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Computational analysis of pathological images
enables a better diagnosis of TFE3 Xp11.2
translocation renal cell carcinoma
Jun Cheng 1, Zhi Han 2,3, Rohit Mehra 4, Wei Shao 2, Michael Cheng2, Qianjin Feng 5, Dong Ni 1✉,

Kun Huang 2,3✉, Liang Cheng6✉ & Jie Zhang 7✉

TFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more

aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC

by traditional visual inspection of pathological images. In this study, we collect hematoxylin

and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest

cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with

matched gender and tumor grade. An automatic computational pipeline is implemented to

extract image features. Comparative study identifies 52 image features with significant dif-

ferences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish

TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal

high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest

that automatically derived image features can capture subtle morphological differences

between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC

diagnosis.
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Renal cell carcinoma (RCC) consists of multiple hetero-
geneous subtypes1,2 and is canonically classified into three
major histologic subtypes: clear cell RCC (ccRCC) (~75%),

papillary RCC (15–20%), and chromophobe RCC (~5%)3,4. In
addition to the histopathologically defined subtypes of RCC, the
Xp11.2 translocation RCC, a rare subtype associated with TFE3
gene fusion, was first officially recognized in the 2004 WHO renal
tumor classification. The TFE3 gene, which is located on chro-
mosome Xp11.2, has various fusion partners5–7. Renal cell car-
cinomas with t(6;11) translocation, harboring a MALAT1-TFEB
gene fusion, are far less common.

TFE3 Xp11.2 translocation RCC (TFE3-RCC) is often diag-
nosed at advanced stage and demonstrates a more invasive
clinical course and poorer prognosis than non-Xp11.2 translo-
cation RCC. Significant progress has been achieved by targeted
therapies for kidney cancer treatment in recent years8, in parti-
cular VEGF-targeted (sunitinib, sorafenib, etc.) and mTOR-
targeted (temsirolimus, everolimus, etc.) therapies that block
angiogenic activity9–11. During the past few years, there have
been many studies investigating the efficacy of targeted therapies
for patients with TFE3-RCC7,12–16. For instance, Choueiri et al.14

showed that VEGF-targeted agents demonstrated some efficacy
in patients with metastatic TFE3-RCC in a small retrospective
review. Improving underdiagnosis of this rare subtype of RCC
will facilitate sample curation, improve clinical trial access, and
more importantly, contribute to the development of effective
therapies for this group of patients.

However, it is quite challenging to distinguish TFE3-RCC from
other subtypes based on visual inspections of hematoxylin and
eosin (H&E)-stained pathological images. The gross morphology
of TFE3-RCC is similar to that of ccRCC5–7,17. Microscopically,
TFE3-RCC cases often feature epithelioid clear cells arranged in
branching, papillary structures with fibrovascular cores and/or a
nested architecture. Although these features are suggestive of
TFE3-RCC, the spectrum of morphology is quite variable and can
overlap with other RCC subtypes such as ccRCC or papillary
RCC1,2. For instance, some cases in the ccRCC and papillary RCC
datasets of The Cancer Genome Atlas (TCGA) project are related
to TFE3 or TFEB translocation18,19.

Due to the difficulty of identifying discernable and robust
morphological features in TFE3-RCC, the diagnosis of translo-
cation can be confirmed by dual-color, break-apart fluorescence
in situ hybridization. However, it requires additional time to test
for this diagnosis, and it is not routinely performed for the RCC
patients who are not suspected of TFE3-RCC in the first place.
Therefore, there is a high risk that TFE3-RCC is misdiagnosed
with other RCC subtypes, which delays appropriate treatments.
We want to apply machine learning to digitized H&E-stained
pathological images and study whether it can help identify TFE3-
RCC unique image features and distinguish TFE3-RCC from the
most common RCC subtype, ccRCC.

As digital slide scanners have become more reliable and pop-
ular, glass slides have been increasingly digitized into whole-slide
images. Recent years have witnessed a growing interest in
applying machine learning to H&E-stained pathological images
for various tasks including prognosis prediction20–22, cancer
classification23–26, and genetic status prediction, such as micro-
satellite instability27 and gene mutation28. Notably, Campanella
et al.23 reported a clinical-grade computational pathology fra-
mework that was evaluated on a dataset of 44,732 whole-slide
images. Combining image processing techniques and machine-
learning models, Yu et al.26 achieved an area under the curve
(AUC) of 0.85 in distinguishing normal from tumor slides and
0.75 in differentiating between lung adenocarcinoma and squa-
mous cell carcinoma slides. These studies demonstrated the effi-
cacy of computational pathology in clinical decision support.

In this study, we collect H&E-stained whole-slide images for 74
TFE3-RCC patients from multiple sources (the largest reported
study on TFE3-RCC based on our knowledge) and 74 gender and
tumor grade matched ccRCC patients. The aims of the study are (i)
to identify distinct, quantitative image features showing significant
differences between TFE3-RCC and ccRCC; and (ii) to build and
evaluate objective and fully automated classification models based
on these features to distinguish TFE3-RCC from ccRCC.

Results
Patient characteristics and pathological image analysis work-
flow. We collected two whole-slide image datasets: dataset 1 and
dataset 2. Dataset 1 was obtained from Indiana University, con-
sisting of 50 TFE3-RCC patients and 50 ccRCC patients with
matched gender and tumor grade. Dataset 1 was randomly split
into training (80%) and internal validation (20%) sets for five
times using five-fold cross-validation. Dataset 2 was obtained
from University of Michigan and TCGA. It was used as an
external validation set. It contains 24 TFE3-RCC patients and 24
ccRCC patients, also with matched gender and tumor grade.
Patient demographical and clinical characteristics of the two
datasets are summarized in Table 1.

The analysis workflow is shown in Fig. 1. The H&E-stained
slides of the 148 excisional biopsy cases were digitized by a Leica
Aperio scanner at ×40 magnification (Fig. 1a). A pathological
image analysis pipeline extracted quantitative image features from
whole-slide images21, characterizing the size, staining, shape, and
density of cell nuclei (Fig. 1b). To study the associations of the
image features with disease subtype (i.e., TFE3-RCC vs ccRCC;
Fig. 1c), first the distribution of each image feature was compared
between the two subtypes using the Mann–Whitney U test. Then,
the image features were combined and four machine-learning
models (logistic regression, SVM with linear kernel, SVM with
Gaussian kernel, and random forest) were built to classify patients
into TFE3-RCC or ccRCC group.

The feature extraction pipeline consisted of three steps: nucleus
segmentation, nucleus-level feature extraction, and image-level
feature extraction (Fig. 2). First, cell nuclei in whole-slide images
were segmented by a hierarchical multilevel thresholding
approach29 (Fig. 2a). Next, for each segmented nucleus, 10
nucleus-level features were calculated (Fig. 2b). Representative
image patches of the 10 nucleus-level features are shown in
Table 2. Lastly, since each whole-slide image contains millions of
cell nuclei, each type of nucleus-level features was dissected into
15 image-level features by combining a 10-bin histogram and 5
distribution statistics (mean, std, skewness, kurtosis, and entropy)
(Fig. 2c). The bin centers of the histogram were cluster centroids
determined by clustering each type of nucleus-level features
sampled from the training set; hence, the histogram features are
comparable across patients. The naming rule of the 15 image-
level features is shown in Fig. 2c, using the nucleus-level feature
(e.g., ratio). In total, we calculated 150 image-level features for

Table 1 Demographic and tumor characteristics of two
whole-slide image datasets.

Characteristics Dataset 1:
TFE3-RCC/ccRCC

Dataset 2:
TFE3-RCC/ccRCC

No. of patients 50/50 24/24
Gender: Male 22/22 9/9
Gender: Female 28/28 15/15
Fuhrman grade: 2 10/10 6/6
Fuhrman grade: 3 29/29 15/15
Fuhrman grade: 4 11/11 3/3

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15671-5

2 NATURE COMMUNICATIONS |         (2020) 11:1778 | https://doi.org/10.1038/s41467-020-15671-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


each whole-slide image. More details can be found in the
“Methods” section.

Quantitative image features show significant differences
between TFE3-RCC and ccRCC. We applied Mann–Whitney U
test to each feature and identified 52 features significantly dif-
ferent between TFE3-RCC and ccRCC after multiple testing
correction (5% false discovery rate; Fig. 3). Significant features
were reported as overrepresented or underrepresented with
respect to the TFE3-RCC subtype; i.e., a feature is defined as
overrepresented if the median of this feature in TFE3-RCC group
is higher than that in ccRCC group.

For the features related to nucleus size in Fig. 3, we found that
area_bin1, area_bin9, and area_bin10 were overrepresented in
TFE3-RCC whereas area_bin4, area_bin5, and area_bin6 were
underrepresented. Image features from area_bin1 to area_bin10
represent the proportions of the nuclei with size varying from
small to large. Therefore, these significant features indicate that
the size of nucleus in TFE3-RCC is more heterogeneous and more
towards the two extremes than that in ccRCC, which is also
supported by the overrepresented feature, area_std (the standard
deviation of nuclear size).

The features with names beginning with major, minor, and
ratio in Fig. 3 are derived from the ellipses fitted to the segmented
nuclei. These features are associated with nucleus shape. In
particular, the features from ratio_bin1 to ratio_bin10 directly
describe the percentages of the nuclei whose shape changes from

round to elongated. As we can see in Fig. 3, ratio_bin1 was
underrepresented. In contrast, ratio_bin3, ratio_bin4, ratio_bin5,
and ratio_std were overrepresented. Together, these observations
suggest that ccRCC tends to have more nuclei that are very round.

Eleven nucleus staining-related features that were calculated in
red and green channels showed significant difference between
TFE3-RCC and ccRCC. Of those features, rMean_bin8, rMean_-
bin9, rMean_mean, rMean_skewness, and gMean_mean were
overrepresented for TFE3-RCC cases. rMean_bin8 and rMean_-
bin9 represent the proportions of the nuclei that had very large
mean pixel value in the red channel. rMean_mean and
gMean_mean denote the average of mean pixel values of all
nuclei in the red and green channels, respectively. rMean_skew-
ness is overrepresented, implying that the data distribution of
mean pixel values of nuclei in the red channel in TFE3-RCC was
more asymmetric than that in ccRCC.

Of the 15 significant nucleus density-related features, we found
five features overrepresented: distMin_bin1, distMin_bin2, dis-
tMean_bin1, distMean_bin2, and distMax_bin1. The overrepre-
sentation of the five features suggests that compared with ccRCC,
TFE3-RCC tends to present more nuclei that are very close to
each other. In other words, the cells in TFE3-RCC are more
clumped together.

Classification models based on image features effectively dis-
tinguish TFE3-RCC from ccRCC. We first trained and evaluated
our classifiers with five-fold cross-validation on dataset 1
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obtained from Indiana University (see Table 1 for details). In each
of the five rounds, dataset 1 was randomly partitioned into two
sets: 80% training and 20% internal validation. Our results
showed that using the 30 features selected by the minimum
redundancy maximum relevance (mRMR) algorithm, our best
classifier, SVM with Gaussian kernel, attained an average AUC of
0.886. The performance of the four classifiers (logistic regression,
SVM with linear kernel, SVM with Gaussian kernel, and random
forest) did not differ significantly (ANOVA test P-value= 0.77).
Bar graph of the results of five-fold cross-validation for four
classifiers are shown in Fig. 4a.

The utility of our quantitative image features for diagnostic
classification was further validated using an external dataset
(dataset 2; Table 1). Specifically, we trained the same four
classifiers using dataset 1 and then validated the performance
using dataset 2. All classifiers achieved AUC that were similar to
that obtained on the aforementioned internal cross-validation set
(Fig. 4b). We also observed that, except for the random forest
classifier, the other three classifiers achieved slightly higher AUC

on the external validation set than the average AUC of five-fold
cross-validation using dataset 1. This may be because all
patients in dataset 1 were used to train the classification models
tested on dataset 2. In contrast, in five-fold cross-validation on
dataset 1, only 80% of the patients in dataset 1 were used as the
training set. The top quantitative features selected by mRMR
(measured by feature importance score) included ratio_bin3,
rMean_mean, minor_std, area_bin5, rMean_skewness, distMin_-
bin5, rMean_std, and ratio_std.

Discussion
To the best of our knowledge, this is the first study to provide a
computational model to distinguish TFE3-RCC from ccRCC
using quantitative histopathological features extracted from
H&E-stained whole-slide images. In this study, we implemented
an automated workflow that calculated 150 objective features
from the images. The image features were extracted from the
whole slides, which not only covered a large tumor area, but also
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covered a wide spectrum of cell nuclei morphology, including
nucleus size, staining, shape, and density from the heterogeneous
cancer tissue. We built and evaluated machine-learning models to
classify patients into TFE3-RCC or ccRCC. The validity of this
workflow is confirmed by an independent dataset collected from
different sources.

Most cancers are heterogeneous and contain several
subtypes1,2. Those subtypes are usually characterized by distinct
molecular profiles that drive tumors to develop and progress
differently9–11. Histopathology slides are routinely collected at the
diagnosis of cancers. Our hypothesis is that tumor morphological

phenotype can be detected quantitatively through artificial intel-
ligence algorithms, which reflects underlying genetic aberrations
including translocations. The TFE3-RCC is defined by the specific
translocation on the cytoband Xp11.2. We reported, to the best of
our knowledge, the largest TFE3-RCC cohort of 74 cases with an
extensive analysis of the microscopic appearance of TFE3-RCC
and ccRCC using computational pathological image analysis. Our
results demonstrated the promising power of applying machine-
learning models based on quantitative histopathological features
to differentiate between TFE3-RCC and ccRCC, with impressive
accuracy (AUC between 0.842 and 0.894) on the external

Table 2 Illustrations of the 10 nucleus-level features.

Feature name Interpretation Patch with small value Patch with large value

Area Size of nucleus (unit: pixel)

322 545

Major Major axis length (unit: pixel)

26 30

Minor Minor axis length (unit: pixel)

14 20

Ratio Major to minor ratio

1.4 1.7

rMean Mean pixel value in R channel

99 169

gMean Mean pixel value in G channel

55 108

bMean Mean pixel value in B channel

102 153

distMean Mean distance to neighbors (unit: pixel)

60 95

distMax Maximal distance to neighbors (unit: pixel)

86 123

distMin Minimal distance to neighbors (unit: pixel)

31 41

The number beside each image patch is the mean feature value for all nuclei in the patch. For example, the number 322 means the mean area of the nuclei in the patch is 322 pixels. Scale bar: 50 µm for
all patches.
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validation set. The strength of this tool will alleviate the under-
diagnosis of TFE3-RCC and facilitate sample curation or clinical
trial access directed at this group of patients.

We identified 52 image features significantly differing between
the two subtypes. For example, in comparison with ccRCC,
TFE3-RCC had higher proportions of very small and very large
nuclei (see area_bin1, area_bin9, and area_bin10 in Fig. 3), which
is in line with the fact that TFE3-RCC is more aggressive and
associated with higher tumor grade30 because high-grade tumors
have faster cell proliferation rate. A senior pathologist (LC) was
consulted on the significantly differing features. Although for
some features it is difficult to tell their differences by human eyes,
others can be visually perceived. For instance, we found that
ccRCC had a higher proportion of very round nuclei (see
ratio_bin1 in Fig. 3) than TFE3-RCC. The pathologist confirmed
that ccRCC indeed tends to have rounder cell nuclei than TFE3-
RCC. Another example was that the overrepresentation of our
features (i.e., distMean_bin1 and distMean_bin2; Fig. 3) indicated
more cell clumps in TFE3-RCC than ccRCC, which was also
observed (Supplementary Fig. 1).

Since the TFE3 translocation causes overexpression of the
TFE3 protein, immunohistochemistry (IHC) for TFE3 protein
has been considered a surrogate for this genetic event. We
compared the performance of our method with that from other
reported studies using IHC. Sharain et al.31 found in a two-

laboratory study that the overall sensitivity and specificity of
TFE3 IHC for TFE3-rearranged neoplasms was 85% and 57% at
Laboratory A, and 70% and 95% at Laboratory B, leading to
Youden indices of 0.42 and 0.65, respectively (Youden index=
sensitivity+ specificity−1). Their dataset contained 27 TFE3-
rearranged neoplasms and 98 controls. Our SVM classifier with
Gaussian kernel can achieve sensitivity of 91.7%, specificity of
79.2%, and Youden index of 0.708 (Fig. 4b). It is noteworthy that
our pathological image-based classifier only relied on routine
H&E staining instead of the staining of a specific molecule.

Previous studies investigating the clinicopathologic char-
acteristics of TFE3-RCC often suffered from small sample
size32. Our pathological image-based classifier can assist
pathologists in diagnosing new TFE3-RCC cases and can also
help in large-scale retrospective studies to retrieve old TFE3-
RCC cases that were misdiagnosed. When used with an
appropriate threshold, the classifier can automatically spot
TFE3-RCC cases from the histopathology slide archive with
very high sensitivity and relatively low false-positive rate
(Fig. 4b). For instance, our SVM classifier with Gaussian kernel
can achieve 91.7% sensitivity while retaining 20.8% false-
positive rate. Given that the majority of RCC are ccRCC, its
clinical application would allow pathologists to exclude many
true negatives (ccRCC) for further evaluation or would nomi-
nate suspicious cases for further evaluation.

We also tested whether the differences in staining of H&E
slides between institutions (thus different scanning instruments
or slide preparation) would affect the generalization performance
of our method. The slides in our external validation set (dataset 2)
were from several institutions (University of Michigan and
TCGA; TCGA cases themselves were also gathered from different
institutions), and they had varied and different color appearances
than the slides in dataset 1. We applied the same analysis
workflow without the color normalization step and observed a
large drop in generalization performance on the external valida-
tion set (Supplementary Fig. 2). This indicates that color nor-
malization is a crucial step when dealing with whole-slide images
from different sources.

In addition, we tested a convolutional neural network, ResNet-
18, on dataset 1. The whole-slide images were resized to 224-by-
224 pixels in order to feed into ResNet-18. The ResNet-18 was
trained on 80% of all cases and validated on the remaining cases
with five-fold cross-validation. Two training strategies were
implemented, i.e., training the network from scratch and transfer
learning. For transfer learning based on a pretrained ResNet-18
network, only the weights of the last two layers (the fully con-
nected layer and softmax layer) were updated and the weights of
earlier layers were kept frozen. The mean AUC generated from
five-fold cross-validation is 0.518 for training from scratch and
0.696 for transfer learning. The performance of transfer learning
is better, which may be due to far less parameters that need to be
learned when using transfer learning. Compared with our clas-
sification models with AUCs between 0.8 and 0.9, ResNet-18’s
performance is inferior. It is well-known that the features learned
by deep neural network are difficult to interpret. However, our
classification pipeline is based on cellular image features, which
are well-defined with clear meanings in cellular and tissue mor-
phology and thus more interpretable and preferable in clinical
diagnosis.

This study has several limitations. Intratumoral heterogeneity
is a well-documented phenomenon in RCC9–11. Since we are
unable to collect multiple formalin-fixed, paraffin-embedded tis-
sue blocks from the same case, we cannot accurately evaluate
intratumoral heterogeneity (ITH). Nonetheless, the whole-slide
images were obtained from surgical resection specimens in our
study. Surgical resection specimens cover a much larger area of a
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Fig. 3 Comparison of image features between TFE3-RCC and ccRCC. For
each feature, the fold change is defined as the ratio of the median feature
values between ccRCC and TFE3-RCC. 52 image features that show
significant differences between TFE3-RCC and ccRCC are identified using
the two-sided Mann–Whitney U test. Multiple comparison correction is
performed using false discovery rate procedure at 5% level.
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tumor compared with needle biopsy. In addition, our algorithms
take the ITH into consideration by using the distribution of the
morphological characteristic values (histograms over ten bins) as
imaging features. Although the consistently similar performance
of the internal and external validation sets proves the stability and
reproducibility of our imaging features and classification models,
it would be more rigorous to demonstrate that these features are
stable if evaluated from multiple sites of the same tumor. Another
important limitation is that our study used matched ccRCC for
comparison with TFE3-RCC. There are diverse morphologic
manifestations of TFE3-RCC1,2,5. They also mimic papillary RCC,
clear cell papillary RCC, unclassified RCC, chromophobe RCC,
oncocytoma, and other rare renal tumors. Future studies should
include other renal tumor types and histologic variants in mat-
ched cases for comparison.

In summary, we demonstrated that histopathology image
classifiers based on quantitative features can successfully distin-
guish TFE3-RCC from ccRCC with a high accuracy (AUC of
0.894) on the external validation set, which corroborates our
hypothesis that tumor histological phenotype can reflect under-
lying gene translocations. Our methods can facilitate TFE3-RCC
diagnosis based on routinely collected H&E-stained histopathol-
ogy slides, thereby contributing to accurate sample curation and
treatment development of this rare and aggressive cancer subtype.

Methods
Sample collection. Two datasets of H&E-stained whole-slide images (148 images
in total) were collected. The ratio of TFE3-RCC patients to ccRCC patients was 1:1,
and the gender and tumor grade information between the two subtypes were
matched. Dataset 1 consisted of 50 TFE3-RCC patients and 50 ccRCC patients all
from Indiana University. Dataset 2 was collected as an external validation set,
containing 14 TFE3-RCC patients from the University of Michigan, 10 TFE3-RCC
patients from TCGA33, and 24 ccRCC patients from TCGA. All tumor samples
were gathered by surgical excision. Tissue slides were scanned at ×40 magnifica-
tion. No TFEB rearranged translocation RCC was included in the analysis. We did
not attempt to subclassify TFE3-RCCs based on the rearrangement of TFE3 with
different partner genes. Personal health information was de-identified in our
datasets and hence this was an institutional review board approval–exempt study.

Fluorescence in situ hybridization. Interphase fluorescence in situ hybridization
assay was performed on all tumors and described as follows34–36. The diagnosis of
all TFE3-RCC cases were confirmed by FISH analysis. Specifically, tissue sections
4-μm thick were prepared from buffered formalin-fixed, paraffin-embedded tissue
blocks containing tumor. The slides were deparaffinized with two washes with
xylene (15 min each), and subsequently washed twice with absolute ethanol (10
min each), and then air dried in the hood. The slides were then treated with 10 mm
citric acid (pH 6.0) (Zymed, San Francisco, CA, USA) at 95 °C for 10 min, rinsed in

distilled water for 3 min, and then washed with 2× SSC for 5 min. Digestion of the
tissue was performed by applying 0.4 ml of pepsin (5 mg per ml in 0.01 N HCl and
0.9% NaCl) (Sigma, St Louis, MO, USA) at 37 °C for 40 min. The slides were rinsed
with distilled water for 3 min, washed with 2× SSC for 5 min, and air dried. The
split-apart probe set for TFE3 used BAC clones RP11-528A24 (116 kbp, located
centromeric to TFE3, labeled with 5-fluorescein dUTP) and RP11-416B14 (182
kbp, located telomeric to TFE3, labeled with 5-ROX dUTP) (Empire Genomics,
Buffalo, NY, USA). BAC clones for TFE3 were diluted with DenHyb2 at a ratio of
1:25. Diluted probe (5 μl) was applied to each slide in reduced light conditions. The
slides were then covered with a 22 × 22-mm coverslip and sealed with rubber
cement. Denaturation was achieved by incubating the slides at 83 °C for 12 min in a
humidified box and hybridization at 37 °C overnight. The coverslips were removed,
and the slides were washed twice with 0.1× SSC per 1.5 M urea at 45 °C (20 min
each), and then washed with 2× SSC for 20 min and with 2× SSC per 0.1% NP-40
for 10 min at 45 °C. The slides were further washed with room temperature 2× SSC
for 5 min. The slides were air dried and counterstained with 10 μl of 4′,6-diami-
dino-2-phenylindole (Insitus), coverslipped, and sealed with nail polish.

The slides were examined with a Zeiss Axioplan 2 microscope (Zeiss, Göttingen,
Germany). The images were acquired with a CMOS camera, and analyzed with
metasystem software (MetaSystem, Belmont, MA, USA). Five sequential focus
stacks with 0.4-mm intervals were acquired and then integrated into a single image
to reduce thickness-related artifacts. For each case, a minimum of 100 tumor cell
nuclei were examined with fluorescence microscopy at ×1000 magnification. Only
non-overlapping tumor nuclei were evaluated. The TFE3 fusion resulted in a split-
signal pattern. Signals were considered split when the green and red signals were
separated by two or more signal diameters. On this basis and based on other
commercially available break-apart FISH assays and TFE3 break-apart FISH assays,
a positive result was reported when ≥10% of the tumor nuclei showed the split-
signal pattern (Supplementary Fig. 3).

Extraction of quantitative features from whole-slide images. Each dimension
of the whole-slide images ranged from about 40,000 to 130,000 pixels. The images
were subdivided into tiles with the size of 2000 × 2000 to facilitate processing.
Considering the color variations between institutions, before feature extraction we
transformed the color appearance of the images in dataset 2 into that in dataset 1
using a structure-preserving color normalization algorithm37. To aggregate the
nucleus-level features extracted from a patient into patient-level features, histo-
grams and distribution statistics were employed. For constructing histogram fea-
tures, a bag-of-visual-words model was utilized38–40. The bag-of-words model is a
feature representation method originally used in natural language processing and
information retrieval. In this model, a text is represented as a word-frequency
histogram (i.e., each bin of the histogram represents the frequency of some word
occurring in the text). This method has been widely adopted by computer vision in
which image features are considered words. In this study, for each type of nucleus-
level feature we create a histogram of the nucleus-level features. In this histogram,
the words (i.e., midpoints of bins) are cluster centroids obtained by clustering
nucleus-level features from the training set.

Specifically, for each type of nucleus-level feature, a large set of nucleus-level
features were collected across patients from the training set and fed into K-means
algorithm to learn 10 representative words (i.e., clustering centroids). The number
of clusters is chosen using a cross-validation approach (Supplementary Fig. 4).
After that, nucleus-level features extracted from a whole-slide image were assigned
to their nearest bins using Euclidean distance, which resulted in a histogram of
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word counts for each patient and for each type of nucleus-level features. The
obtained histograms were L1-normalized to eliminate the impact of whole-slide
images having different numbers of nuclei. As for distribution statistics, five
parameters were calculated for each type of cell-level features; i.e., mean, standard
deviation, skewness, kurtosis, and entropy. The entropy was computed based on
the normalized histograms.

Comparison of image feature distributions between TFE3-RCC and ccRCC.
To identify what specific image features showed distinct morphological differences
between TFE3-RCC and ccRCC, we compared the distributions of each image
feature between the two subtypes using a two-sided Mann–Whitney U test. To
correct for multiple comparisons, we adjusted P values by the false discovery
rate procedure according to Benjamini & Hochberg adjustment41. An adjusted
P value < 0.05 was considered statistically significant.

Machine-learning methods to classify TFE3-RCC and ccRCC. Due to the high
dimensionality of the image features and relatively small sample size, overfitting of
the data is likely; therefore, before building classification models, we performed
feature selection to avoid the overfitting problem. Feature dimensionality was
reduced by the mRMR algorithm42 using R package mRMRe. mRMR has been
shown to be a robust feature selection algorithm in various tasks43–45. The mRMR
algorithm was applied to all image features with regard to the class label of sample
(i.e., TFE3-RCC or ccRCC) to select an informative and non-redundant set of
features.

Logistic regression, SVM with linear or Gaussian kernels, and random forest
were used to conduct supervised machine learning. R version 3.5 was used to train
and test classification models, with glmnet package for logistic regression,
randomForest package for random forest, and e1071 package for SVM. In dataset
1, five-fold cross-validation was used. To further validate our method using an
external validation set, classification models were trained using dataset 1 and
evaluated using dataset 2. AUC and confidence intervals were computed with the R
package pROC.

Data availability
The quantitative image features extracted from H&E stained whole-slide images are
available from GitHub at (https://github.com/chengjun583/tRCC-ccRCC-classification).
The remaining data is available in the Article, Supplementary Information files or
available from the authors upon reasonable request.

Code availability
The source code of this work can be downloaded from GitHub at (https://github.com/
chengjun583/tRCC-ccRCC-classification).
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