Skip to main content
. 2020 Apr 8;11:244. doi: 10.3389/fneur.2020.00244

Table 2.

Architecture of the CNN for brain morphometry.

Layer Kernel Stride Filters Output size Activation function
Input 256 × 256 × 256
Conv3D 11 × 11 × 11 3 144 86 × 86 × 86 × 144 ReLU
MaxPool 3 × 3 × 3 2 42 × 42 × 42 × 144
Conv3D 5 × 5 × 5 2 192 21 × 21 × 21 × 192 ReLU
MaxPool 3 × 3 × 3 2 10 × 10 × 10 × 192
Conv3D 5 × 5 × 5 1 192 10 × 10 × 10 × 192 ReLU
MaxPool 3 × 3 × 3 2 4 × 4 × 4 × 192
FC 374 ReLU
FC 192
FC 165

Dropout (0.4) is applied after the last MaxPool layer and after first FC layer.

A bias is added to the first convolutional and all fully connected layers. Conv3D, 3D convolution; FC, fully connected layer; ReLU, rectified linear unit.