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ABSTRACT Hepatitis C virus (HCV) infects millions of people worldwide, causing
chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver
transplant. In the last several years, the advent of direct-acting antivirals, including
NS3/4A protease inhibitors (Pls), has remarkably improved treatment outcomes of
HCV-infected patients. However, selection of resistance-associated substitutions and
polymorphisms among genotypes can lead to drug resistance and in some cases
treatment failure. A proactive strategy to combat resistance is to constrain Pls within
evolutionarily conserved regions in the protease active site. Designing Pls using the
substrate envelope is a rational strategy to decrease the susceptibility to resistance
by using the constraints of substrate recognition. We successfully designed two se-
ries of HCV NS3/4A Pls to leverage unexploited areas in the substrate envelope to
improve potency, specifically against resistance-associated substitutions at D168. Our
design strategy achieved better resistance profiles over both the FDA-approved
NS3/4A Pl grazoprevir and the parent compound against the clinically relevant
D168A substitution. Crystallographic structural analysis and inhibition assays con-
firmed that optimally filling the substrate envelope is critical to improve inhibitor
potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic
packing in the S4 pocket and avoided an energetically frustrated pocket performed
the best. Thus, the HCV substrate envelope proved to be a powerful tool to design
robust Pls, offering a strategy that can be translated to other targets for rational de-
sign of inhibitors with improved potency and resistance profiles.

IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a
major health problem with millions of people infected worldwide and thousands dying
annually due to resulting complications. Recent antiviral combinations can achieve
>95% cure, but late diagnosis, low access to treatment, and treatment failure due to
drug resistance continue to be roadblocks against eradication of the virus. We report the
rational design of two series of HCV NS3/4A protease inhibitors with improved resis-
tance profiles by exploiting evolutionarily constrained regions of the active site using the
substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance
and improve potency. Our results provide drug design strategies to avoid resistance that
are applicable to other quickly evolving viral drug targets.

KEYWORDS X-ray crystallography, drug design, drug resistance mechanisms,
hepatitis C virus, structural biology

epatitis C virus (HCV) is estimated to chronically infect over 71 million people
worldwide. The clinical sequelae of HCV infection include chronic liver disease,
cirrhosis from prolonged inflammation, and hepatocellular carcinoma (1). Combination
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therapies with direct-acting antivirals (DAAs) against essential viral proteins NS3/4A,
NS5A, and NS5B have significantly improved treatment options and outcomes (2-5)
with cure rates of ~95% for treatment-naive patients (6-12). However, even the most
recent DAA combinations, still in 2019, fail to cure some patients (4, 5, 13, 14). Especially
for DAA-experienced patients, baseline polymorphisms among diverse genotypes and
preexisting resistance-associated substitutions (RASs) negatively impact treatment out-
comes (3-5, 14, 15). Treatment failure is highly associated with RASs in the therapeutic
target (4, 5, 14-19). With the WHO goal to increase treatment from 13% (2016) to 80%
(2030) of the 71 million infected globally (1, 20), even a small failure rate will result in
many HCV-infected patients failing therapy due to drug resistance (3, 14-19, 21, 22).

The NS3/4A protease is an excellent target for developing DAAs against HCV, and
protease inhibitors have been a key component of most combination therapies. This
essential protease cleaves the HCV polyprotein into functional units necessary for viral
replication and maturation (23). Currently three noncovalent FDA-approved protease
inhibitors (Pls) are in clinical use for the treatment of HCV: grazoprevir (24), glecaprevir
(25), and voxilaprevir (26). All HCV PIs have large heterocyclic P2 moieties that signif-
icantly improve potency (27). Our high-resolution crystal structures revealed how the
identity and binding mode of the P2 moiety strongly influence the inhibitor resistance
profile: the P2 moiety of each Pl contacts, to various extents, residues Arg155, Ala156,
and Asp168 (28) where the most common RASs occur. Notably, residue 168 has
emerged as a key position where substitutions can cause detrimental potency loss and
resistance (28, 29). Structurally Asp168 is a critical residue that contributes to an
active-site electrostatic network necessary for efficient inhibitor binding. Disruption of
this network underlies the mechanism of resistance due to substitutions at Arg155 or
Asp168 (28, 30).

More recent Pls, starting with grazoprevir, largely thwart susceptibility to RASs at
Arg155 as their P2 quinoxaline moiety stacks against two residues of the invariant
catalytic triad (His57 and Asp81) and minimizes contact with variable residues (28,
31). Mutation of the catalytic triad is not possible while retaining activity, thus
decreasing the likelihood of viable resistance. Accordingly, recent Pls are less
susceptible to single substitutions at Asp168, but they are still susceptible to double
substitutions that include changes at Asp168, as well as changes at Ala156 due to
the macrocyclization of P2 to P4 (P2-P4 macrocycle) (25). The D168Q polymorphism
has rendered HCV genotype 3 “naturally resistant” to most Pls (32), and Asp/GIn168
mutations have emerged in nearly all patients who fail therapy with a Pl-containing
regimen (15, 33). Thus, exploring alternative scaffolds and modifications to current
Pls to improve potency against Asp168 substitutions can provide more robust Pls
with pan-genotypic activity, decreasing incidences of treatment failure due to drug
resistance.

Rational design of inhibitor modifications to avoid resistance greatly benefits from
elucidation of the structural mechanisms underlying drug resistance. Drug resistance
occurs when the balance between substrate recognition and cleavage is favored over
inhibitor binding. The substrate envelope defines the consensus volume necessary for
NS3/4A protease to recognize the viral and host substrate sequences (34), and RASs
occur where inhibitors protrude from the substrate envelope and contact residues of
the enzyme that are unessential for substrate recognition (28). While protrusion beyond
the substrate envelope at the P2 position on the inhibitor scaffold is unavoidable
without compromising potency, leveraging evolutionarily constrained residues can
circumvent resistance. The P2-P4 macrocycle of grazoprevir improves inhibitor potency
by restricting conformational degrees of freedom, but the macrocycle itself protrudes
from the substrate envelope and contacts nonevolutionarily constrained residues.
Because of the P2-P4 macrocyle, grazoprevir is highly susceptible to A156T and
moderately susceptible to substitutions at Asp168 (31). Even with vulnerability to these
key RASs, given the relatively improved resistance profile and potency of grazoprevir
over previous Pls, the P2-P4 macrocyclic scaffold has been used in the development of
the latest generation of structurally similar inhibitors glecaprevir and voxilaprevir.
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FIG 1 Chemical structures of designed HCV NS3/4A protease inhibitors. (a) Grazoprevir (MK-5172) is an FDA-approved PI.
Change of the macrocycle location (5172-mcP1P3) and optimization of the P2 quinoxaline moiety led to the parent compound
(35) modified in this study. The canonical nomenclature for drug moiety positioning and the P4 moiety altered are indicated.
(b) The inhibitors designed based on the parent compound (i) to optimally fill the S4 pocket by modifying the P4 capping
group (P,-1 to P,-7) and (ii) to extend into the substrate envelope by incorporating a P4 moiety with a P5 capping group

(P,Ps-1A to P,P.-6).

To overcome the vulnerability caused by the P2-P4 macrocycle of grazoprevir,
we replaced it with a P1-P3 macrocycle previously used in danoprevir (24) to design
inhibitors that can avoid resistance while retaining potency. The resulting inhibitor,
5172-mcP1P3, was less susceptible to single-site RASs, particularly A156T (29), and
the crystal structures validated that the binding mode of the P2 quinoxaline moiety
stacking against catalytic residues was retained (31). Further optimization by mod-
ifications at the 3-position of the P2 quinoxaline moiety to decrease interactions
with the S2 subsite residues Arg155 and Ala 156 revealed that compounds with a
smaller methyl group at this position retains better activity against resistant
variants (35). The resulting inhibitor (Fig. 1) with the optimized P2 quinoxaline
achieved an improved resistance profile and avoided susceptibility to RASs. While
this was a key proof of principle that fitting within the substrate envelope is critical
to avoiding susceptibility to resistance, our objective is to further explore the
strategy of rationally designing inhibitors guided by the substrate envelope to
improve potency and resistance profile.

The current study shows that substrate envelope-guided design achieves HCV
protease inhibitors with better potency and resistance profiles. This design strategy
involves decreasing interactions with variable residues that mutate to confer resistance
(while keeping interactions with the invariable catalytic triad) and optimally filling the
active-site pockets. We rationally designed HCV protease inhibitors that retain potency
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while fitting within the substrate envelope to avoid resistance, particularly against
D168A, which confers high-level resistance to current HCV PlIs (15, 33). Starting with the
grazoprevir analog bearing a P1-P3 macrocycle and optimized P2 quinoxaline moiety,
a series of inhibitors were designed and synthesized with modifications and extensions
in the P4 direction proximal to D168. HCV Pls mainly span the positions of P1’ to P4,
while the design here leverages a conserved region of the substrate envelope (36) that
is virtually untapped by the current inhibitors. We incorporated two sets of modifica-
tions, either modifying the P4 capping (P, series) or including a P4 moiety mimicking
substrate interactions and extending into the P5 position (P,P series). A total of 16 new
inhibitors were designed and synthesized to systematically explore the size and shape
of the P4 moiety, potency was measured against the wild-type (WT) and D168A NS3/4A
proteases in enzymatic assays, and 15 cocrystal structures with select inhibitors were
determined and analyzed. All inhibitors designed to fit within the substrate envelope
had a flatter resistance profile against D168A than the FDA-approved drug grazoprevir.
Notably, the design strategy successfully yielded inhibitors with an order of magnitude
better potency than that of grazoprevir and the parent compound against the D168A
variant, while maintaining similar potency against WT. The crystal structures revealed
that these inhibitors optimally fill the S4 pocket, gaining potency against both the
genotype 1a (GT1a) WT protease and the D168A variant. Thus, substrate envelope-
guided design can be successfully incorporated into the drug design process to provide
inhibitors that are potent and less susceptible to resistance.

RESULTS

Substrate envelope-guided design of inhibitors. The HCV NS3/4A protease sub-
strate envelope is defined by the overlapping volume of the substrates (Fig. S1), and we
have previously shown that inhibitors must fit within the envelope to have a flat profile
against resistance (37-39). Relocating the macrocyle to fit within the substrate enve-
lope in 5172-mcP1P3 (35) and the closely related parent compound (35) (Fig. 1) indeed
achieved a flatter resistance profile than that of grazoprevir but unfortunately resulted
in potency loss against the WT protease in enzymatic assays. Here, we succeed in both
regaining this loss of potency and reducing susceptibility to D168A RAS. Starting with
the parent compound, which has an optimized P2 quinoxaline, the design aimed to fill
the S4 and S5 pockets under the restraints of the substrate envelope, with the goal of
gaining potency and avoiding resistance. The S4 pocket is mostly nonpolar and can
accommodate both hydrophobic and hydrophilic side chains in natural HCV substrates
(40). However, prior structure-activity relationship (SAR) studies on macrocyclic and
peptidic scaffolds show that hydrophobic moieties are associated with higher potencies
(41-48). Thus, the inhibitors designed using molecular modeling had hydrophobic P4
moieties extending into the S4 pocket toward D168.

Two series of inhibitors were designed and synthesized, one modifying the P4
capping group to better fill the S4 pocket (P, series) and the other extending into the
S5 pocket with two different capping groups (P,Ps series) (Fig. 1). Specifically, P,
inhibitors were designed with hydrophobic P4 capping groups of increasing size to
optimally fill the S4 pocket. Inhibitors in the P,P series aim to further tap into the
unleveraged part of the substrate envelope with a hydrophobic P4 moiety and a P5
capping group. In total, we designed and synthesized 16 inhibitors, 7 with different P4
capping groups filling the S4 pocket and 9 that extend into the S5 position with either
an acetamide (4 in the P,P-A series) or a methyl carbamate (5 in the P,P-B series) as
the capping group (Fig. 1) (see Materials and Methods). For all the inhibitors, potency
against HCV NS3/4A genotype 1a (GT1a) and the D168A variant was measured (Fig. 2;
see Table S1 in the supplemental material), and when feasible their corresponding
crystal structures were determined to elucidate the structural basis for the alterations
in potency (Table S2).

Inhibitors achieved improved potency against WT protease and RAS variant. To
optimally fill the S4 pocket, the size of the P4 capping moiety was systematically
increased from 1-methylcyclopropyl to cyclohexyl and included a bicyclic capping
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FIG 2 Resistance profile of HCV NS3/4A protease inhibitors against GT1a WT (WT1a) and D168A variant.
(@) Enzyme inhibition constants of the P,-cap inhibitors against wild-type and D168A proteases, as
indicated (a), and fold change of enzyme inhibitory activity against the D168A variant with respect to that
of the wild-type NS3/4A protease (b). (c) Enzyme inhibition constant. (d) Fold change of the P4-P5-cap
inhibitors. PC, parent compound; GZR, grazoprevir.

group, bicyclo[3.1.0]hexyl, to further increase interactions in the S4 pocket. The
resulting P,-series inhibitors ranged in potency from 4 to 0.5nM against WT
protease in enzyme inhibition assays. Compared with the parent compound, P,-1,
the inhibitor with the smallest P4 capping group in the series, maintained the same
potency against the WT (Fig. 2a and Table S1). Increasing the cyclic ring system by
one carbon (P,-2) led to a 4-fold increase in potency against the WT. Further
increase in the size of the hydrophobic P4 capping group to a cyclopentyl (P,-3),
with addition of 1-methyl (P,-4) or 1-ethyl (P,-5), or to a cyclohexyl (P,-6) either
maintained or slightly improved the potency further compared to that of P,-2
against the WT. The largest bicyclic capping group (P,-7) notably achieved sub-
nanomolar potency against WT protease (0.54 = 0.20 nM), which is comparable
with the potency of grazoprevir (0.21 £ 0.03 nM) and approximately 6.5-fold more
potent than that of the starting parent compound.

All of the P, inhibitors were also tested against the D168A RAS and except for P,-2
performed better than the parent compound and grazoprevir (both ~50 nM), ranging
in potency from 2 to 36 nM. The smallest cyclic ring in P,-1 resulted in an ~2-fold
potency increase compared to that of the parent compound, while further increasing
the size of the cyclic ring system achieved a 2.5- to 4-fold increase in potency for the
cyclopentyl (P,-3, P,-4, and P,-5) and cyclohexyl (P,-6) capping groups. Incorporation of
1-methyl substituent to the cyclopentyl P4 cap (from P,-3 to P,-4) increased the
potency against D168A by ~2-fold, while a 1-ethyl substituent (P,-5) did not improve
the potency further. The largest bicyclic capping group (P,-7) led to a dramatic
~20-fold increase in potency compared to that of the parent compound and of
grazoprevir against D168A, specifically retaining 2.3 = 0.7 nM potency in contrast to
that of 49.1 = 0.6 nM for grazoprevir. Thus, the designed inhibitors succeeded in
retaining nanomolar potency against the key D168A RAS variant.

Next, potency was tested for the PP, series of inhibitors, which were designed to
fit further within the substrate envelope and extend into the S5 position. Overall, these
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inhibitors were less potent than the P, series against both the WT (1 to 30 nM) and
D168A (10 to 900 nM) protease. Inhibitors with an acetamide (P,Ps-A series) versus a
methyl carbamate (P,Ps-B series) capping group were comparable. As in the P, series,
the P4 group was increased in size starting with a valine amino acid (P,P5-1A and -1B)
and then increased to tert-leucine (P,Ps-2A and- 2B) and isoleucine (P,Ps-4). Larger
cyclic unnatural amino acids were also incorporated in the P4 position in P,Ps-3A and
-3B, P,Ps-5, and P,P.-6. Increasing the size of the P4 amino acid from valine to
tert-leucine led to an ~2-fold loss in potency against both the WT and D168A, while
P,Ps-4 with an isoleucine moiety was more potent than both. These inhibitors with an
acyclic aliphatic P4 group were generally less potent than inhibitors containing cyclic
moieties against both the WT and D168A. Generally, the PP inhibitors retained a flat
binding profile against D168A, losing only 8- to 13-fold potency. The cyclohexylglycine
P4 amino acid in P,P.-6 yielded the most potent inhibitor in this series, comparable
with the best inhibitor in the P, series (P,-7), with potency of 0.91 = 0.38 nM and
9.68 = 0.64 nM against the WT and D168A variant, respectively.

Structure determination of protease inhibitor complexes. Crystal structures of
select inhibitors bound to WT and/or D168A NS3/4A protease were determined to
evaluate whether the inhibitors fit within the substrate envelope as designed. A total
of 15 new cocrystal structures with resolutions ranging from 1.6 to 2.1 A were deter-
mined for this study (Table S2). Nine crystal structures of the P, series included all
inhibitors (except P,-3) bound to the D168A variant and two (P,-3, P,-4) bound to the
WT protease. Six crystal structures of the P,P5 series included P,Ps-2A and P,P;-2B in
complex with the WT and P,Ps-2A, P,Ps-4, P,Ps-5, and P,Ps-6 with the D168A variant.
All structures were analyzed in comparison with the crystal structures of grazoprevir
(PDB identifier [ID] 3SUD for the WT and 3SUF for D168A) (Fig. 3a) and the parent
compound (Fig. 3b) (PDB ID 5VOJ for the WT) (28, 35). As expected, the binding modes
of the designed inhibitors were very similar (Fig. 3c and d). Critically, the P2 quinoxaline
maintained the -7 stacking interaction with the catalytic His57 residue irrespective of
modifications at the P4 and P5 positions. Alterations in binding, including hydrogen
bonding interactions, occurred locally at the positions that were modified, with
the P1-P3 macrocycle of the ligand relatively unchanged. The reduced potency of the
inhibitors against the D168A variant, as with grazoprevir, is due to the disruption of the
electrostatic network involving the Arg155 side chain as a result of the D168A substi-
tution (Fig. 3) (28). The overall structure and binding mode of the inhibitors bound to
D168A were very similar to those of the WT protease.

Inhibitor potency and fit within the substrate envelope. The fit of the inhibitors
within the substrate envelope, which was determined based on substrate-bound crystal
structures (Fig. S1), was evaluated. The P2-P4 macrocycle of grazoprevir protrudes from
the substrate envelope (Fig. 4a), contributing to high susceptibility to RASs proximal to
the P2-P4 macrocycle and P4 capping moiety, as we previously reported (15). The
parent compound, which has a P1-P3 macrocycle, fits better in the substrate envelope
(Fig. 4b) (22). Inhibitors in both of the current series, P, (Fig. 4c) and P,P (Fig. 4d), also
successfully fit within the substrate envelope with two exceptions: the P4 cyclohexyl
capping group of P,-6 and the P5 capping group of P,P.-5. Nevertheless, both series
succeed in the goal of leveraging unexplored space within the substrate envelope in
contrast to grazoprevir and the parent compound.

More specifically to evaluate capping groups in the P, series, the cocrystal structures
bound to WT (P,-3), D168A (P,-2, P,-4, and P,-5), or both (P,-6 and P,-4) protease
variants were analyzed with a focus on the S4 pocket of the substrate envelope. The
small cyclopropyl ring of P,-1 is able to fit in the S4 pocket better than the larger
ring of P,-2. The cyclobutyl ring of P,-2 is actually slightly elevated out of the pocket
(Fig. 5a), similar to the structure of the parent compound (Fig. 3b), and does not
have the conformational flexibility to contour the enzyme. This lack of flexibility
results in an unsatisfied or “frustrated” pocket that is neither filled by the inhibitor
nor has space for water to easily occupy. This structural frustration likely accounts
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FIG 3 Binding of grazoprevir and designed Pls to WT and D168A protease active sites. Crystal structures
of grazoprevir (GZR) (a), the parent compound (PC) (b), P,-4 (c), and P,Ps-2A (d) bound to the wild-type
and D168A proteases, as indicated. The protease active site is in surface representation, with the side
chains of catalytic triad and S4 subsite residues shown as sticks. Water molecules are shown as
nonbonded spheres (red), and hydrogen bonds (gray dashed lines) that stabilize S4 pocket side chains
are displayed. Black dashed lines outline the surface of the S4 pocket where the D168A mutation is
located.

for the weaker affinity of P,-2 against the D168A variant. The two inhibitors that fit
the best within this pocket are P,-4 and P,-7. The P,-4 ring pucker and the bicyclic
capping group of P,-7 allow for the ideal orientation toward the base of the S4
pocket (Fig. 5a). These two compounds are the most potent inhibitors against both
the WT and D168 variant.

The similarly potent P,-6 with the larger cyclohexyl capping group has a binding
mode that differs from that of the other P, inhibitors. As mentioned above, this capping
group protrudes from the substrate envelope (Fig. 4c). When P,-6 was bound, Arg123
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FIG 4 Fit of NS3/4A protease inhibitors within the substrate envelope. Inhibitors grazoprevir (a), parent
compound (b), P, series (P,-1, P,-2, P,-3, P,-4, P,-5, P,-6, and P,-7) (c), and PP, series (P,P;-2A, P,P;-2B,
P,Ps-4, P,P.-5, and P,P.-6) (d) are shown as sticks (orange) in the substrate envelope (blue). The side
chains of the catalytic triad and residues surrounding the S4 pocket are shown in the substrate-bound
conformations as yellow and green sticks, respectively.

adopted an alternate conformation that is not observed in the other cocrystal struc-
tures with this inhibitor scaffold (Fig. 6), exposing a new groove within the protein. We
have observed this alternate conformation of the Arg123 side chain in previous crystal
structures of WT GT1a protease with macrocyclic and peptidomimetic inhibitors (PDB
IDs 3KEE and 3SUF) and the D168A variant with danoprevir (PDB ID TW3C). Additionally,
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FIG 5 Filling the S4 subsite of the HCV NS3/4A protease active site. (a) Crystal structures of P,-1, P,-2, P,-4, and P,-7, as indicated, bound to D168A HCV protease
variant. The protease active site is in surface representation, with the residues that make up the S4 pocket (white) and the catalytic triad (yellow) side chains
displayed as sticks. (b) Intermolecular van der Waals (vdW) contact energies for inhibitors with residues forming the S4 pocket in the D168A crystal structures.
(c) Change in vdW contacts (AvdW) relative to those of the parent compound (PC). Negative values indicate enhanced contacts compared to those of the parent
compound.
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FIG 6 Fit of P4 capping groups and the conformation of R123 reshaping the S4 pocket of HCV NS3/4A protease. P4-4 (a), P4-7 (b), and P4-6 (c)
cocrystal structures are shown with the D168A variant. The protease is in surface representation, with residues in and around the S4 pocket (white)
and the catalytic triad (yellow) side chains in stick representation. The contour of the S4 pocket is outlined in dotted lines. (d) Superposition of
P4-4, P4-7, and P4-6, as indicated, showing the alternate conformations of Arg123 (in respective color of the inhibitors) in the cocrystal structures.

in our structure of the D168A variant with P,P.-5, which also protrudes from the
substrate envelope, we observed both conformations of Arg123.

All P, inhibitors had enhanced total van der Waals (vdW) contacts compared to
levels of the parent compound (Fig. S2), maintaining extensive contacts with residues
155 to 158 (Fig. 5b). The largest enhancements over the parent compound occurred
within the S4 pocket, including interactions with Arg123, Arg155, and Val158 (Fig. 5¢).
The exception to this trend was P,-6 with the alternate conformation of Arg 123
(Fig. 6d). Most importantly, all of the P, inhibitors had reduced vdW contacts with
D168A relative to those of the parent compound, which likely underlies better potency
against this RAS.

Within the P,P. series, the binding modes of acetamide (P,Ps-A) and methyl
carbamate (P,P.-B) inhibitors were very similar (Fig. S3). The decrease in potency for the
P,Ps inhibitors can largely be attributed to the P5 capping elevating the P4 group out
of the S4 pocket. Therefore, as was the case for P,-2, the P,P; inhibitors also create a
frustrated S4 pocket (Fig. 7a). In spite of creating a frustrated pocket, the P,P5 inhibitor
series demonstrate a trend similar to that of the P, series, in which increasing the size
of the cycloalkyl P4 group led to better potency. Importantly, not only the size but also
proper orientation of the P4 group toward the S4 pocket was required for better
potency. When the cycloleucine was oriented away from the pocket (P,Ps-5), potency
decreased, while increasing the P4 group from cyclopentylglycine (P,Ps-3B) to cyclo-
hexylglycine (P,Ps-6) led to a 30-fold and 90-fold improvement against the WT and
D168A, respectively. The binding and interactions of designed inhibitors in the crystal
structures, particularly those of P,-7 and P,P.-6 (Fig. 7b and c), confirm the need for Pls
to optimally fill the S4 pocket to be more potent.

DISCUSSION

Drug resistance is a major obstacle in the design of inhibitors that remain active
against rapidly evolving drug targets. As is the case with HIV, in HCV the emergence of
resistance is due to low fidelity of replication, which leads to a heterogeneous viral
population and selection of resistant variants in infected patients. This evolution is
constrained by the requirement of the virus to replicate or by the biological function of
the viral proteins. Thus, exploiting evolutionarily conserved regions in the protease
active site is a rational inhibitor design strategy to decrease the probability of drug
resistance. The substrate envelope model offers a guide in structure-based drug design
to avoid interactions with residues that can mutate without compromising substrate
processing. Protrusion of inhibitors from the substrate envelope causes vulnerability to
resistance mutations. The pivotal D168A RAS in the HCV NS3/4A protease is one such
mutation that impacts all of the latest-generation PIs, including grazoprevir (29, 35). In
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FIG 7 Binding mode of P,P. inhibitors relative to that of the parent compound. (a) Superposition of cocrystal structures of the parent compound (PC), P,P.-2A,
P,Ps-4, P,P.-5, and P,P.-6, as indicated. The protease is in surface representation, and side chains of residues in and around the S4 pocket (white) and the
catalytic triad (yellow) are displayed as sticks. The R123 can adopt two conformations (R123, and R123,). In all of the structures, R123 is in the commonly
observed conformation (white; R123,) except for the P,P;-5 complex (green), where both conformations are observed (green). The contour of the S4 pocket
is outlined in black dotted lines. The cyan-to-pink arrow indicates the displacement of tert-butyl group in the parent compound relative to that in P,P;-2A, and
the green arrow shows a shift of the P5 extension away from the protease surface in P,Ps-5 relative to that of the other compounds. (b) Superposition of P,P.-2A
and P,P,-6 bound to D168A protease. The inhibitors are displayed as sticks with a mesh surface representation of the van der Waals surface. (c) Change in vdW
contacts (AvdW) relative to those of the parent compound (PC) for P,Ps-2A, P,P.-4, P,P.-5, and P,P.-6 with S4 residues.

this study, we designed, synthesized, and tested inhibitors that are both potent and
robust against D168A RAS and retain potency against the WT enzyme. Thus, we
demonstrate that the substrate envelope strategy can successfully guide drug design
to improve resistance profiles and potency.

While the most recent FDA-approved Pls (grazoprevir, voxilaprevir, and glecaprevir)
have improved resistance profiles, they are still susceptible to RASs, especially at
residues 156 and 168. All of these Pls have similar resistance profiles, which is not
surprising considering the high similarity in their structures with a shared scaffold and
P2-P4 macrocycle. Structurally, susceptibility to these RASs is due to the protrusion of
the P2-P4 macrocycle from the substrate envelope and a relatively small P4 capping
group constrained by the macrocycle. Moreover, the P2-P4 macrocycle limits similar
SAR explorations, as well as physically constraining the P4 group. Our P1-P3 macrocylic
scaffold both alleviated susceptibility to A156 RASs and enabled SAR exploration to
improve potency against the WT and D168 variant. The design strategy involved
introducing modifications to further fill the substrate envelope in the S4-S5 direction.
By systematically increasing the size and shape of the P4 group, we found that
optimally filling the S4 pocket is critical to achieving potency. Both the P, and PP,
series improved in potency over that of grazoprevir and the parent compound against
the highly resistant D168A variant, and inhibitors that best filled the substrate envelope
were the most potent. The most potent inhibitor from the P, series, P,-7, has a potency
similar to that of grazoprevir against WT protease but is 20-fold more potent than
grazoprevir against the D168A variant. Given that the HCV genotype 3 protease
contains natural polymorphisms including R123T, the Pls described here may need to
be further optimized against the GT3 protease as T123 can efface the S4 pocket.
Altogether, these results validated that the substrate envelope can be exploited as a
strategy in rational drug design to yield potent and robust inhibitors.

In addition to avoiding resistance, with the cocrystal structures determined we also
revealed the molecular basis for improved potency and the reason why some of the
designed inhibitors did not retain potency. Inhibitors with relatively poor potency did
not optimally fill the S4 pocket, causing a frustrated pocket that could not be filled by
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water, a protein side chain, or the inhibitor. This pocket was further destabilized in the
D168A variant. The molecular mechanism underlying relatively low potency and resis-
tance resembles cavity-creating mutations that destabilize protein structures (49).
Unsolvated nonpolar cavities can be unfavorable for ligand binding as well (50) since
they produce frustrated sites, and targeting these pockets, as we demonstrated with
the S4 pocket, can significantly increase inhibitor affinity. Employing a bump-and-hole
principle to increase steric complementarity between the ligand and target is common
in structure-based drug design (51). Identifying pockets/cavities to target without
introducing moieties vulnerable to resistance mutations is possible by a substrate
envelope-guided design strategy. Thus, to improve potency and resistance profile
simultaneously, we propose a substrate envelope-guided approach that optimally fills
active-site pockets.

In quickly evolving drug targets, having inhibitors that bind with high potency only
to the WT form of the target is not sufficient to achieving a robust drug, and
strategically decreasing susceptibility to RASs within the target is necessary to avoid
loss of activity due to resistance. Leveraging evolutionarily conserved regions of the
target, especially the substrate-binding interactions, is critical to design such inhibitors.
The substrate envelope model provides a rational and broadly applicable design
strategy toward this goal for the identification of inhibitors that are more robust against
drug-resistant variants.

MATERIALS AND METHODS

Inhibitor design and synthesis. The compounds were computationally modeled using Maestro
from Shrodinger, starting from the crystal structure of the parent compound bound to WT protease (PDB
ID 5V0J). Grazoprevir, the parent compound, and substrate envelope-designed analogs were synthesized
in-house using previously reported methods (see Scheme S1 in the supplemental material). Grazoprevir
was prepared according to a reported synthetic method (24). The parent compound and analogs were
synthesized using our convergent reaction sequence as previously described, with minor modifications
(see Text S1 for supplemental chemistry details) (29).

Expression and purification of NS3/4A constructs. The HCV GT1a NS3/4A protease gene described
in the Bristol Myers Squibb patent was synthesized by GenScript and cloned into a PET28a expression
vector (52). Cys159 was mutated to a serine residue to prevent disulfide bond formation and facilitate
crystallization. The D168A gene was engineered using a site-directed mutagenesis protocol from
Stratagene. Protein expression and purification were carried out as previously described (28). Briefly,
transformed Escherichia coli BL21(DE3) cells were grown in Tris-borate (TB) medium containing 30 pg/ml
of kanamycin antibiotic at 37°C. After cultures reached an optical density at 600 nm (ODy,,) of 0.7, they
were induced with 1 mM isopropyl-B-p-thiogalactopyranoside (IPTG) and harvested after 3 h of expres-
sion. Cells were pelleted by centrifugation, resuspended in resuspension buffer (RB) (50 mM phosphate
buffer, 500 mM NaCl, 10% glycerol, 2 mM B-mercaptoethanol [3-ME], pH 7.5), and frozen at —80°C for
storage.

Cell pellets were thawed and lysed via a cell disruptor (Microfluidics, Inc.) two times to ensure
sufficient DNA shearing. Lysate was centrifuged at 19,000 rpm for 25 min at 4°C. The soluble fraction was
applied to a nickel-nitrilotriacetic acid (Ni-NTA) column (Qiagen) preequilibrated with RB. The beads and
soluble fraction were incubated at 4°C for 1.5 h, and the lysate was allowed to flow through. Beads were
washed with RB supplemented with 20 mM imidazole and eluted with RB supplemented with 200 mM
imidazole. The eluent was dialyzed overnight (molecular-weight-cutoff [MWCQO] of 10 kDa) to remove the
imidazole, and the His tag was simultaneously removed with thrombin treatment. The eluate was judged
>90% pure by polyacrylamide gel electrophoresis, concentrated, flash frozen, and stored at —80°C.

Correction for the inner-filter effect. The inner-filter effect (IFE) for the NS3/4A protease substrate
was determined using a previously described method (53). Briefly, fluorescence endpoint readings were
taken for substrate concentrations between 0 uM and 20 uM. Afterward, free 5-carboxyfluorescein
(5-FAM) fluorophore was added to a final concentration of 25 uM to each substrate concentration, and
a second round of fluorescence endpoint readings was taken. The fluorescence of free 5-FAM was
determined by subtracting the first fluorescence endpoint reading from the reading at the second round.
IFE corrections were then calculated by dividing the free 5-FAM florescence at each substrate concen-
tration by the free 5-FAM florescence at zero substrate.

Determination of Michaelis-Menten (K,,,) constant. K, constants for GT1 and D168A protease were
previously determined (29). Briefly, a 20 uM concentration of substrate [Ac-DE-Dap(QXL520)-EE-Abu-vy-
[COO]AS-C(5-FAMsp)-NH,] (AnaSpec) was serially diluted into assay buffer (50 mM Tris, 5% glycerol,
10 mM dithiothreitol [DTT], 0.6 mM LDAO [N,N-dimethyldodecylamine N-oxide], and 4% dimethyl sul-
foxide), and proteolysis was initiated by rapid injection of 10 ul of protease (final concentration, 20 nM)
in a reaction volume of 60 ul. The fluorescence output from the substrate cleavage product was
measured kinetically using an EnVision plate reader (Perkin-Elmer) with excitation wavelength at 485 nm
and emission at 530 nm. Inner-filter effect corrections were applied to the initial velocities (V,) at each
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substrate concentration. Graphs of V, versus substrate concentration were globally fit to the Michaelis-
Menten equation to obtain the K, value.

Enzyme inhibition assays. For each assay, 2 nM NS3/4A protease (GT1a and D168A) was preincu-
bated at room temperature for 1 h with an increasing concentration of inhibitors in assay buffer (50 mM
Tris, 5% glycerol, 10 mM DTT, 0.6 mM LDAO, and 4% dimethyl sulfoxide, pH 7.5). Inhibition assays were
performed in nonbinding-surface 96-well black half-area plates (Corning) in a reaction volume of 60 u.l.
The proteolytic reaction was initiated by the injection of 5ul of HCV NS3/4A protease substrate
(AnaSpec), to a final concentration of 200 nM, and kinetically monitored using a Perkin Elmer EnVision
plate reader (excitation at 485 nm; emission at 530 nm). Three independent data sets were collected for
each inhibitor with each protease construct. Each inhibitor titration included at least 12 inhibitor
concentration points, which were globally fit to the Morrison equation to obtain the K; value.

Crystallization and structure determination. Protein expression and purification were carried out
as previously described (28). Briefly, the Ni-NTA-purified WT GT1a protein was thawed, concentrated to
3mg/ml, and loaded on a HiLoad Superdex75 16/60 column equilibrated with gel filtration buffer
(25 mM morpholineethanesulfonic acid [MES], 500 mM NaCl, 10% glycerol, and 2 mM DTT, pH 6.5). The
protease fractions were pooled and concentrated to 25 mg/ml with an Amicon Ultra-15 10-kDa filter unit
(Millipore). The concentrated samples were incubated for 1 h with 3:1 molar excess of inhibitor.
Diffraction-quality crystals were obtained overnight by mixing equal volumes of concentrated protein
solution with precipitant solution (20 to 26% polyethylene glycol [PEG] 3350, 0.1 M sodium MES buffer,
1 to 4% ammonium sulfate, pH 6.5) at room temperature (RT) or 15°C in 24-well VDX hanging-drop trays.
Crystals were harvested, and data were collected at 100 K. Cryogenic conditions contained the precip-
itant solution supplemented with 15% glycerol or ethylene glycol.

X-ray diffraction data were collected in-house using our Rigaku X-ray system with a Saturn 944
detector. All data sets were processed using HKL-3000 (54). Structures were solved by molecular
replacement using PHASER (55). Model building and refinement were performed using Coot (56) and
PHENIX (57), respectively. The final structures were evaluated with MolProbity (58) prior to deposition in
the Protein Data Bank (PDB). To limit the possibility of model bias throughout the refinement process,
5% of the data were reserved for the free-R value calculation (59). Structure analysis, superposition, and
figure generation were done using PyMOL (60). X-ray data collection and crystallographic refinement
statistics are presented in Table S1 in the supplemental material.

Construction of HCV NS3/4A substrate envelope. The HCV NS3/4A protease substrate envelope
was computed using a method previously described (28). The HCV viral substrates representing the
product complex 3-4A (residues 626 to 631 of full-length HCV PDB ID 1CU1), 4B/5A (chain D, PDB ID
3M5N), and 5A/5B (chain A, PDB ID 3M50) were used to construct the envelope. All structures were
aligned in PyMOL using the Ca atoms of protease residues 137 to 139 and 154 to 160. Following
superposition of all structures, Gaussian object maps at a contour of 0.5 were generated for each
cleavage product in PyMOL (28, 61). Three consensus maps were generated representing the minimum
volume occupied by any two viral substrates. The four consensus maps were summed together to
generate the final substrate envelope representing the shared van der Waals volume of the viral
substrates.

Structural analysis. Superpositions were performed in PyMol using the Ca atoms of active-site
residues 137 to 139 and 154 to 160 of the protease. The D168A-parent compound complex structure
was used as the reference for the alignments. The van der Waals contact energies between the
protease and the inhibitors were computed using a simplified Lennard-Jones potential, as described

previously:
o 12 o 6
V(rij) - 48|:<7> - <7> :|
r; ri

where r is the distance within 6 A between atom pairs i of the protease and j of the inhibitor, ¢ is the
well depth, and o is the van der Waals radius (62).

Data availability. Crystal structures determined in this study were deposited in the PDB under the
following accession numbers: 6UE3, 6PIZ, 6P1Y, 6DIT, 6DIU, 6PJ1, 6PJO, 6PIW, 6PIV, 6DIR, 6DIV, 6DIQ, 6PJ2,
6PIX, and 6PIU.
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SCHEME S1, PDF file, 0.1 MB.
FIG S1, PDF file, 0.2 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 0.1 MB.
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TABLE S2, PDF file, 0.2 MB.
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