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SciBet as a portable and fast single cell type
identifier
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Fast, robust and technology-independent computational methods are needed for supervised

cell type annotation of single-cell RNA sequencing data. We present SciBet, a supervised cell

type identifier that accurately predicts cell identity for newly sequenced cells with order-of-

magnitude speed advantage. We enable web client deployment of SciBet for rapid local

computation without uploading local data to the server. Facing the exponential growth in the

size of single cell RNA datasets, this user-friendly and cross-platform tool can be widely

useful for single cell type identification.
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The past decade has witnessed an exponential increase in the
size of the dataset of single-cell RNA sequencing (scRNA-
seq), as the cost per cell continues to decrease. For exam-

ple, Tabula Muris1 comprises more than 100,000 cells from 20
organs and tissues. MOCA2, mouse organogenesis cell atlas,
characterizes the single-cell map of mouse whole embryos with a
newly developed technique sci-seq-3, which can measure millions
of cells at a time. In addition, the Human Cell Project3 (HCA)
aims to characterize the single-cell map of all human cells, and its
order of magnitude will reach billions. Facing such explosive data
growth, one major challenge is the reliable and rapid cell type
identification given a newly sequenced cell. Supervised cell type
annotation of newly-generated data using annotated labels has
become more desirable than unsupervised approaches, as unsu-
pervised approaches tend to be far more laborious and compu-
tationally intensive. Traditional classification methods such as
random forest classifier4 (RF) and support vector machine5

(SVM) are often time-consuming6, whereas tools specifically
designed for such tasks trade accuracy for speed6 and integration-
oriented tools7 rely on computation-intensive search of anchor
cells. Such practice can become inefficient if aforementioned huge
datasets are used as reference.

Here we present SciBet to overcome these challenges. We use a
multinomial-distribution model and maximum likelihood esti-
mation to develop SciBet for accurate, fast, and robust single cell
identification. Using a wide range of scRNA-seq datasets,
including data from different biological systems and sequencing
technologies, we demonstrate that SciBet outperforms other
methods in accuracy, and especially in speed by a wide margin. In
addition, SciBet balances high accuracy and low false positive rate
by setting a null dataset as the alternate reference for cells with
types not yet covered by the existing data. Finally, we provide
both local and web-based SciBet implementations that are com-
patible with either existing or custom datasets for ultra-fast and
accurate cell type identification.

Results
Overview of the algorithm. The SciBet algorithm consists of
4 steps: preprocessing, feature selection, model training and cell
type assignment (Fig. 1a–d, respectively). For a training dataset of
scRNA-seq, we obtained the normalized expression matrix with
common preprocessing pipelines (Methods) and calculated the
mean expression values across cells with identical cell types,
which were needed by the following steps (Fig. 1a). Because not
all genes were equally useful for such the classification problem6,8,
we developed E-test to select the cell type-specific genes from the
training set in a supervised and parametric manner, in order to
remove the noisy genes as well as to accelerate the downstream
classification by compressing the model. We first applied the
statistic entropy in information theory to measure the dispersion
degree for the Poisson-Gamma-mixture distributed gene
expression, and the entropy could be directly estimated by the
logarithm of the mean gene expression (Methods). We proposed
the null hypothesis where all cell types were assumed not to be
distinct and thus had the same mean and entropy. We then
proposed a statistic ΔS as the total entropy difference, to measure
the deviation of the observed mean expression from the mean
expression under the null hypothesis. Under the criteria of feature
selection by E-test, genes with larger ΔS tended to be more cell
type-specific and would be kept by E-test for the downstream
model training (Fig. 1b). After modeling the expression for each
gene, we then modeled the expression across different genes by
the assumption that the expression abundance of different genes
was multinomially distributed in a given cell type (Methods). The
parameters of each gene in the multinomial model could be

directly estimated by the aforementioned mean gene expression
after normalization in each cell type. These normalized para-
meters also represented the expression probability of each gene in
a given cell type (Fig. 1c and Methods). We built multinormial
models for each cell type in the training set, which composed the
trained model of SciBet. For an unknown cell to be annotated by
SciBet, we used its expression profile of the informative genes,
and calculated the likelihood function over all multinomial
models. SciBet selects the cell type whose model achieves the
highest likelihood/prediction power in describing the distribution
of the RNA profile. (Fig. 1d and Methods). Each cell in the test set
was independently annotated.

Performance assessment by cross-validation. To perform
quantitative benchmarks for such a multi-label classification
problem, we applied the cross-validation strategy9 as following:
For each of the 14 datasets across multiple sequencing platforms
(Supplementary Table 1), we trained a classifier with the ran-
domly selected 70% of the cells (training set) and predicted the
cell type for the remaining cells (test set), and repeated this
entire procedure for 50 times. We applied the accuracy score9, the
ratio between the total number of correctly predicted cells
against the number of all cells in the test set, as the performance
metric in such cross-validation tasks (Methods and Supplemen-
tary Note 1). In the main figures, we calculated the mean accuracy
across the 50 times repeats to represent the performance for each
dataset.

To illustrate the performance and the scalability of the feature
selection methods, we benchmarked E-test against F-test (one-
way ANOVA) and M3Drop8 using the same classifier scmap. Our
results showed that E-test consistently achieved the highest
classification accuracy. The superiority of E-test was independent
on the number of selected genes and classification algorithms,
indicating the robustness of E-test for identifying cell type-
specific genes (Fig. 2a for all datasets together and Supplementary
Fig. 1 of each dataset separately). In principle, E-test only needs
linear operations and the computational time increases linearly
with the numbers of cells and genes, in contrast to the quadratic
increase for other gene selection methods. The time consumption
and cell number relationship (Fig. 2b) confirmed this point,
demonstrating the scalability of E-test for large datasets.

We benchmarked SciBet in terms of accuracy and speed,
against scmap6 and Seurat v37, with the aforementioned cross-
validation strategy and E-test as the feature selection method. We
found that SciBet achieved the best performance in most of the 14
benchmarking datasets, compared to the other methods (Fig. 2c
for all datasets together and Supplementary Fig. 2 of each dataset
separately). Considering the significance of the ability to detect
rare cells, for each dataset, we measured the balanced accuracy
score9 (Methods and Supplementary Note 1) and the results
showed that SciBet also achieved the best performance (Fig. 2d
for all datasets together and Supplementary Fig. 3 of each dataset
separately), indicating its superior ability to handle imbalanced
datasets as well as to uncover rare cell types in a supervised
manner. Finally, we evaluated how these classifiers behaved in
speed using 4 simulated datasets comprising 500 genes along with
1000, 10,000, 20,000 and 50,000 cells, respectively. Our results
demonstrated that SciBet out-performed scmap and Seurat v3 by
orders of magnitude, with a classification speed of ~100,000 cells
per second (Fig. 2e). We tested the performance of SciBet on two
datasets, with both even and uneven cell type distributions. For a
dataset of fresh peripheral blood mononuclear cells10 after
random down-sampling (Methods), where all cell types have
equal proportions, the confusion matrices of classification showed
that SciBet performed well on each cell type as opposed to scmap
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and Seurat v3, which could not effectively discriminate close
subtypes, such as CD4 memory T cells and CD4 regulatory T cells
(Fig. 2f). In addition, for a human pancreatic dataset11 with
imbalanced proportions of cell types, SciBet could still provide the
most discriminating power. By contrast, both Seurat v3 and
scmap had lower accuracies in classifying delta cells, which
accounted for only 3.8% of cells (Fig. 2g).

Real-world applications of SciBet. We benchmarked SciBet for
cross-dataset annotation using one or more scRNA-seq datasets
as training sets to predict the cell type in the test set. We first
produced 6 instances of training-test pairs using four well-
characterized human pancreas datasets11–14 generated by distinct
sequencing techniques, and predicted the cell types for one
dataset with another dataset as training set (Supplementary

Cell
Type

Gene

Mean gene expression of G2

Truth Null hypothesis

ΔS >> 0, G2 KEPT by E-test

G2 G3G1 G4

Normalized mean expression level of each cell type 

P(y|A) =M* pA,1
y1

* pA,3
y3

* pA,2
y2

Supposing a new cell y with gene
expression y1,y2 and y3, calculate
the likelihood function over each
multinomial model. For example: 

New cell y

Model A Model B Model C

P(y|A) vs P(y|B) vs P(y|C)

For each gene i, calculate the
mean expression Xi,j across cells
belonging to cell type j.

For each cell type, build a
multinomial model and estimate
the parameters p by X. For
example: 

Mean gene expression matrix

Training set

y1

y2

y3

Marker Expression of cell y

,where M=
(y1+y2+y3)!

y1!* y2!* y3!

Train SciBet model with the
training set 

Annotate cell type for a new cell
in the test set

Training dataset
pre-processing

A

B

C

A
B
C

A

B

C

A
B
C

G2
G3

G1

G2

G3

G1

G4

G2

G4

A B C

1

0

p1A

p2A

p3A

p1B

p2B

p3B

p1C

p2C

p3C

Mean gene expression of G4

ΔS ≈ 0, G4 FILTERED OUT by E-test

Truth Null hypothesis

Select cell-type specific
genes by E-test

Use marker gene G2 and
non-marker gene G4 as
examples.

Marker G1 and G3
also kept by E-test
(not shown here)

Use the mean expression of
marker genes (G1, G2, and
G3) selected by E-test to
train SciBet. 

X2A

X2B

X2C

XA,1pA,1 =ˆ
XA,1 + XA,2 + XA,3 

X4A
X4B

X4C

1
3

(X2A + X2B + X2C)
(X4A + X4B + X4C)

Use Maximum Likelihood Estimation (MLE) to annotate cell y with
the cell type which maximized the likelihood function.

a

b

c

d

1
3

Fig. 1 Overview of SciBet algorithm. a Training set Pre-process by calculating the mean gene expression form the original expression matrix. Here we use
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independently annotated.
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Fig. 2 Cross-validation benchmarks. a Performance of the feature selection methods measured by the accuracy score for n= 14 datasets (each dataset is
plotted as an individual point, representing the mean accuracy score across 50 random repeats). Box plot shows the center line for the median, hinges for
the interquartile range and whiskers for 1.5 times the interquartile range. b Single CPU consuming times for gene selection process with E-test, F-test and
M3Drop (log scale). Solid lines are loess regression fitting (span= 2), implemented with R function geom_smooth. c Performance of the classifiers
measured by the accuracy score for n= 14 datasets (each point represents the mean score across 50 repeats). d Performance of the classifiers is
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classification (log scale). Solid lines are loess regression fitting (span= 2), implemented with R function geom_smooth. f Heatmap for the confusion matrix
of the cross-validation result on the human PBMC dataset10, with normalization for each column (origin label). g Heatmap for the confusion matrix of the
cross-validation result on the human pancreatic dataset11, with normalization for each column (origin label).
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Table 2). For this test, SciBet showed a slight edge over Seurat v3
and both consistently outperformed scmap (Fig. 3a), indicating
that the ultra-fast SciBet showed relatively equivalent perfor-
mance in such a cross-platform classification task. As there were
published mouse atlas datasets such as Tabula Muris while
Human Cell Atlas was still in progress, we then tested whether
SciBet could be used for cross-species classification, by training
SciBet model with the Tabula Muris dataset and predicting cells
types for human pancreas datasets. Only genes with one-to-one
orthologues cross-species were used for feature selection and cell
identification (Methods). Most cells (~92%) could be correctly
mapped based on SciBet (Fig. 3b), demonstrating the utility of
SciBet in cross-species cell identification.

We further collected 42 published human scRNA-seq datasets
(listed in Supplementary Table 3) and built an integrated dataset
to include the well-characterized and annotated major human cell
types (Methods), which could be separated clearly by cross-
validation with SciBet (Fig. 3c). This dataset, analogous to Tabula
Muris9, could serve as a plausible “mock” human cell atlas. We
annotated the cell type for a recent human liver cell 10x genomics
dataset15 with the integrated data as reference. Sankey diagram
revealed that major cell types were correctly predicted, including
hepatocytes, endothelial cells and Kupffer cells (specialized
macrophages located in the liver). In addition, closely related
cell types such as NK and T cells, as well as B and Plasma B cells,
could also be precisely discriminated by SciBet, suggesting the
sensitivity and precision of SciBet for cross-platform prediction
(Fig. 3d). Furthermore, each cell type could be further classified
into more precise labels based on datasets uncovering novel sub
cell types.

Due to the incomplete nature of reference scRNA-seq data
collection, cell types excluded from the reference dataset may be
falsely predicted to be a known cell type. Here we applied a null
dataset as background, which is generated by mixing together all
cell types in the datasets listed in Supplementary Table 4. For each
cell in the test set, we quantified the likelihood to the reference set
against that to the null set. Cells with smaller classification
confidence score would be assigned as unassigned cells and thus
be excluded from the downstream classification (Methods). As an
example, we first considered a recent melanoma dataset16 that
comprises diverse cell types in the tumor microenvironment. We
randomly sampled 70% of immune cells from the original data as
reference, and regarded the remaining 30% immune cells and
non-immune cells as query dataset, with cell types defined by the
original authors. Proper classification of such query dataset
should result in high classification confidence scores for immune
cells while low scores for non-immune cells. We showed that
SciBet consistently provided the best performance by achieving
low false positive rate (FPR, the ratio of the number of falsely
assigned cells against the number of cells that should be excluded)
as well as high accuracy for the cells that needed to be assigned
(Fig. 3e). Although Seurat v3 also properly controlled false
positives, most NK cells were incorrectly assigned to CD8 T cells
or the unassigned group, leading to false negatives. In addition,
we also generated another 10 training-test pairs in a similar
fashion using 16 datasets (Supplementary Table 5 and Methods),
and demonstrated that SciBet correctly categorized >90% cells
when FPR ranges from 0.001 to 0.05. Both scmap and Seurat v3
had a much lower accuracies with the same FPR cutoffs,
indicating the superiority of SciBet in prediction accuracy and
false positive control (Fig. 3f and Supplementary Fig. 4). In
conclusion, SciBet controlled the potential false positives while
maintaining high prediction accuracy for cells with types covered
by the reference dataset.

We also noted that the features selected by E-test tended to be
biologically meaningful genes. This can be seen by using nine

immune cell types from 7 studies to test the performance of E-test
for supervised gene selection (Supplementary Table 6). The top
54 genes with maximal ΔS were all well-established immune cell
markers, known to play pivotal roles in corresponding cell types17

(Fig. 3g). The identified marker genes also allowed interpretable
visualization, with distinct immune cell population across
different studies separately located in the 2D UMAP plot18,
further supporting their biological relevance (Fig. 3h).

Web-based implementation of SciBet. Based on ~100 well-
annotated scRNA datasets collected from public repositories such
as Broad Single Cell Portal, EMBL-EBI Single Cell Expression
Atlas, NCBI Gene Expression Omnibus and CellBlast19, we used
SciBet to generate trained models for each dataset. The light-
weight nature of trained models enabled the easy download
together with the local SciBet package. For example, the size of a
model with 100 cell types and 1000 signature genes would be no
more than 1 MB. We further built a JavaScript version of SciBet
(http://scibet.cancer-pku.cn), which bypasses the process of file
uploading to a remote server. Users could use our web server to
upload custom reference or test data for cell type prediction. For
large query dataset that would take a long time for data trans-
mission, we also provided a lightweight standalone package for
local construction of the web-based tools by a simple command.
This way, data files would be read and processed locally and
directly in the web browser, with only small-sized models
transferred from the server to the browser, thus achieving
unprecedented speed and convenience.

Discussion
SciBet addresses an important need in the rapidly evolving field of
single-cell transcriptomics, i.e., to accurately and rapidly capture
main features of diverse datasets regardless of technical factors or
batch effect. Based on multiple benchmarks, SciBet achieves high
prediction accuracy, while keeping low false positive rate for cells
not represented previously. This advantage is achieved by con-
sidering not only the relative similarity to each cell type within
the reference set, which is also used by scmap and Seurat v3, but
also the absolute similarity to the entire reference set and null
dataset (Methods). Both E-test and SciBet utilizes the funda-
mental concept that each cell type is represented by the simple
mean expression vector. Thus, both methods only carry out a
small number of linear operations on the expression matrix, and
the entire computational process is efficient and can be thereby
applied to very large-scale single cell studies emerging in
coming years.

Methods
Data collection and pre-processing. All scRNA-seq datasets in this paper were
obtained from their public accessions. And we used the original cell type anno-
tation provided by each publication as ground truth. For all datasets, we applied the
common normalization methods as following. For read count data generated by
full-length sequencing technique, we calculated Transcript Per Million (TPM)20,
added pseudo value one to handle 0 values and performed log-normalization. For
unique molecular identifier (UMI) data, we applied the widely-used pre-processing
methods proposed by Seurat v37 with default parameters (normalizing the UMI
count of each cell with size-factor 10,000, adding one and then log normalization).

Training-test split and cross-validation. We implemented the hold-out valida-
tion strategy proposed by the python package sklearn9 (function model_selection.
train_test_split) as following: for each dataset, we applied the stratified random
sampling without replacement to form the training and test set with the ratio 7:3,
and repeated this process 50 times to obtain 50 training-test instances. Both the
following feature selection and model training process were completely indepen-
dent with the test set to avoid over-fitting, and the hold-out validation was per-
formed for each dataset separately.

We implemented the accuracy score9 (function metrics.accuracy_score in
package sklearn) as the default performance measurement, which equals the ration
between the total number of correctly assigned cells and the total number of all
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Fig. 3 Applications of SciBet. a Mean accuracy (across 50 repeats) for n= 6 cross-platform dataset pairs listed in Supplementary Table 2. b Cross-species
classification with three human pancreas datasets projected to Tabula Muris dataset (Sankey diagram). The height of each linkage line reflects the number of
cells. c Confusion matrix of the cross-validation result for 30 cell types in the “mock” human cell atlas (listed in Supplementary Table 3). d Single cell
classification for a human liver dataset with integrated human dataset as reference, implemented by SciBet. e Confusion matrix for the case study of false
positive control, with normalization for each row (origin label). Negative cells including malignant cells, CAF cells and endothelial cells were removed from the
training set. Query cells with lowest classification confidence scores were labeled as unassigned. f False positive control evaluation with cell types not present in
reference as negative cells, with n= 10 pairs of datasets (each point represents the mean accuracy score or FPR across 50 repeats). Box plot shows the center
line for the median, hinges for the interquartile range and whiskers for 1.5 times the interquartile range. g Expression heatmap of the top 54 genes selected by E-
test for the integrated immune dataset (Supplementary Table 6). h 2D-UMAP showing the dimensional reduction result based on the genes in g.
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tested cells. We also implemented the balanced accuracy score9 (function metrics.
balanced_accuracy_score in package sklearn), which can be calculated as following:
for each cell type in the test set, we calculate the correctly assigned ratio (recall),
and then obtain the unweighted mean of recalls over each cell type (See detailed
discussion in Supplementary Note 1).

Supervised feature selection by E-test. We used the statistic differential entropy
from information theory (Sij) to measure the dispersion degree of the expression
distribution of a gene i in a given cell type j, and we could directly calculate this
statistic by the equation:

Sij ¼ lnXij þ hi ð1Þ
where Xij is the mean expression of gene i (ranges from 1 to m) across all cells
belonging to cell type j (ranges from 1 to n) and hi is a gene-specific constant
independent of cell groups, under the assumption that the gene expression is
distributed as a Poisson-Gamma mixture21 (See detailed derivation in Supple-
mentary Note 2).

We then developed E-test to measure expression differences among n cell
groups in the training set. First, we defined the null group 0, by averaging all pre-
defined groups, and thus the null group had the mean gene expression of gene i as
Xi0 ¼ 1

n *
Pn

j¼1 Xij , the logarithm of the group-level arithmetic mean (AM) of Xij.
Under the null hypothesis that all cells from the pre-defined groups are randomly
sampled from the the same cell population, the entropy for the null group 0 can be
calculated as

Si0 ¼ lnXi0 þ ai: ð2Þ
Then we quantified the difference of gene i expression among the pre-defined

groups by a static ΔSi, the total entropy difference of gene i, which equaled the total
difference of the entropy from the null group 0 to the entropy for each pre-defined
group j. Based on Eqs. (1) and (2), ΔSi can be calculated as:

ΔSi ¼
Xn

j¼1

Si0 � Sij
� �

¼
Xn

j¼1

ðlnXi0 þ hi � lnXij � hiÞ ð3Þ

Notably, Eq. (3) can be further derived as following:

ΔSi ¼
Pn

j¼1 ðlnXi0 � lnXijÞ ¼ n* lnXi0 � 1
n * ln

Qn
j¼1 Xij

� �
. Here we noticed that

the second term 1
n * ln

Qn
j¼1 Xij ¼ ln

Qn
j¼1 Xij

� �1
n
served as the logarithm of the

group-level geometric mean (GM) of Xij. Then ΔS can be further written into a
more intuitive form: ΔSi =n*(ln AMi -ln GMi)= n* ln AMi

GMi
. According to Jensen’s

Inequality, AM ≥GM, and thus the ΔS will always be a non-negative number for
each gene i. If Xij was a constant for each j, GMi would be equal to AMi, and thus
ΔSi would equal 0, where the null hypothesis was satisfied.

Based on our assumption that ΔS of genes varies according to the
nonuniformity of the expression among pre-defined cell groups, genes with larger
ΔS tended to be more informative. Thus, for the training set we ordered genes
based on their ΔS and selected genes with top ΔS for the downstream classification.
The significance of ΔS for each gene can be obtained by the random permutation
test (randomly permutate the cell group labels, calculate ΔS for each permutation
and find the percentile of the actual ΔS), which can be further accelerated by our
strategy for approximation listed in Supplementary Note 2.4.

The entire feature selection process can be simplified and concluded as the
following: for each gene, we calculated the mean expression of gene i across all cells
belonging to cell type j, and then calculated ΔSi as the log ratio between their

group-level geometric mean ðQn
j¼1

�XiÞ
1
n and arithmetic mean 1

n *
Pn

j¼1
�Xi across n

cell groups. After obtaining ΔSi for each gene i, we selected genes with top ΔS as
informative genes (500 by default).

Supervised cell type annotation by SciBet. We applied the multinomial dis-
tribution to model the expression across different genes in a given cell type j. We
assumed that mRNA molecules from the identical gene are equivalent and that the
production for each mRNA molecule is independent. Thus, for a type-j cell, we
could denote the probability of producing a mRNA molecule belonging to gene i as
pij, where i ranged from 1 to n. Given the cell type j, the vector pj ¼
½p1j; ::; pij; ::; pmj� across all m informative genes would serve as the parameters of a
multinomial distribution, where

P
i pij ¼ 1. For a cell y belonging to cell type j, the

probability of having the expression profile y = [y1,..,yi,..,yn] can be calculated as

P yjjð Þ ¼ ð
P

i
yiÞ!Q

i
ðyi !Þ
Q

i ðpijyi Þ.
After processing the training dataset with aforementioned steps including

scaling, log normalization and feature selection, we calculated Xij as mentioned in
E-test section, the mean expression of gene i across all cells belonging to cell type j.
For each cell type j, pij across all gene i could be estimated by Xij after
normalization across genes and Laplace Smoothing (adding one to account for zero

values), which can be written as p̂ij ¼
1 þ XijP
i
ð1 þ XijÞ

.

According to the multinomial assumption, the likelihood function of an
unknown cell y in the test set with gene expressions profile y = [y1,..,yi,..,yn]

belonging to type j can be written as P yjjð Þ ¼ ð
P

i
yiÞ!Q

i
ðyi !Þ
Q

i ðpijyi Þ. We assign cell type j

to cell y with maximum likelihood estimation (MLE) as following:

ĵ ¼ argmaxj P yjjð Þð Þ ¼ argmaxj
ðPi yiÞ!Q

iðyi!Þ
Y

i

pij
yi

� �
 !

¼ argmaxj
Y

i

pij
yi

� �
 !

ð4Þ

Equation (4) can be further derived into ĵ ¼ argmaxjð
Q

i ðpijyi ÞÞ ¼
argmaxjð

P
i yi*lnpijÞ ¼ argmaxjð

P
i ðqi*lnpij � qi*lnqiÞÞ ¼ argminjDKLðqjjpjÞ,

where qi ¼ yi=
P

i yi . It indicates that we annotate the test cell to such the cell type
that its mean expression vector of all marker genes has the minimal Kullback–Leibler
divergence to the unknown cell y.

The discussion about using the cell type prior probability and thus using Bayes
decision can be seen in Supplementary Note 3.

Seurat v3 and scmap. For cross-validation benchmarks, we performed the clas-
sification using the function scmapCluster of scmap without considering the
unassigned cells. For Seurat v3, we identified anchors and classified cells using the
FindTransferAnchors function and TransferData functions, respectively, with the
default parameters.

PBMC dataset with even proportions of cell types. We implemented the down
sampling strategy proposed by python package imbalanced-learn22 (under_-
sampling.RandomUnderSampler) as following: we randomly sampled all 7 cell
types to a fixed number 2500, which was smaller than the size of all cell types. Then
we performed the training-test split and hold-out validation strategy as mentioned
before.

“Mock” human cell atlas. We integrated 42 human datasets covering the major
cell types, which means the canonical and well-characterized cell types previously
identified without single cell RNA sequencing data and can be usually mapped to
the cell type knowledgebase (e.g., EBI Cell Ontology). For 26 of the 42 datasets, we
downloaded raw scRNA-seq fastq files, and estimated the gene-level expression
abundance with kallisto23 and human genome reference hg19 (downloaded
from UCSC).

We curated the cell label by unifying the major cell type annotated by different
publications (e.g., considering both “T lymphoid cells” and “T cells” as “T cells”).
We neglected the minor cell types, which means those novel subtypes uncovered by
scRNA-seq with unsupervised clustering and annotation (e.g., considering both
“DC_cluster1” and “DC_cluster2” as DC cells).

False positive control for cell type assignment. The basic idea is to quantify the
relative likelihood of each cell to the specified training dataset against that to the
collection of the entire datasets, which serves as the background. To control
potential false positive predictions, we first identified common marker genes (500
genes by default) exclusively expressed in reference cells using E-test, with a null
dataset (by integrating all datasets listed in Supplementary Table 4) as the back-
ground. Then we considered the specified training set and the null set as two
pseudo cell types, and defined the classification confidence score C of each query
cell, by calculating the ratio of the likelihood functions based on the multinomial
assumption mentioned before, as following:

C ¼
Q

i pir
yi

Q
i pin

yi
ð5Þ

In Eq. (5), yi is the expression value of gene i, and pir and pin are expression
probability of gene i estimated by considering the entire training dataset and the
entire null dataset as two pseudo cell types, respectively. For false positive control
benchmarking experiments, we did not assign cell types to the cells with lowest
score C with a series of cutoffs from 0.001 to 0.5.

We generated 10 training-test pairs using 16 datasets listed in Supplementary
Table 5. Here we take training-test pair 1 (generated by GSE10427624 and
GSE10898925) as an example. For dataset GSE104276, which comprised cells from
human prefrontal cortex, we randomly sampled 70% of the cells as reference. Cells
from GSE108989 (T cells) are not represented in the reference, and thus could be
considered as negative cells. The remaining 30% cells of GSE104276 and cells from
GSE108989 together formed the query dataset. For each training-test pair, we
repeated the entire procedure including random sampling and classification for
50 times.

Cross species classification. We used the HomoloGene databases provided by
NCBI (Build 68) to identify homologous genes between human and mouse, and
kept only genes that have one-to-one correspondence, which serves as a look-up
table. After obtaining the intersection gene set between the training dataset (Tabula
Muris) and the look-up table, the gene names were then converted to human gene
names to obtain a test-set-compatible training set for classification.
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Hardware platform. All benchmarks were performed on a computer with AMD
Threadripper X2990, 128GB DDR4 memory and Seagate 2TB HDD.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All single cell gene expression datasets that support the findings in this study were
obtained from their public accessions. The detailed information including the accession
codes and publication citations for all datasets can be seen in Supplementary
Information.

Code availability
All the functions mentioned above were implemented in the R package SciBet, which
can be downloaded at http://scibet.cancer-pku.cn. An online version of SciBet is also
available at this website, which is based on JavaScript. All codes used for benchmarks are
available at https://github.com/PaulingLiu/scibet.
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