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Lactobacillus paracasei-derived extracellular vesicles
attenuate the intestinal inflammatory response by
augmenting the endoplasmic reticulum stress
pathway
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Abstract

Lactobacillus paracasei is a major probiotic and is well known for its anti-inflammatory properties. Thus, we
investigated the effects of L. paracasei-derived extracellular vesicles (LpEVs) on LPS-induced inflammation in HT29
human colorectal cancer cells and dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. ER stress inhibitors
(salubrinal or 4-PBA) or CHOP siRNA were utilized to investigate the relationship between LpEV-induced endoplasmic
reticulum (ER) stress and the inhibitory effect of LpEVs against LPS-induced inflammation. DSS (2%) was administered
to male C57BL/6 mice to induce inflammatory bowel disease, and disease activity was measured by determining colon
length, disease activity index, and survival ratio. In in vitro experiments, LpEVs reduced the expression of the LPS-
induced pro-inflammatory cytokines IL-1q, IL-1(, IL-2, and TNFa and increased the expression of the anti-inflammatory
cytokines IL-10 and TGFp. LpEVs reduced LPS-induced inflammation in HT29 cells and decreased the activation of
inflammation-associated proteins, such as COX-2, iNOS and NFkB, as well as nitric oxide. In in vivo mouse experiments,
the oral administration of LpEVs also protected against DSS-induced colitis by reducing weight loss, maintaining colon
length, and decreasing the disease activity index (DAI). In addition, LpEVs induced the expression of endoplasmic
reticulum (ER) stress-associated proteins, while the inhibition of these proteins blocked the anti-inflammatory effects of
LpEVs in LPS-treated HT29 cells, restoring the pro-inflammatory effects of LPS. This study found that LpEVs attenuate
LPS-induced inflammation in the intestine through ER stress activation. Our results suggest that LpEVs have a
significant effect in maintaining colorectal homeostasis in inflammation-mediated pathogenesis.

Introduction

The human microbiome has been extensively investi-
gated for its role in the prevention and treatment of
inflammatory bowel disease (IBD)"*. Humans are popu-
lated with trillions of bacteria that are located primarily in
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the gastrointestinal tract and have vast, complex immu-
nomodulatory effects on their host. In comparison to
healthy subjects, patients suffering from IBD are generally
known to have decreased abundance of Lactobacilli
populating their GI tract, suggesting that replenishment
of Lactobacilli in the gut may be an appropriate ther-
apeutic target for IBD patients®. Healthy balance of the
gut microbiota is essential for the normal development
and function of the immune system, beginning with initial
bacterial colonization initiated at birth through the vagi-
nal canal. Interestingly, studies have shown that offspring
delivered by cesarean section rather than vaginal delivery
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have disrupted bacterial colonization associated with
decreased Lactobacillus spp. and increased rates of IBD*°.
Therefore, a clear link has been shown to exist between
IBD and the vaginal flora that contribute to the early
development of the intestinal microbiota, which is
dominated by Lactobacillus spp. One such species, Lac-
tobacillus paracasei, has shown particular promise as a
probiotic candidate through its ability to decrease the
secretion of pro-inflammatory cytokines, increase the
production of anti-inflammatory cytokines®, increase
immunomodulatory control”®, and decrease IBD symp-
tom severity™'°.

While links between microbiota composition and IBD
have been established, the specific underlying molecular
mechanisms of action remain unclear. An often over-
looked bacterial function is the release of extracellular
vesicles (EVs), nanometer-sized vesicles composed of lipid
bilayer membranes designed to transport diverse biomo-
lecules. Due to their ability to transverse epithelial cells,
bacterial EVs can be found in both the extracellular space
and various biological fluids and have a crucial role in the
transport of microRNAs (miRNAs), messenger RNAs
(mRNAs), and proteins from parental cells to recipient
cells"'%, EVs play an important role in cell-to-cell com-
munication and, consequently, the regulation of cellular
physiology and pathophysiology. Indeed, EVs in biological
fluids have been found to play a role in the body’s
immunological mechanisms'*~'°, These findings imply
that circulating microbial EVs may directly influence the
health-promoting functions of probiotics and represent a
primary molecular mechanism of the immunomodulatory
effects of probiotics. This is supported by previous reports
that Lactobacillus-derived EVs alleviate inflammatory
responses by regulating cytokine production'”®,

The endoplasmic reticulum (ER) is an organelle that is
responsible for protein modification and the maintenance
of intracellular calcium homeostasis'®. The accumulation of
unfolded proteins and imbalanced calcium homeostasis can
disturb ER functions, causing ER stress. ER stress activates
three ER membrane proteins known to induce adaptive
immune responses: serine/threonine kinase PKR-like ER
kinase (PERK), inositol-requiring enzyme 1 (IRE1), and
activating transcription factor (ATF6)***'. When ER dis-
turbance is too severe for recovery, CHOP activation trig-
gers ER stress-associated apoptosis to eliminate damaged
cells®*?, ER stress has been implicated in many diseases,
including obesity, diabetes, inflammatory diseases, and
neurodegenerative disorders**~*’. ER stress is also a
mechanism of action for anti-inflammatory agents™®.

In the present study, we aimed to investigate whether
EVs from L. paracasei, a newly isolated lactic acid bac-
terium in the human body, mediates anti-inflammatory
actions. Furthermore, we attempted to understand how
ER stress impacts the anti-inflammatory effects of
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L. paracasei-derived EVs (LpEVs) in in vitro and in vivo
experimental colitis models.

Materials and methods
Materials

Fetal bovine serum (FBS), Dulbecco’s modified Eagle
medium (DMEM), and other cell culture products were
purchased from Life Technologies (Grand Island, NY,
USA). Lipopolysaccharide (LPS), 4-phenylbutyric acid (4-
PBA), salubrinal, and 2,3-diaminonaphthalene (2,3-DAN)
were obtained from Sigma-Aldrich (St. Louis, MO, USA).
TRIzol reagent and lipofectamine siRNA transfection
reagent were purchased from Invitrogen (Carlsbad, CA,
USA). Small interfering RNAs (siRNAs) against scrambled
control and CHOP were obtained from M Biotech (Seoul,
Korea). Antibodies against COX-2, CHOP, and ATF6«a
(p90) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Antibodies against phospho-
PERK (p-PERK), nuclear factor kB (NFxB), and iNOS
were purchased from BioLegend (San Diego, CA, USA).
Antibodies against phosphor-IREla were purchased from
Abcam (Cambridge, MA, USA). Antibodies against
phospho-IkB (p-IkB) and IkB were purchased from Cell
Signaling Technology (Beverly, MA, USA). An enhanced
chemiluminescence (ECL) system was obtained from GE
Healthcare Life Sciences (Chicago, Illinois, USA).

Ethics statement

This study was conducted strictly according to the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institute of Health.
The experimental protocols were approved by the Insti-
tutional Animal Care and Use Committee at Ewha
Womans University, Seoul, Republic of Korea. All animal
experiments were designed to minimize mouse sacrifice.

A mouse model of dextran sulfate sodium-induced colitis

Seven-week-old male C57BL/6 mice (Orient Bio Inc.,
Seongnam, Korea) were maintained on a 12-h day/night
cycle under specific pathogen-free conditions. The mice
were fed a standard diet and water until the age of 8 weeks
and divided into three groups (six mice in each group). For
the acute colitis mouse model, mice were provided dextran
sulfate sodium (DSS) (36—-50 kDa; MP Biomedicals, LLC,
Ilkirch, France) in drinking water at a concentration of 2%
(weight/volume) for 5 days. The healthy control mice were
provided drinking water without DSS. A total of 5mg of
L. paracasei EVs suspended in phosphate-buffered saline
(PBS) were administered to the LpEVs+DSS group from
day O to day 12 by oral gavage. The mice were sacrificed on
day 13 to investigate clinical pathology and parameters.
qRT-PCR was conducted to analyze the mRNA expression
levels of cytokines. Mouse primers for each gene are shown
in Supplementary Table 1.
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In vivo fluorescence imaging

LpEVs (ug) were incubated with 5 uM Cy7 mono NHS
ester (GE Healthcare, Little Chalfont, UK) for 1 h at 37 °C.
Cy7 mono NHS ester-labeled LpEVs were isolated using
ultracentrifugation. Then, Cy7-labeled LpEVs (10 ug of
total protein) were administered by gavage to the mice,
which had been fasted overnight. At the indicated time
point, whole-body images were obtained at a wavelength
of 780-800 nm using a Davinch-Invivo system (Davinch-
Invivo Fluoro Chemi, Korea). After whole-body imaging,
the mice were sacrificed, and Cy7 fluorescence in the
dissected organs was quantified.

Measurement of disease activity index and colon length

To evaluate the disease activity index (DAI), body
weight, stool consistency, and stool blood were monitored
and recorded daily. DAI was determined by calculations
established previously”’. Mice from the DSS group that
had died received a DAI of 12 points. After mouse
sacrifice, the colons were extracted, and the colon length
between the ileocecal junction and the rectum was mea-
sured. To extract protein, the colon was stored at —80 °C.
For qPCR, the colon was subjected to RNAlater Stabili-
zation Solution (20 mM EDTA, 25 mM sodium citrate
tribasic dihydrate, and 70% ammonium sulfate) at 4°C
overnight and used for total RNA isolation.

Preparation of L. paracasei-derived EVs

Isolation and purification of EVs was performed as pre-
viously described®. L. paracasei was isolated from the
vaginal discharge of a woman from a previous study at
Chung-Ang University (IRB No. 10-089-12-24). L. paracasei
was cultured in MRS broth (MB cell, CA, USA) for 18 h at
37°C with gentle shaking (150 r.p.m.). When the optical
density of the culture at 600 nm reached 1.0, the bacteria
were pelleted at 10,000 x g for 20 min, and the resulting
supernatant was passed through a 0.22-pm bottle-top filter
(Corning, NY, USA) to remove any remaining cells. The
filtrate was concentrated with a MasterFlex pump system
(Cole-Parmer, IL, USA) using a 100-kDa Pellicon 2 Cassette
filter membrane (Merck Millipore, MA, USA) and subse-
quently passed through a 0.22-um bottle-top filter. EVs
were obtained from the resulting filtrate by ultra-
centrifugation at 150,000 x ¢ for 3h at 4°C. The protein
concentration was measured by the BCA assay (Thermo
Fisher Scientific, MA, USA), and the collected fractions of
EVs were stored at —80 °C until use.

Heat inactivation of L. paracasei

L. paracasei was cultured and heat inactivated by pla-
cement in a 70 °C water bath for 1h. After heat inacti-
vation, the bacteria were pelleted at 10,000 x g for 20 min,
and the supernatant was discarded. The inactivated bac-
terial pellet was resuspended in PBS. The protein
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concentration was measured by the BCA assay (Thermo
Fisher Scientific, MA, USA).

Genome sequencing and de novo assembly and
annotation

L. paracasei cells cultivated in MRS broth (Difco) were
harvested in the middle phase of logarithmic growth.
PacBio SMRT whole-genome sequencing was con-
ducted utilizing a PacBio RSII sequencer, producing
151,050 adapter-trimmed reads (subreads) with an
average read length of approximately 7040 bp. De novo
assembly was performed with the RS HGAP Assembly
v3.0 system utilizing the SMRT Portal 2.3 software, and
the genome was annotated using Prokka Pipeline
(Prokka v1.12b).

Phylogenetic study

Reorganization of evolutionary affiliations was con-
ducted at the National Center for Biotechnology Infor-
mation (NCBI)-BLAST. 16S ribosomal RNA (rRNA)
sequence data were acquired from GenBank (Lactoba-
cillus casei NCDO161, Pediococcus claussenii ATCC
BAA-344, Oenococcus oeni 59b, Lactobacillus. perolens
L532, Lactobacillus coryniformis subsp. Torquens 30,
Lactobacillus rhamnosus JCM 1136, L. rhamnosus NBRC
3425, L. paracasei ATCC 25302, L. paracasei NBRC
15889, L. paracasei R094, L paracasei subsp. Tolerans
NBRC 15906, L. brantae SL1108) to construct a phylo-
genetic tree among Lactobacillus strains.

Transmission electron microscopy image analysis

Purified EVs were diluted to a concentration of 50 pg/
mL in PBS, and 10 pL of the diluent was placed on a 300-
mesh copper grid (EMS, Hatfield, PA, USA) and stained
with 2% uranyl acetate for 5min. The samples were
visualized with an H-7650 TEM (Hitachi Ltd,
Berkshire, UK).

Dynamic light scattering

Purified EVs were diluted to 1 ug/mL with PBS, and the
size distribution of EVs was measured using a Zetasizer
Nano ZS instrument (Malvern Instruments, Worcester-
shire, UK) and Dynamic V6 Software 32.

Cell culture

RAW 264.7 murine macrophages and HT29 human
colorectal cancer cells were purchased from Korean Cell
Line Bank (Seoul, Korea). HT29 cells were cultured in
DMEM supplemented with 10% FBS, 100 U/mL peni-
cillin, and 100 pg/mL streptomycin. Exponentially grow-
ing cultures were incubated in a humidified atmosphere of
5% CQO, at 37°C. For treatment, the cells were serum-
starved for 3 h and incubated with LpEVs, LPS, or other
drugs for the indicated times.
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Analysis of cell viability

RAW 264.7 cells were treated with LpEVs (0.1, 1, 10 pg/
mL) for 12 h. After 12 h, cell viability was determined by a
cell viability assay kit (DoGen Bio, Seoul, Korea). The
reagent was added to the cells according to the manu-
facturer’s protocol, and the cells were incubated at 37 °C
for 3 h. Then, the optical density was read at 450 nm.

Enzyme-linked immunosorbent assay

RAW 264.7 cells were pretreated with LpEVs (0.1, 1, 10,
50 pg/mL) or heat-inactivated bacterial pellets (0.1, 1, 10,
50 pg/mL) for 12 h and then stimulated by Escherichia coli
EVs (1 ug/mL) for 12 h. The supernatant was centrifuged,
collected, and analyzed by enzyme-linked immunosorbent
assay (ELISA). ELISA was performed according to the
manufacturer’s protocol (R&D Systems, Minneapolis,
MN, USA). All reagents for ELISA were purchased from
R&D Systems.

RNA interference (siRNA)

siRNA transfection was performed using Lipofectamine
siRNA Transfection Reagent. HT29 cells were plated
overnight in six-well plates, and the medium was replaced
with 1 mL of serum-free DMEM before transfection. The
scrambled control or CHOP siRNA duplexes were incu-
bated with 5 uL of siRNA transfection reagent for 5 min at
room temperature; the mixture was then added to these
cells. After 12 h, 1 mL of DMEM containing 10% FBS was
added to each well. For experiments, cells were trans-
fected with siRNA for 24 h and then treated with LPS with
or without LpEVs for 24 h.

Western blot analysis

Cells were pretreated with LpEVs for 12h, treated
with LPS treatment for the indicated times, and washed
twice with ice-cold PBS. The cells were lysed in RIPA
lysis buffer containing 50 mM Tris-HCl (pH 7.4),
150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate,
0.1% sodium dodecyl sulfate (SDS), 50 mM NaF, 0.1 mM
phenylmethanesulfonyl fluoride (PMSF), and 0.5% pro-
tease inhibitor cocktail. The whole-cell lysates were
centrifuged at 12,000 x g for 10 min at 4°C to remove
cellular debris and subjected to the BCA protein assay to
determine the protein concentration. Cell lysates con-
taining equal amounts of protein (40 pug) were resolved
by 8—12% SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) and then analyzed by western blot analysis. Each
blot was subjected to blocking with 5% skim milk in
Tris-buffered saline with 0.05% Tween 20 (TBST) for
1h at room temperature, treated with primary anti-
bodies (1:2000) in TBST overnight at 4 °C, washed three
times with TBST (10 min per wash), and incubated with
HRP-conjugated secondary IgG (1:2000) in TBST for 2 h
at room temperature. The protein expression was
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visualized with an ECL detection system according to
the manufacturer’s protocols.

Nuclear and cytoplasmic extraction

Cells were suspended in hypotonic buffer (10 mM 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES]
(pH 7.9), 1.5 mM MgCl,, 10mM KCl, 0.2 mM PMSEF,
0.5mM dithiothreitol [DTT], and 10 pug/mL aprotinin)
and 10% NP-40. After vortexing, the cell lysates were
centrifuged at 4000 r.p.m. for 5min to separate the
supernatant (cytosolic fraction) and pellet (including the
nucleus). The pellet was resuspended in high-salt buffer
(20 mM HEPES (pH 7.9), 25% (w/v) glycerol, 0.4 M KCl,
1.5mM MgCl,, 02mM EDTA, 02mM PMSF, and
0.5 mM DTT) and subjected to centrifugation at 14,000
rp.m. for 5min to collect the supernatant (nuclear
fraction).

Assessment of nitric oxide production

To measure the nitric oxide (NO) concentration, 2,3-
diaminonaphthalene (DAN) was used according to pre-
viously described methods. Cells were treated with LPS
alone or pretreated with LpEVs for the indicated times.
The cells were washed twice with PBS, resuspended in
158 uM DAN/0.62 N HC], and then incubated at 37 °C for
15 min. After 15 min, 2.8 N NaOH was added to stop the
reaction between DAN and NO,. The fluorescence
intensity was determined by flow cytometry using exci-
tation and emission wavelengths of 365 and 450 nm,
respectively. At least 10,000 events were analyzed per
sample, and each sample was analyzed in duplicate.

Total RNA extraction and qRT-PCR

To determine the effect of LpEVs on the expression of
inflammatory cytokine genes, quantitative reverse tran-
scriptase polymerase chain reaction (QRT-PCR) was per-
formed. Total RNA was extracted from cultured cells
(in vitro) and colorectal tissues (in vivo) using TRIzol
reagent according to the manufacturer’s instructions. The
quantity and purity of the total RNA samples were mea-
sured utilizing ultraviolet spectroscopy (NanoDrop 2000
Spectrophotometer; Thermo Fisher Scientific, Waltham,
MA, USA). Complementary DNA (cDNA) was synthe-
sized using M-MLYV reverse transcriptase, and polymerase
chain reaction (PCR) was performed. The PCR primers
for each gene are shown in Supplementary Table 2.

To measure mRNA expression, real-time PCR analysis
was performed with the SYBR Green qPCR Mastermix kit
(Applied Biosystems) according to the manufacturer’s
instructions. Samples were subjected to the QuantStudio
3 Real-time PCR system (Applied Biosystems). qPCR was
performed under the following conditions: 30s at 94°C
for denaturation, 5s at 94°C for annealing, and 30s at
60 °C for extension. f-Actin was used as a loading control.
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Statistical analysis

All data are shown as the mean + standard deviation of
at least three independent experiments. Statistical
comparisons were carried out by using one-way analysis
of variance followed by Tukey’s post hoc test (GraphPad
Prism version 5.0, GraphPad Software Inc. San Diego,
CA, USA). P values < 0.05 were considered statistically
significant.

Results
Genomic characteristics of L. paracasei isolated from
vaginal flora

Whole-genome sequencing was conducted with the
PacBio single-molecule real-time (SMRT) sequencing
system to investigate the genome sequence of L. paracasei
isolated from vaginal flora. De novo assembly utilizing the
Hierarchical Genome Assembly Process 3 (HGAP3)
software constructed one contig, which included a con-
sensus sequence with higher quality through the self-
mapping step. The genome of L. paracasei consisted of
one circular chromosome (3,071,140 bp), which included
2933 coding sequences, 60 transferRNAs (tRNAs), and 15
rRNAs (Fig. 1a). Phylogenetic analysis based on 16S rRNA
revealed that the sequencing pattern of L. paracasei used
in this study was clustered with other strains within
L. paracasei (Fig. 1b). Comparisons of the 16S rRNA gene
sequence of L. paracasei isolated from this study with the
corresponding sequence of standard strains from the
GenBank database showed that our strain belonged to a
subclade of L. paracasei. Data from 16S rRNA nucleotide
sequence BLAST on NCBI showed that L. paracasei used
in this study possessed high similarity (99.0-100%) with
other strains of L. paracasei. Genomic features, BLAST
alignment, and comparative results with its close relatives
identified the strain used in this study as L. paracasei
(Supplementary Table 3).

Isolation and characterization of L. paracasei-derived EVs

L. paracasei-derived EVs were isolated and purified
according to previously described methods®. To investi-
gate the characteristics of the LpEVs, EVs purified daily
for a week were observed using transmission electron
microscopy (TEM) to analyze the morphology of the EVs.
TEM images showed the spherical shape of the LpEVs,
which consisted of a lipid bilayer. Purified EVs were
subjected to dynamic light scattering (DLS) analysis to
measure the size distribution of EVs. DLS demonstrated
that EV showed a slight variation in diameter ranging
from 20 to 100 nm; the average size of EVs was 34.22 +
6.876 nm (Fig. 2a).

Effects of LpEVs on LPS-induced inflammatory responses

To evaluate the anti-inflammatory effects of LpEVs, we
assessed cell viability and the secretion of tumor necrosis
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factor-a (TNF-a), a known inflammatory cytokine, in
RAW 264.7 murine macrophages treated with EVs
derived from L. paracasei. No significant differences in
cell viability were observed between the negative control
and LpEV-treated cells (Supplementary Fig. la). Pre-
treatment with LpEVs inhibited TNF-a secretion in a
concentration-dependent manner, while the inhibition of
TNF-a secretion was not observed upon pretreatment
with L. paracasei bacterial pellet (Supplementary Fig. 1b).
These results indicate that LpEVs are the most effective in
suppressing E. coli EV-induced inflammation.

We also evaluated whether LpEVs block NO production
in LPS-treated RAW 264.7 cells. LPS induced NO gen-
eration at 12 and 24 h, and the levels increased to 83.34%
after 12 h of treatment with LPS. As expected, pretreat-
ment of cells with LpEVs reduced LPS-induced NO
production (Supplementary Fig. 1c). These data suggest
that LpEVs attenuate TNFa secretion accompanying NO
production in the inflammatory environment.

Targeting of LpEVs to the colon in a mouse model

An in vivo imaging study was performed to evaluate
whether LpEVs moved to target organs, including the
stomach, small intestine, and large intestine, after oral
administration. Whole-body imaging showed that LpEVs
were present in the stomach areas 1h after application
and diffused in a time-dependent manner (Fig. 2b). In
addition, imaging data of dissected organs showed that
LpEVs moved from the stomach to the large intestine 24 h
after administration and that LpEVs finally disappeared in
the large intestine 48 h after application (Fig. 2c).

LpEVs attenuate LPS-induced inflammation in colon cancer
cells

We examined whether LpEVs inhibit LPS-induced
inflammation via in vitro colon cancer cell experiments.
Treatment with LPS (1 mg/mL) markedly increased the
mRNA levels of the pro-inflammatory cytokines IL-1a,
IL-1p, IL-2, and TNFa and slightly increased the mRNA
levels of the anti-inflammatory cytokines IL-10 and TGEFp.
Pretreatment with LpEVs attenuated the increased
expression of pro-inflammatory cytokine mRNAs (IL-1q,
IL-1B, IL-2, and TNFa) while enhancing the expression of
IL-10 and TGFP mRNA in HT29 cells treated with LPS
(Fig. 3a).

We evaluated whether LpEVs affect LPS-induced
inflammation by western blot analysis. LpEVs suppressed
the LPS-induced elevated expression of COX-2 and iNOS.
In addition, for the NFxB pathway, LPS induced an increase
in the phosphorylation of I«B, leading to the degradation
and nuclear translocation of NFkB, whereas LpEVs atte-
nuated the LPS-induced activation of these inflammation-
associated proteins (the phosphorylation of IkB and the
nuclear translocation of NFkB) in HT29 cells (Fig. 3b).
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We evaluated whether LpEVs suppress NO production
in LPS-treated HT29 cells. LPS induced NO generation at
12 and 24 h, and the levels increased to 90.79% after 12 h
of treatment with LPS. As expected, pretreatment of
cells with LpEVs reduced LPS-induced NO production
(Fig. 3c). These findings show that LpEVs attenuate the
expression of inflammatory cytokines and modulators, as
well as NO generation, in LPS-treated human colorectal
cancer cells.

LpEVs attenuate the inflammatory response in a DSS-
induced colitis mouse model

To examine the in vivo protective effects of LpEVs on
acute colitis in mice, 2% DSS was administered to male
C57BL/6 mice for 5 days, and then ordinary drinking water
was provided for 8 days. The mice were divided into three
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groups: (1) the control group, which was administered
drinking water; (2) the DSS-only group, which was admi-
nistered 2% DSS in drinking water; and (3) the LpEVs+DSS
group, which was administered LpEVs [5 mg/mouse] and
2% DSS in drinking water. To assess the disease activity in
each group, body weight loss, survival ratio, colon length at
day 13, and DAI were analyzed. The mice in the LpEVs+
DSS group showed suppression of body weight loss and
mortality increment compared to those of the mice in the
DSS group (Fig. 4b, c). Additionally, the LpEVs+DSS group
showed a significant decrease in DAI score compared
to that of the DSS-only group (Fig. 4d). The mice in the
LpEVs+DSS group had longer colon lengths compared to
those of the mice in the DSS-only group (Fig. 4a, ). These
results suggest that LpEVs significantly attenuate the
severity of inflammation in DSS-induced acute colitis mice.
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Fig. 3 Effects of LpEVs on LPS-induced inflammatory responses in human colorectal cancer cells. a HT29 colorectal cancer cells were
pretreated with vehicle or 500 ng/mL LpEVs for 12 h and treated with vehicle (control) or 1 mg/mL LPS for 12 h. The mRNA expression of
inflammatory cytokines was then analyzed by gRT-PCR, and the percent mRNA expression was plotted as the mean+standard deviation of at least
three experiments. b HT29 cells were pretreated with vehicle or 500 ng/mL LpEVs for 12 h and then treated with 1 mg/mL LPS for 0, 2,6, 12, and 24 h.
The cells were lysed, and the cell lysates were subjected to SDS-PAGE and western blot analysis using antibodies against COX-2, MMP-9, iNOS,
phospho-IkB and IkB, and B-actin. To detect the nuclear translocation of NFkB, cell lysates were fractionated into the nuclear extract (NE) and
cytosolic extract (CE) and then analyzed by western blot analysis using an antibody against NFkB p65. ¢ The cells were stained with 2,3-
diaminonaphthalene for 15 min. NO production was measured by flow cytometry (N =3 for each experimental group). The percentage of NO
production was calculated based on naphthalene triazole fluorescence and plotted as the meanz+standard deviation of at least three experiments.
*P <001 compared with vehicle-treated control cells. *P < 0.01 compared with LPS-treated cells without LpEVs.
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For cytokine levels, the DSS-only group showed a
significant increase in the mRNA levels of the pro-
inflammatory cytokines IL-1$ and TNFa while showing
a slight increase in the mRNA levels of the anti-
inflammatory cytokines IL-10 and TGFP. However, the
administration of LpEVs attenuated the increased
expression of pro-inflammatory cytokines while further
increasing the expression of IL-10 and TGEP in DSS-
induced colitis mice (Fig. 5a). As shown in Fig. 5b,
LpEVs attenuated the increased expression of COX-2
and iNOS in colitis mice. In addition, LpEVs reduced
the increase in the DSS-induced nuclear translocation of
NF«B (Fig. 5b).
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LpEVs activate the unfolded protein response

Because ER stress is thought to participate in LPS-
induced inflammation, we investigated whether LpEVs
affect the expression of ER stress-associated proteins,
such as CHOP, p-PERK, p-IRE1l, and cleaved ATF6
utilizing western blot analysis. The results showed that
LPS did not alter the unfolded protein response. How-
ever, LpEVs significantly induced the expression of
CHOP, p-PERK, and p-IRE1 in LPS-treated HT29 cells
(Fig. 6a). In addition, LpEVs alone significantly aug-
mented the expression of ER stress-associated proteins
(CHOP, p-PERK, p-IRE]L, and cleaved ATF6) at 6-24 h
(Fig. 6b).
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LpEVs inhibit LPS-induced inflammation via the activation
of ER stress

To investigate the relationship between LpEV-induced
ER stress and the inhibitory action of LpEVs on the LPS-
induced inflammatory response, we used chemical
blockers of ER stress: salubrinal, a selective inhibitor of
elF2a dephosphorylation, and 4-PBA, a chemical cha-
perone. HT29 cells were pretreated with 10 uM salubrinal
or 5mM 4-PBA for 1h and incubated with LPS for 24 h
with or without LpEVs for 12h. Salubrinal or 4-PBA
significantly abrogated the LpEV-induced ER stress
response, including CHOP expression, phosphorylation of
PERK, and IREla in HT29 cells (Fig. 6¢). Moreover,
salubrinal or 4-PBA markedly reversed the inhibitory
effects of LpEVs on the LPS-induced inflammatory
response, including NO production (Fig. 6d) and
increased TNFa mRNA while decreasing TGFp mRNA,
presumably by inhibiting the expression of ER stress-
associated proteins (Fig. 6e). Western blot analysis
showed that salubrinal or 4-PBA restored the effects of
LPS on the protein expression of COX-2 and iNOS,
phosphorylation, the degradation of IkB, and the nuclear
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translocation of NFkB under inflammation-inhibitory
conditions induced by LpEVs (Fig. 6f).

To confirm the role of ER stress and CHOP expression
in the inhibitory effects of LpEVs on the inflammatory
response induced by LPS, we suppressed CHOP
expression by CHOP siRNA transfection for 24h and
examined the effect of LpEVs on LPS-induced inflam-
matory responses at 24 h. The knockdown of CHOP did
not significantly reduce the expression of unfolded
response proteins (the phosphorylation of PERK and
IRElax) except CHOP in cells treated with LpEVs
(Fig. 7a). However, CHOP knockdown significantly
reversed the inhibitory effects of LpEVs on the LPS-
induced inflammatory response, including NO produc-
tion (Fig. 7b) and increased TNFa mRNA, while
decreasing TGFp mRNA (Fig. 7c). Western blot analysis
showed that CHOP siRNA transfection abrogated the
inhibitory effects of LpEVs on the LPS-induced protein
expression of COX-2 and iNOS (Fig. 7d). These results
suggest that LpEV-induced CHOP expression might be
responsible for the inhibition of LPS-induced inflam-
mation. Collectively, these findings suggest that LpEVs
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or 5mM 4-PBA for 1 h, treated with LpEVs for 12 h, and then stimulated

attenuate LPS-induced intestinal inflammation via acti-
vating ER stress (Fig. 7e).

Discussion

In this study, we demonstrated that LpEVs have an anti-
inflammatory effect by regulating the expression of cyto-
kines and inflammatory mediators as well as NO
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generation. Consistent with the in vitro results, LpEVs
showed protective properties in a DSS-colitis mouse model.
Furthermore, ER stress is one of the major mechanisms of
action of LpEV-mediated inflammatory control under LPS
treatment in HT29 human colorectal cancer cells.
Previously, it was demonstrated that Lactobacillus spp.
exert a suppressive effect on various inflammatory
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NO production was determined by a 2,3-diaminonaphthalene assay.

mRNA levels of TNFa and TGF3 were then analyzed by gRT-PCR. d Cell

against LPS-induced inflammation in HT29 human colorectal cells. LPS

disorders®' >, L. rhamnosus (4B15) and L. gasseri (4M13)
have been reported to have antioxidative activity, inhibit
a-glucosidase activity, reduce cholesterol, and suppress
NO production. In addition, two strains significantly
block the release of inflammatory cytokines, including
TNFa, IL-6, IL-1B, and IL-10, in LPS-treated RAW 264.7
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cells*. L. acidophilus blocks the colitis-associated
immune response of the IL-23/Thl7 axis by down-
regulating the activity of IL-17, TNFa, IL-23, TGF1, and
STAT3%. L. paracasei has been shown to induce anti-
inflammatory responses in IBD, including chemically and
pathogenically induced colitis models®~*°. Moreover,
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L. paracasei has improved anticancer effects on colon
tumorigenesis*®*'. Furthermore, it was previously shown
that L. plantarum-derived EVs suppress inflammatory
responses in S. aureus-induced atopic dermatitis mice by
blocking the secretion of IL-6 and IL-4'8, In addition, EVs
isolated from mouse serum and fed L. plantarum and
L. rhamnosus inhibit the production of TNFa and IL-6 in
LPS-treated RAW 264.7 mouse macrophages™?.

Collectively, these findings support the anti-
inflammatory capability of various Lactobacillus spp. as
well as their secreted EVs. Interestingly, the particular
Lactobacillus spp. used in this study, L. paracasei, was
isolated from the vagina rather than the gut microbiota.
At birth, gestational flora influence the immune develop-
ment of the early gut flora, and the microbiota initially
populated primarily with Lactobacillus-dominant flora is
obtained at birth through the vaginal canal®**. Therefore,
great interest lies in the probiotic capabilities of Lactobacilli
from healthy vaginal flora not only for the treatment of
vaginal dysbiosis but also for the treatment of gastro-
intestinal illness. This study provides evidence of the effi-
cacy of EVs derived from beneficial vaginal bacterial species
in the treatment of gastrointestinal inflammatory condi-
tions, revealing not only the probiotic anti-inflammatory
capabilities of L. paracasei but also the potential relation-
ship between EVs secreted from the vaginal microbiota and
gastrointestinal health. Future studies should be conducted
to further elucidate the relationship between EVs secreted
from the vaginal flora and the immune response in gas-
trointestinal diseases such as IBD.

At the molecular level, ER stress response modification
was found to be the primary mechanism by which LpEVs
were able to induce an anti-inflammatory response. Nitric
oxide synthase (NOS) is primarily responsible for NO
production in mammals, and inducible nitric oxide syn-
thase (iNOS, NOS2) is activated by inflammatory cyto-
kines, endotoxins, and a hypoxic environment**, COX-2
is an enzyme that catalyzes prostaglandin production
from arachidonic acid and functions in inflammation.
Bacterial endotoxins, LPS, cytokines, growth factors, and
hormones stimulate COX-2 activation, resulting in the
inflammatory response*”. COX-2 regulates iNOS expres-
sion and vice versa*®*’. NF«B is known as the primary
regulator of iNOS and COX-2 (refs. ***°) and is con-
sidered to be the critical transcription factor in inflam-
matory responses induced by multiple cytokines and
pathogens®. In this study, we showed that while LPS
increased the expression of COX-2 and iNOS and the
nuclear translocation of NF«kB, the administration of
LpEVs was able to reduce the associated LPS-induced
inflammatory responses in HT29 cells.

NO plays a crucial role in the signal transduction
pathway involved in cell proliferation, survival, and cell
death in almost all types of cells®"**. Additionally, NO is
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a well-known critical factor involved in inflammatory
responses in many types of cells, including macro-
phages®***. The abnormal generation of NO induces an
inflammatory response that is potentially toxic to adja-
cent cells and host tissues. Of all the inflammatory
mediators, NO is considered to be the most active
mediator in colorectal cancer development and mainly
associated with the severity of IBD**>°, In the present
study, we found that LPS-induced NO generation in
HT29 cells and LpEVs reduced NO levels that were
elevated in LPS-treated cells. These findings suggest that
LpEVs inhibit LPS-induced NO production by suppres-
sing iNOS activation.

Furthermore, LpEVs induced the activation of ER
stress-associated proteins, stimulating the phosphoryla-
tion of PERK and IRE1l, ATF6 cleavage, and CHOP
expression. The suppression of ER stress by the chemical
inhibitors salubrinal and 4-PBA and siRNA targeting
CHOP enhanced the LPS-induced expression of COX-2
and iNOS, the transcriptional activation of inflammatory
cytokines, and NO production. These data suggest that
ER stress might be involved in the inhibitory effects of
LpEVs on LPS-induced inflammatory responses in human
colorectal cancer cells.

In conclusion, the present study found that LpEVs
induce ER stress, which contributes to the suppressive
effects on LPS-mediated intestinal inflammation via
COX-2, iNOS, and NFkB. We also confirmed the anti-
inflammatory effect of LpEVs on acute colitis using a
mouse model. For the first time, we found that ER stress is
a major mechanism involved in the anti-inflammatory
effects of LpEVs against LPS- and DSS-mediated inflam-
mation. Further studies are required to determine the
anti-inflammatory effects and mechanisms of action of
LpEVs in vitro and in vivo and the potential of LpEVs as
novel anti-inflammatory agents for IBD.
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