the
experiment. All participants were right-handed, native French speakers, and
without any previous history of psychiatric or neurological disorders. The study
was performed in accordance with the Declaration of Helsinki. Data from one
participant had to be excluded due to him/her falling asleep during the memory
test phase. Thus, data from the remaining 33 participants were included in the
subsequent analyses (15 females; average age + SEM: 25.242 + 0.874).

Associative memory task. Each participant performed an associative memory
task consisting of one memory encoding session (9 min) and one memory test
session (9 min). Both sessions were performed during fMRI scanning and were
separated by 20 min.

Memory encoding session: In each trial during the encoding session, a fixation
cross was first presented for 3 s, followed by the face of a cartoon character
presented together with a pair of objects’! for 3.5s (Fig. la). Participants were
instructed that the character moderately liked or very much liked one object in

each pair, while disliking the other object. Participants had to indicate which object
they thought that the character liked (moderately or very much) by pressing one of
two buttons with the right hand. A feedback display, consisting of a number
enclosed by a colored circle was then presented for 1s (Fig. 1b). The feedback
indicated whether the character moderately liked (41, blue circle), very much liked
(45, green circle), or disliked (—1, magenta circle) the selected object (Fig. 1c).
Besides informing about a preference, the feedback also indicated how many points
each selection was worth. The feedback was presented 4 s after the onset of the face/
objects display. Participants were instructed that they could gain additional points
by correctly remembering each character-object preference for a subsequent
memory test phase (see below), and that the points would be converted into a
monetary bonus at the end of the experiment.

Critically, the feedback was manipulated to yield different average reward levels
for the six different characters presented during the memory encoding session.
Specifically, while all characters received four —1 feedbacks, two characters
associated with high (Hi) average reward received one +1 feedback and five +5
feedbacks, two characters associated with medium (Me) average reward received
three +1 feedbacks and three +5 feedbacks, while two characters associated with
low (Lo) average reward received five +1 feedbacks and only one +5 feedback
(Fig. 1d). Each of the six characters was presented together with each of ten
possible object pairs (i.e., the object pairs were constant across the experiment and
participants), for a total of 60 trials. All ten character-object associations were
encoded for one character (i.e., ten trials), before the same object pairs were
presented together with the next character, and so forth for all six characters. For
each participant, the characters were randomly assigned to one of the different
average reward levels (i.e., either Lo, Me, or Hi).

Test session: During the test session, participants were presented with the same
characters and same object pairs, and were instructed to recall and select the
character's preferred object in each object pair. Selecting an object previously
associated with positive feedback (i.e., +1 or +5) earned the corresponding points
(i.e., +1 and +5), while rejecting an object associated with —1 feedback earned +1
points. Note that correctly remembering associations encoded during +1 feedback
or those encoded during —1 feedback (correct rejection) would yield +1 point in
both cases. Participants lost 1 point if they selected a disliked object, i.e., either by
selecting a previously disliked object or by not selecting a previously rewarded
object. Testing trials were identical to encoding trials (Fig. 1a), except that no
feedback was provided. The order of characters, object pairs, and the side of object
presentation within a pair, were pseudorandomized. First, each character (each
with the 10 corresponding object pairs, i.e., 10 trials) was presented once before any
other character was repeated. Second, the order of the ten object pairs was
randomized for each character. Third, the side of object presentation within a pair
was reversed (with respect to the side of presentation during the encoding session)
for half of the object pairs for each character.

Procedure: To get familiar with the task, participants first trained the task
outside the MRI scanner. Six character—object associations were encoded for one
character and then tested after a delay of ~5 min. Neither the character nor the
trained object pairs were subsequently used during the main experiment.
Participants then performed the associative memory task inside the MRI scanner,
as described previously (i.e., one encoding session and one test session).

Statistical analysis: Memory performance during the test session was calculated
as the proportion of correct responses: i.e., selection of objects that had been
rewarded for a given character during the encoding phase (41, +5 feedbacks), or
rejections of objects classified as “disliked” by a given character (—1 feedback). We
computed the number of correct responses for each combination of immediate
feedback value (+1, +5, and —1) and average reward (Lo, Me, and Hi).

The data were analyzed using linear mixed models of the following form:

Y; = X;B + Z)b; + e;, where Y, represents a vector of values of the dependent
measure of interest for the ith participant, X; represents a matrix of p predictors
(independent variables) for the ith participant, B represents a vector of p fixed
effect beta weight estimates for each predictor in X, Z; represents a matrix of g
random effect predictors, b; represents a vector of g random effect estimates, and e;
represents a vector of the model fit error, representing the discrepancy between the
model prediction for each observation from the ith participant and the actual value
of that observation. For behavior and modeling data, two categorical predictors
with three levels each were used: Feedback value (—1, +1, and +5) and Average
reward (Lo, Me, and Hi) along with their interaction. Moreover, each participant
was treated as a random variable, i.e., the matrix Z contained one column for each
participant pertaining to that participant’s random effect estimate b.

ANOVA was initially used to analyze the results, and significant effects were
further investigated using two-tailed paired t-tests. Of note, while linear mixed
models are in many ways superior compared with alternative approaches’?, the
calculation of standard effect sizes for these models is still heavily debated’3. For
this reason, we restricted the reporting of standardized effects sizes to the difference

between means, which was calculated using Cohen’s d:
d=_HM—tH
(o1 +03)/2

Computational approach. To provide a more fine-grained (i.e., trial-wise) analysis
of behavior and fMRI data, we created and confronted different computational
models for successful memory formation depending on different types of reward
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available at the time of encoding. As such, the average reward 7 is calculated using
an exponential running average’# while the feedback values (fb) are the actual
reward values (i.e., —1, +1, or +5):

7(t) = vxib(t) + (1 —v)x 7(t — 1),

where v is a learning rate which determines the integration rate of recent rewards
into the overall estimate of current average reward. The probability pg of suc-
cessfully encoding information presented in a trial ¢ is described by a logistic
function:
1

1+ e R0
R(?) is defined in different models based on previous data linking reward and
dopamine to memory formation, as described next.

A “null”-model assumes no influence of reward on memory performance:

Rnu].l (t) = C[)‘

ps(t) =

A second model accounts for the impact of feedback value on memory formation

(Coy):
R.(t) = Cy + Cg x fb(1).

A third model accounts for the hypothesized impact of average reward on memory
formation (C;):

R.(t) = Cy + Cox 7(t).

A fourth model accounts for independent additive contributions from reward
magnitude and average reward:

Rpy5(t) = Cy 4 Cgy x fb(t) + C.x 7(2).
A fifth model also includes their interaction (Cgy;):
Reyroor(t) = Co + Cy x f(2) + Cox 7(t) + Cop x B(2) x 7(2).

A sixth model accounts for the nonlinear modulation of memory formation by
increasing average reward (Cy), inspired by the notion that average reward is
encoded by tonic dopamine!”!® and the nonlinear modulation of episodic memory
formation by increased dopamine levels:2”

Ry (1) = Cy + Cyx 1(t) + o x (7(1) — w))°,

where w indicates the “optimal” level of average reward, i.e., the point where lower
or higher levels of average reward are detrimental to memory encoding.

A seventh and final model is similar to the sixth model, but presumes that
average reward levels are calculated for each cartoon character independently. To
account for this possibility, an initial level of average reward (Cy,) was therefore
fitted across cartoon characters.

Cp» C;, Cqp> and Cp. regulate the modulation of overall reward levels by reward
magnitude, average reward, their interaction, and the nonlinear modulation by
average reward, respectively. The free parameters Cy, Cy,, C;, Cpr, Cr, v, w
were fitted to each participant’s data through maximum likelihood estimation, i.e.,
by minimizing the negative log-likelihood estimation function (LLE) for logistic
regression:

LLE = = " y(t)xlogpg(t) + (1 — y(1)) x log(1 — py (1)),
t=1
where y(t) is the observed outcome (i.e., hit/miss) in each trial £. To validate and
confront these models, their fit to behavioral data were compared using AIC7>
which accounts for different numbers of fitted variables:

AIC =2x k+ 2x LLE.

MRI data. Image acquisition: MRI images were acquired using a 3T whole body
MRI scanner (Trio TIM, Siemens, Germany) with a 12-channel head coil. Standard
structural images were acquired with a T1 weighted 3D sequence (MPRAGE, TR/
TI/TE = 1900/900/2.27 ms, flip angle = 9°, voxel dimensions =1 mm isotropic,
256 x 256 x 192 voxels). Proton density (PD) structural images were acquired with
a turbo spin echo sequence (TR/TE = 6000/8.4 ms, flip angle = 149°, voxel
dimensions = 0.8 x 0.8 x 3 mm, 205 x 205 x 60 voxels). The PD scan was used to
confirm the location of VTA activation, as it allows the identification of the sub-
stantia nigra, a brain region located just laterally to the VTA®S. The acquisition
volume was oriented in order to scan the brain from the lower part of the pons to
the top of the thalamus. Functional images were acquired with a susceptibility
weighted EPI sequence (TR/TE = 2100/30 ms, flip angle = 80°, voxel dimensions
= 3.2 mm isotropic, 64 x 64 x 36 voxels).

MRI data analysis: Functional MRI data were preprocessed and then analyzed
using the general linear model for event-related designs in SPM8 (Welcome
Department of Imaging Neuroscience, London, UK; http://www.filion.ucl.ac.uk/
spm). During preprocessing, all functional volumes were realigned to the mean
image, co-registered to the structural T1 image, corrected for slice timing,
normalized to the MNI EPI-template (via a 12 parameter affine transformation
model with trilinear interpolation), and smoothed using an 8 mm FWHM

Gaussian kernel. Statistical analyses were performed on a voxelwise basis across the
whole-brain. At the first-level analysis, individual events were modeled by a
standard synthetic hemodynamic response function (HRF) and six rigid-body
realignment parameters were included as nuisance covariates when estimating
statistical maps. Contrasts (see below) were then calculated and the contrast images
entered into second-level ¢ tests implemented in SPM.

Parametric modulation by model-derived reward parameters: By fitting
computational models to memory performance from the test session, we obtained
parameters that best explained how changes in feedback value and average reward
during memory encoding influenced subsequent memory performance!®.
Combining fitted model parameters with fMRI data, we could then trace back the
neural correlates of those distinct dimensions of reward (that we manipulated in
the task) during associative memory encoding.

To this end, we created an event-related design that included three event-types
modeled as stick functions (i.e., with a 0 duration) that were respectively time-
locked to the onset of the display of character/object pairs, the button press of the
response, and the feedback in each trial. We then added trial-by-trial estimates of
model-derived reward parameters, i.e., feedback values (i.e., —1, +1, and +5) and
average reward levels (calculated as an exponential running average of feedback
values), as parametric modulators to the feedback onset times. To disentangle
neural activity related to different parametric modulators, the vectors containing
respective parametric modulator were orthogonalized. This process allows studying
the neural correlates of one parametric modulator independently of another”.

Functional connectivity analysis of VTA-ACC interactions: For the
connectivity analysis, we used the gPPI approach which has the benefit of
accommodating multiple task conditions, including parametric modulators, in the
same connectivity model”’. Physiological variables were created by extracting the
deconvolved times series from each seed ROIL Psychological regressors were
created by convolving each onset regressor and parametric modulator with the
canonical HRF. Psychophysiological interaction (PPI) terms (which allow the
identification of voxels showing task-dependent covariation with the seed ROIs)
were created by multiplying the time series from the psychological regressors with
the physiological variable. All of the above was performed for each participant
separately, and individual gPPI models were created by including the
corresponding physiological variables, the psychological regressors, and the
PPI terms.

Regions of interest (ROIs): The selection of a priori ROIs used for small volume
corrections (SVCs) were guided by previous literature on reward-related memory
enhancements>?, reporting the involvement of memory-related brain structures
such as the HC and the PHG, as well as structures coding for reward, such as the
NAcc, the VTA, and the dACC.

ROIs for the NAcc, HC, and the PHG were obtained from the WFU toolbox”8.
The VTA ROI was obtained from a recently published probabilistic atlas of the
VTA, by including voxels identified as being part of the VTA in 50% of
participants®®. The dACC ROI was defined by limiting the ACC ROI of the WFU
toolbox to z>+12 and y > +167°. A “reward mask” was created by combining the
NAcc and VTA ROIs, while a “memory mask” was created by combining the HC
and the PHG ROIs. Both of these masks were used to test the parametric
modulation by feedback value and average reward. By contrast, the dACC ROI was
only used to test specific hypotheses related to VTA-dACC interactions. For
visualization purposes, an amygdala ROI obtained from the WFU toolbox was
included in some of the figures.

Additional post-hoc analyses tested the involvement of the amygdala by using
SVCs on a ROI mask of the bilateral amygdala obtained from the SPM Anatomy
Toolbox Version 3.0 (all sub-regions of the amygdala included in the mask)8°.

Statistical analyses. The obtained results are displayed using a threshold of p <
0.001 and a minimum cluster size of ten contiguous voxels, unless otherwise
reported. SVCs using a threshold of p <0.05 family-wise error rate (FWER) for
multiple comparisons were obtained using a priori ROI masks reported above.
Bonferroni-corrected statistical thresholds were applied to two post-hoc tests that
investigated the involvement of the amygdala. Specifically, because two post-hoc
tests were performed, the statistical threshold was corrected to 0.017 (0.05/3) for
these tests. Conditions were compared using paired t-tests, as implemented

in SPM.

For display purposes, the average brain activity were extracted from 3-mm
spheres centered on peak voxels within significant clusters of activation and shown
as insets. While the feedback values were constant (—1, +1, and +5), average
reward levels changed continuously between trials. For this reason, we calculated
and displayed the average brain activity within three equally sized bins of average
reward levels, i.e., the 0-33rd percentiles, 34-66th percentiles, and 67—100th
percentiles.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used to produce the results reported in the manuscript can be made available
upon appropriate request. In addition, the source data underlying Figs. 1e, f, 2e, f, g, 3b, ¢,
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e, f,h,1,4b, d, e, g h, 5¢, e, and Supplementary Figs. 1b and 2b are provided as a Source
Data file. A reporting summary for this Article is available as a Supplementary
Information file.

Code availability
Data code used to produce the results reported in the manuscript can be made available
upon appropriate request.
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