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Abstract

Background: The present study was to determine the effect of local anti-RANKL antibody administration in the
presence or absence of microRNA-146a on ligature-induced peri-implant bone resorption, and the potential role of
TLR2/4 signaling in such effect.

Results: Titanium implants were placed in the left maxilla alveolar bone 6 weeks after extraction of first and second
molars in C57/BL6 wild-type (WT) and TLR2−/− TLR4−/− (TLR2/4 KO) mice. Silk ligatures were tied around the
implants 4 weeks after implantation. Anti-RANKL antibody (500 μg/mL) with or without microRNA 146a (miR-146a)
(100 nM) was injected into palatal gingiva around implant on days 3, 6, and 9 during 2 weeks of ligation period.
Bone resorption around the implants was assessed by 2D imaging using area measurement and 3D imaging using
micro-computed tomography (μCT). Real-time quantitative PCR (RT-qPCR) was used to determine the peri-implant
gingival mRNA expression levels of pro-inflammatory cytokines (TNF-α) and osteoclastogenesis-related cytokines
(RANKL). In both WT and TLR2/4 KO mice, the bone resorption around implants was significantly increased in the
ligation only group when compared to the non-ligation group, but TLR2/4 KO mice showed significantly less bone
loss compared to WT mice after ligation. As expected, gingival injection of anti-RANKL antibody significantly
reduced bone loss compared with the ligation only group in both WT and TLR2/4 KO mice. Moreover, injection of
miR-146a in addition to anti-RANKL antibody significantly enhanced the inhibition of bone loss in WT mice but not
in TLR2/4 KO mice. Gingival mRNA expressions of RANKL were significantly reduced by anti-RANKL antibody
treatment in both WT and TLR2/4 KO mice but were not affected by the additional miR-146a treatment. Gingival
mRNA expression of TNF-α was significantly reduced by miR-146a treatment in WT mice but not in TLR2/4 KO mice.
The number of gingival inflammatory cell infiltration and peri-implant TRAP-positive cell formation was significantly
reduced by the additional miR-146a treatment in WT mice but not in TLR2/4 KO mice.

Conclusions: This study suggests that anti-inflammatory miR-146a enhance anti-RANKL-induced inhibition of peri-
implant bone resorption through the regulation of TLR2/4 signaling and inhibition of TNF-α expression.
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Background
Dental implant has become a preferable choice to restore
the missing tooth in the past few decades for functional
and esthetic purposes [1]. However, peri-implantitis has
become prevalent accompanying the exponential growth of
dental implant procedures [2, 3]. Peri-implantitis is indi-
cated by infection of implant surrounding soft tissues and
bone loss, resulting in implant failure eventually [4–6]. The
host immune and inflammatory responses caused by pla-
ques on implant surface are crucial in the pathogenesis of
peri-implantitis [2, 7, 8]. However, current treatment avail-
able for peri-implantitis is not satisfactory due to the lack
of understanding of the mechanism of peri-implantitis
pathogenesis.
Receptor activator of nuclear factor-kappa B (RANK)

and its ligand RANKL and the decoy receptor osteopro-
tegerin (OPG) are central regulators of osteoclast devel-
opment and essential for osteoimmunology [9–12].
Recent study showed that RANKL/OPG ratio was sig-
nificantly increased in the gingival tissues surrounding
mini-implants in the rat model with Porphyromonas
gingivalis LPS inductions [13]. Moreover, anti-RANKL
antibody was approved for the treatment of osteoporosis,
and it showed inhibition of bone loss in rodent experi-
mental periodontitis models [14–17]. Our previous study
showed that administration of anti-RANKL antibody dir-
ectly to the gingival of rat experimental periodontitis
model can significantly reduce gingival sRANKL expres-
sion and of bone resorption [18]. However, the effects of
anti-RANKL antibody on peri-implantitis have not been
investigated.
MicroRNAs (miRs) are small non-coding RNA molecules

found in plants, animals, and some viruses, functioning in
RNA silencing and post-transcriptional regulation of gene
expression [19–21]. Recent studies showed that miRs are
important regulators in periodontitis [21–23]. Our previous
studies demonstrated that miR-146a regulated the cytokine
secretion in human gingival fibroblasts and periodontal
ligament cells and inhibits inflammatory cytokine produc-
tion in B cells through directly targeting IRAK1, suggesting
a regulatory role of miR-146a in immune-mediated
periodontal inflammation [24]. However, the role of
miR-146a in peri-implantitis remains unknown.
Toll-like receptors (TLR) are a family of well-

characterized pattern recognition receptors (PRRs) and play
an important role in the induction of pro-inflammatory
cytokines by recognizing the signature molecules of the
host innate immunity [25–27]. Our previous studies
showed that TLR2 are associated with implant bone loss in
a mouse model of peri-implantitis [5] and TLR4 is essential
for periodontal bone loss [28, 29]. In our previous study, we
examined the changes of inflammatory cytokines and bone
metabolism cytokines in either TLR2 only KO mice or
TLR4 only KO mice [5, 29]. However, since anti-RANKL

antibody and miR-146a may interact with both TLR2 and
TLR4 pathways, TLR2 and TLR4 double knockout (TLR2/
4 KO) mice were specially employed in the present study to
determine whether the effects of local anti-RANKL anti-
body administration in the presence or absence of miR-
146a on ligature-induced peri-implant bone loss are
dependent on both TLR2 and TLR4.
While our previous studies have substantiated that

RANKL blockade inhibited immune-mediated RANKL-
dependent bone loss, others have indicated that proin-
flammatory cytokines, such as SOFAT and TNF-alpha,
could induce osteoclastogenesis in a RANKL-independent
manner [30–32] through TLR signaling pathway [33].
MiR-146 has been implicated in the involvement of the in-
nate immune responses through negative feedback regula-
tion of TLR signaling [34]. In particular, recent studies
have concluded that miR-146a has a diverse and critical
role in limiting an excessive acute inflammatory reaction
[35]. The purpose of the current study is to investigate the
potential synergistic effect of RANKL blockage and anti-
inflammatory miR-146a in the control of peri-implant
bone loss. Our hypothesis is that anti-inflammatory
microRNA-146a synergistically enhance anti-RANKL
antibody-induced inhibition of peri-implant bone loss
through TLR2/4 signaling.

Methods
Mice
Wild-type (WT) C57BL/6 and TLR2 KO and TLR4 KO
mice in C57/BL6 background were purchased from the
Jackson Laboratory (Bar Harbor, ME). TLR2 and TLR4
double KO mice (TLR2/4 KO) were crossbreed from
TLR2 KO and TLR4 KO mice and confirmed by geno-
typing. All the animal-associated protocols were
reviewed and approved (#17-022) by the Institutional
Animal Care and Use Committee of the Forsyth Insti-
tute. All the mice used in the study were maintained in
specific pathogen-free units. Mice were fed a soft diet ad
libitum for the duration of the experiment. Forty-eight
WT mice and forty-eight TLR2/4 KO mice were used in
this study, and the mice were randomly divided into 4
groups in WT and TLR2/4 KO mice as follows: (1) im-
plant only (n = 12), (2) implant + ligation (n = 12), (3)
implant + ligation+ anti-RANKL antibody (n = 12), and
(4) implant + ligation + anti-RANKL antibody + miR-
146a (n = 12).

Tooth extraction, implant placement, and ligature-
induced experimental peri-implantitis and local
administration of anti-RANKL-antibody and miR-146a
The procedures of tooth extraction and implant place-
ment were as previously described [5]. Briefly, all the
mice had their left maxillary first and second molars ex-
tracted at 4 weeks old with 6 weeks of healing time after
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the tooth extraction. Drinking water with antibiotics
(sulfamethoxazole and trimethoprim, 850 μg/170 μg per
mL) was used for 2 weeks to decrease the possibility of
infection after tooth extraction. Then, the maxillary
alveolar bone was drilled with the 0.3-mm-diameter
carbide micro-hand drill, and a smooth-surface, screw-
shaped titanium implant (1 mm in length and 0.5 mm in
diameter, D. P. Machining) was screwed clockwise into
the bone through the drilled site until torque could be
achieved. Implants were allowed to heal for 4 weeks, and
the antibiotic water was given during the first week after
implantation as described above. Four weeks after im-
plant placement, experimental peri-implantitis was initi-
ated with a 7-0 silk ligature tied around the implants.
The ligation day was recorded as day 0, and the ligature
remained in place for 2 weeks. For group 3 and group 4,
each mouse received palatal gingival injections of 2 μL of
anti-RANKL antibody (500 μg/mL, Peprotech, Rocky
Hill, NJ) or miR-146a (100 nM, GeneCopoeia, Rockville,
MD) on the mesial and distal gingival papillae of implant
by a 31-gauge double-beveled MicroFine needle (Becton,
Dickinson) as these doses were established from our
previous publications [24, 28]. The injections for ani-
mals were administered three times on days 3, 6, and
9, and all the mice were euthanized by CO2 inhal-
ation on day 14. All the procedures, including tooth
extraction, implant placement, ligature placement, and
injection, were performed using an optical microscope
(S6D Stereozoom, Leica).

Tissue collection and sample preparation
The ligations were maintained for 2 weeks, and after
which the mice were euthanized by CO2 inhalation and
the maxilla were harvested. The gingival tissues of half
group of mice were isolated and collected for mRNA ex-
pression study. The skulls left were defleshed by beetles
for 1 week. Briefly, in beetle’s chamber, freshly dissected
skull was put in a paper cup with 0.5 cm diameter holes
at the bottom, so beetles can move in with relatively
controlled numbers. After that, the skulls were bleached
by H2O2 (3%) for 4 h. Bone resorption was measured by
microscope imaging analysis and μCT scan analysis. The
skulls of the other half of the group were fixed in formalin
overnight at 4 °C followed by EDTA decalcification for 3
weeks with agitation. After complete demineralization, im-
plants were removed manually by rotating counterclock-
wise. All the decalcification samples were embedded into
paraffin and cut in 5 μm sections along the mesial-distal
plane and then subjected to H&E staining and TRAP
staining.

Imaging analysis of bone resorption area
The two dimension (2D) bone resorption measurements
were assessed under a microscope (Nikon SMZ745T,

Nikon Instruments Inc.) and analyzed by software
ImageJ (NIH) on buccal and palatal surfaces for each
segment, and a standard calibrator was used for calibra-
tion at the same magnification as previously described
[36]. The bone resorption area was enclosed coronally
by the CEJ of the molars, laterally by the exposed distal
root of the first molar and the exposed mesial root of
the third molar, and apically by the alveolar crest. The
results are presented in square millimeters.

Micro-computed tomography analysis
Mice maxillae were scanned with a high-resolution scan-
ner (mCT-40, Scanco Medical). Samples were exposed
to polychromatic X-rays on a rotating stage at a steep
angle of 0.18° over 360°. Measurements were taken at an
operating voltage of 70 kVp and 114 mA current and 6
mm isotropic voxel resolution, with an exposure time of
200 ms and five frames averaged per view. Quantitative
three dimension (3D) measurements of the bone resorp-
tion were performed using Seg3D software as previously
described [5].

Real-time quantitative PCR
Palatal gingival tissues were isolated from around ligatured
implants and were homogenized in lysis buffer using a tis-
sue homogenizer. Total RNA was extracted using Pure-
Link® RNA Mini Kit (Ambion). cDNA was synthesized
using the SuperScript III Reversed Transcriptase kit (Invi-
trogen) according to the manufacturer’s protocol. The
mRNA expression of TNF-α and RANKL in gingival was
determined by real-time quantitative PCR (RT-qPCR) using
LightCycler® SYBR Green I master and LightCycler® 480
Instrument system (Roche). GAPDH gene was used as an
internal control. The sequences of primers are listed as fol-
lows: TNF-α forward 5′-CACAGAAAGCATGATCCG
CGACGT-3′; TNF-α reverse 5′-CGGCAGAGAGGAGG
TTGACTTTCT-3′; RANKL forward 5′-GGGTGTGTAC
AAGACCC-3′; RANKL reverse 5′-CATGTGCCACTGAG
AACCTTGAA-3″ GAPDH forward 5′-CCCCAGCAAG
GACACTGAGCAA-3′; GAPDH reverse 5′-GTGGGT
GCAGCGAACTTTATTGATG-3′.

Hematoxylin and eosin staining and tartrate-resistant acid
phosphatase staining
All the maxilla collected were fixed in 4% formaldehyde
overnight and then went through decalcification in 10%
EDTA for 3 weeks at 4 °C with shaking. Five-micrometer-
thick sections were produced in the mesial-distal plane for
hematoxylin and eosin (H&E) and tartrate-resistant acid
phosphatase (TRAP) staining. An acid phosphatase kit
(catalog number 387A, Sigma) was used for TRAP stain-
ing. After 30min staining and 1min counterstain with
hematoxylin, TRAP-positive cells with three or more nu-
clei were considered to be osteoclasts. A region of interest
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(ROI) was defined in peri-implantitis samples as a 1.5 × 1-
mm rectangular area aligned with the central long axis of
the implant and covered the whole length of the implant.
TRAP-positive cell numbers within the ROI were quanti-
fied manually by ImageJ. For H&E staining, images were
analyzed by ImageJ after being captured by a digital cam-
era. The numbers of inflammatory cells from the implant
supportive tissue on each slide were counted at a magnifi-
cation of × 40, and the average numbers were calculated.

Statistical analysis
Results were presented as mean ± SD. Unpaired Stu-
dent’s t test was used to analyze differences between any
two groups of data sets. Results with p < 0.05 are
considered statistically significant.

Results
Ligature-induced peri-implant inflammation and bone
loss in mice
In our ligature-induced experimental peri-implantitis
mouse model, teeth extraction, implant placement, ligation

placement, and gingival injection will be performed in a
12-week process (Fig. 1). 86.67% (52 out of 60) of im-
plants in TLR2/4 KO mice achieved osteointegration
(no mobility when touched by needles, no obvious
bleeding upon probing) after being placed for 4 weeks,
which has no significant difference with WT mice suc-
cess rate 81.67% (Table 1). The gingival tissue sur-
rounding the implant appeared healthy (pink in color,
no obvious swelling, no bleeding upon probing) 28 days
after implant placement in WT and TLR2/4 KO mice,
but gingival tissue turned red in color and displayed ap-
parent swelling 3 days after the ligature was placed.
Furthermore, the ligation group showed a significantly
higher bone resorption compared with the non-ligation
group in WT mice, for both 2D imaging analysis (p =
0.0021, Fig. 2a, b) and μCT analysis (p = 0.0012, Fig. 2d),
and in TLR2/4 KO mice for both 2D imaging analysis (p =
0.0039, Fig. 2a, c) and μCT analysis (p = 0.0023, Fig. 2e).
Taken together, these results indicate that ligature
successfully induced inflammation and bone resorption in
this mouse model of peri-implantitis.

Fig. 1 Mouse model of ligature-induced experimental peri-implantitis. (a) Tooth extraction: left maxillary first and second molars extracted at 4 weeks
old and the tooth extraction socket healed well with smooth gingiva surface after 6 weeks post-extraction. Implant placement: implant was put in
alveolar bone without flap elevation. Ligature placement: at 4 weeks post-implant, 7-0 ligatures were applied under the fixture head. Gingival injection:
injections for animals were administered three times on days 3, 6, and 9 during 14 days ligation period. Sample collection: 14 days post-ligation, the
gingival tissues and the skulls were collected. (b) Images depicting processing steps of the experimental design (scale bar, 500 μm)
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Anti-RANKL antibody and anti-RANKL+miR-146a
treatments showed different effects on peri-implantitis
bone loss in WT and TLR2/4 KO mice
Anti-RANKL antibody alone significantly reduced
bone loss compared with the ligation only group in
both WT and TLR2/4 KO mice; however, injection of
miR-146a in addition to anti-RANKL antibody signifi-
cantly enhanced the inhibition of bone loss in WT
mice but not in TLR2/4 KO mice (Fig. 2b–e). Signifi-
cantly higher number of osteoclasts were observed in
the ligation group vs. non-ligation group in WT mice
and TLR2/4 KO mice in TRAP staining (Fig. 3a–c),
which is consistent with the results of 2D and 3D
bone loss analysis (Fig. 2b–e). Moreover, the anti-
RANKL+miR-146a treatment groups showed signifi-
cantly lower number of osteoclasts compared with the
anti-RANKL treatment group in WT mice but not in
TLR2/4 KO mice (Fig. 3b, c), which is also consistent
with the results of bone loss analysis (Fig. 2b–e).
Taken together, miR-146a in addition to anti-RANKL
antibody can further reduce bone loss in WT mice
but is ineffective when TLR2 and TLR4 are deficient,
suggesting miR-146a anti-bone loss effects in peri-
implantitis are TLR2/4 dependent.

Anti-RANKL antibody and anti-RANKL+miR-146a
treatments had different effects on peri-implantitis
inflammation in WT and TLR2/4 KO mice
In both WT mice and TLR2/4 KO mice, a signifi-
cantly higher number of inflammatory cells were
found infiltrating around the peri-implant tissues in
the ligation group compared with the non-ligation
group (Fig. 4a–c). However, the number of inflamma-
tory cells in tissues of the ligation group was not sig-
nificantly changed when treated with anti-RANKL
antibody alone in both WT and TLR2/4 KO mice
compared with the ligation group (Fig. 4b, c). MiR-
146a treatment additional to anti-RANKL antibody
significantly decreased the number of inflammatory
cells in WT mice but not in TLR2/4 KO mice when
compared with the anti-RANKL antibody alone group.
Taken together, anti-RANKL antibody alone did not
affect inflammatory cell infiltration in peri-implantitis,
and miR-146a showed anti-inflammatory effects only
on WT mice but not on TLR2/4-deficient mice.

Pro-inflammatory and bone metabolism factors showed
different pattern of change when treated with anti-RANKL
antibody and anti-RANKL+miR-146a in WT and TLR2/4 KO
mice
Gingival TNF-α mRNA showed a significant upregulation
in the ligation group compared with the non-ligation
group in both WT and TLR2/4 KO mice (Fig. 5a, b).
Moreover, TNF-α showed no significant decrease when
treated with anti-RANKL antibody alone in both WT and
TLR2/4 KO mice compared with the ligation group. How-
ever, additional miR-146a treatment significantly de-
creased TNF-α expression in WT mice but not in TLR2/4
KO mice (Fig. 5a, b), suggesting the consistent results of
anti-inflammation effects characterized by quantification
of infiltrating inflammation cells (Fig. 4a–c). Meanwhile,
gingival RANKL mRNA expression was significantly de-
creased with anti-RANKL antibody alone in both WT and
TLR2/4 KO mice, and additional miR-146a treatment did
not show significant difference compared with the anti-
RANKL antibody treatment group (Fig. 5c, d). Taken
together, anti-RANKL antibody showed the inhibition ef-
fects on RANKL expression in both WT and TLR2/4
KOTLR2/4 KO mice, and miR-146a showed anti-
inflammation effect through downregulation of TNF-α
mRNA only in WT mice.

Discussion
Our present study showed that anti-RANKL antibody can
significantly inhibit the bone loss in peri-implantitis and
additional miR-146a treatment will enhance this inhibition
through its anti-inflammation effects via TLR2/4 signaling.
This is the first report in a murine model of peri-
implantitis to demonstrate that anti-RANKL antibody and
miR-146a together can significantly reduce bone resorp-
tion and inflammation in peri-implantitis, suggesting a po-
tential therapeutic strategy for peri-implantitis patients.
Moreover, the data showed that anti-bone loss effects of
anti-RANKL antibody are independent of TLR2 and
TLR4 and anti-RANKL antibody alone did not affect peri-
implant inflammatory infiltration, suggesting that RANKL
modulation of bone loss is downstream of peri-implant in-
flammation and more directly towards bone resorption.
However, anti-RANKL antibody + miR-146a treatment
showed significantly stronger inhibition of bone loss than
anti-RANKL antibody alone treatment, indicating that the
suppression of inflammation can be used to reduce peri-

Table 1 Success rate (SR) of osseointegrated implants 4 weeks after implant placement

Total implants Lost Loose Osseointegrated Success rate (%) SR P value

Wild type group 60 6 5 49 81.67 0.595

TLR2/4 KO group 60 4 4 52 86.67
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Fig. 2 Anti-RANKL and anti-RANKL+miR-146a treatments decreased ligature-induced bone resorption with different patterns in experimental peri-
implantitis of WT and TLR2/4 KO mice. Buccal side images of the defleshed skulls were taken of the control (non-ligation) group, ligation (non-
treatment) group, ligation with anti-RANKL antibody (ligation+AR) treatment group, and ligation with anti-RANKL antibody + miR-146a
(ligation+A+MiR) treatment group in WT mice and TLR2/4 KO mice (a) (scale bar, 500 μm). The bone resorption area based on these images was
measured and analyzed for WT mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, *p < 0.05, **p < 0.01, SEM, standard error of difference
between two means). Three dimension (3D) images from μCT were collected and analyzed for WT mice (d) and TLR4 KO mice (e) (mean ± SD,
n = 6, *p < 0.05, **p < 0.01)
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implantitis bone loss by removing additional RANKL-
independent etiology and pathogenesis of bone loss. These
data (Fig. 1–5, Supplemental Table S1) showed that anti-
inflammatory miR-146a enhance anti-RANKL-induced
inhibition of peri-implant bone resorption through the
regulation of TLR2/4 signaling and inhibition of TNF-α

expression. Thus, the ideal osteoimmunological treatment
for peri-implantitis should include both direct anti-
osteoclastogenesis and anti-inflammation components.
As innate immune recognition receptors, TLR family

plays a central role in innate immunity, inflammation, cell
survival, and proliferation [5, 26, 37, 38]. TLR2 and TLR4

Fig. 3 Anti-RANKL and anti-RANKL+miR-146a treatments decreased TRAP-positive cell quantities with different patterns in experimental peri-
implantitis of WT and TLR2/4 KO mice. TRAP-positive cells (red color) with 3 or more nuclei were considered osteoclasts and were shown in the
control group, ligation group, ligation with anti-RANKL antibody treatment group, and ligation with anti-RANKL antibody + miR-146a treatment
group in WT mice and TLR2/4 KO mice (a) (Im, implant; Av, alveolar bone; scale bar, 100 μm). The quantities of TRAP-positive cells were analyzed
in each group of WT mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, **p < 0.01)
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are essential signaling proteins in progression of inflam-
mation and related bone metabolism in periodontitis
[28, 29, 39, 40]. However, little is known about the
functions of TLR2 and TLR4 signaling in peri-implan-
titis. In the present study, we investigated the changes in
bone resorption, gingival TNF-α (pro-inflammatory
marker) mRNA levels, and gingival soluble RANKL
protein levels in ligation-induced experimental peri-
implantitis in WT and TLR2/4 KO mice with or without
anti-RANKL antibody alone treatment and anti-RANKL

antibody + miR-146a treatment. The results showed that
anti-bone loss effects of anti-RANKL antibody are TLR2/4
independent but anti-inflammation and related anti-bone
loss effects of miR-146a are TLR2/4 dependent, suggesting
that TLR2/4 signaling is crucial for RANKL-independent,
inflammation-induced bone loss in peri-implantitis.
According to the previous studies, miR-146a was regu-

lated by NF-κB and blockade of miR-146a could decrease
TLR4 and NF-κB in human cells [41, 42], suggesting that
miR-146a is involved in TLR/NF-κB signaling pathway.

Fig. 4 Anti-RANKL and anti-RANKL+miR-146a treatments decreased the inflammatory cell infiltration of the implant gingival tissues with different
patterns in experimental peri-implantitis of WT and TLR2/4 KO mice. HE staining of the gingival tissue around implants were performed in the
control group, ligation group, ligation with anti-RANKL antibody treatment group, and ligation with anti-RANKL antibody + miR-146a treatment
group in WT mice and TLR2/4 KO mice (a) (scale bar, 100 μm). Inflammatory cell numbers were measured and analyzed in each group of WT
mice (b) and TLR2/4 KO mice (c) (mean ± SD, n = 6, **p < 0.01)

Pan et al. International Journal of Implant Dentistry            (2020) 6:15 Page 8 of 11



Our recent study showed that miR-146a inhibited inflam-
matory cytokine secretion in B cells after challenged with P.
gingivalis LPS and decreased bone resorption in experimen-
tal periodontits animal models [24]. Moreover, it was found
that miR-146a negatively regulated TLR2-induced inflam-
matory response in keratinocytes [43] and expression of
TLR2 was repressed by miR-146a in HEK293T cells [44].
Thus, the cross talk between miR-146a and TLR2/4 may be
essential for anti-inflammation effects of miR-146a by inhi-
biting NF-κB signaling. In the present study, the data
showed that miR-146a have no effects on inflammatory cell
infiltration or TNF-α expression in the absence of TLR2
and TLR4 in experimental peri-implantitis, suggesting that
miR-146a anti-inflammation effects are TLR2/4 dependent

in peri-implantitis. However, on the other hand, how induc-
tion of TLR2/4 in oral disease affects the expression and
function of miR-146a may need further investigation.

Conclusions
In summary, the present study suggests that anti-
inflammatory miR-146a enhance anti-RANKL-induced
inhibition of peri-implant bone resorption through the
regulation of TLR2/4 signaling and inhibition of TNF-α
expression. Combination of regimens antagonizing both
osteoclastogenesis and inflammation may become a
more effective strategy to ameliorate peri-implantitis
bone loss.

Fig. 5 Anti-RANKL and anti-RANKL+miR-146a treatments decreased gingival mRNA expression of TNF-α and RANKL with different patterns in
experimental peri-implantitis of WT and TLR2/4 KO mice. Gingival tissues around ligatured implants and non-ligation implants were excised and
processed for RT-qPCR analysis to determine mRNA level of TNF-α of WT mice (a) and TLR2/4 KO mice (b) (mean ± SD, n = 6, *p < 0.05, **p <
0.01) and mRNA level of RANKL of WT mice (c) and TLR2/4 KO mice (d) (mean ± SD, n = 6, *p < 0.05, **p < 0.01).
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