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Dear Editor,

At the end of 2019, a new virus, called Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was

reported (Benvenuto et al. 2020; Zhu et al. 2020). The

sequences of SARS-CoV-2 reported by different research

groups demonstrated that it is a positive strand RNA virus.

The sequence of SARS-CoV-2 is approximately 30 kb

long, and could encodes spike, envelope, membrane,

nucleocapsid proteins, etc. (Phan 2020). These proteins are

responsible for replicating the viral genome as well as

generating nested transcripts that are used in the synthesis

of the viral proteins.

As of April 3 2020, there was more than 1 million cases

of SARS-COV-2 reported to World Health Organization

with 50,000 deaths globally. However, there have been no

effective measures to prevent or treat the severe compli-

cations caused by SARS-COV-2.

RNA interference (RNAi) is a native and specific post-

transcriptional gene silencing mechanism (Bobbin and

Rossi 2016). The progress initiated by double-stranded

RNA (dsRNA) to manipulate gene expression (RNAi) has

been proved highly effective, at least 10 times more

effective than either using sense or antisense RNAs alone

(Chalk and Sonnhammer 2002). The RNAi triggered by

dsRNA is a phenomenon of homology-dependent gene

silencing and may play certain roles in affecting the pro-

cess of virus expression and proliferation. Recently, several

reports have demonstrated the use of RNAi in blocking

virus infection and replication in animal cells (Ge et al.

2003), suggesting that the small interfering RNA (siRNA,

21–25 nt long) plays an important role in RNAi-related

gene silencing pathways (Elbashir et al. 2001). Progress

has been made in anti-HIV and anti-HCV drug design by

applying the method of RNA interference (Wilson et al.

2003). The effectiveness of siRNA for inhibiting SARS

coronavirus genes expression was also demonstrated by Shi

et al. (2005). Besides silencing the targeted genes, the

siRNAs can also inhibit the replication of the virus. For

example, it has been demonstrated that, by targeting the

Leader sequence of SARS-CoV, the siRNA demonstrate a

strong inhibitory effect on SARS-CoV replication (Li et al.

2005). More recently, a CRISPR/Cas13d system was pro-

posed for the treatment of SARS-COV-2 (Nguyen et al.

2020). These results indicate that both RNAi and CRISPR/

Cas technology might become potential therapeutic

approaches for treating viral diseases.

Accordingly, as complementary to the CRISPR/Cas13d

system, we proposed an RNAi based strategy that might

interfere the gene expression and block the replication of

SARS-COV-2. The main idea of this strategy is to search

for siRNA targets in the virus genome, which will be

recognized and cleaved by the RNA-induced silencing

complex (RISC).

In this work, we performed theoretical predictions of the

potential siRNA targets in the virus genome. We firstly

collected the representative SARS-COV-2 genome

(MN908947, https://www.ncbi.nlm.nih.gov/nuccore/

MN908947) and the mutation information of the SARS-

COV-2 genomes from the 2019nCoVR database (Zhao

et al. 2020), which is available at https://bigd.big.ac.cn/

ncov/. The 2019nCoVR database not only integrates

genomic and proteomic sequences of SARS-COV-2 from

different resources, but also provides a series of scientific
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services, such as variation visualization, variation annota-

tions, AI diagnosis, etc.

Next, we folded the SARS-COV-2 genome

(MN908947) in a window of 3000 nucleotides with the step

of 1500 nucleotides by using RNAstructure (version 4.5)

program (Bellaousov et al. 2013). Only those 21–25 nt

long non-base-paired regions can be served as the potential

targets of siRNA (Huang et al. 2008), which is called free

segments. The long non-base-paired region containing one

or several short stems (total length of stems 1–3 base pairs),

called quasi-free segments (Ji and Luo 2004), was also

considered in the present work.

A given RNA sequence segment may have different

configurations of secondary structure with lower free

energy. The total frequency of a segment occurring in non-

base-paired region of different folds (20 folds are selected

for each segment) is called appearance rate (AR). If each

quasi-free case is multiplied by a reduced factor in

numeration, namely, by 0.9 for 1 base pair, 0.8 for 2 base

pair, and 0.7 for 3 base pairs (base pairs may be continuous

in structure or disconnected) then the total number of folds

is called reduced appearance rate (RAR) (Ji and Luo 2004).

To guarantee the safety of the designed drug, we further

performed alignment of the free and quasi-free segments

with human genome (hg 38) by using BLAST and deleted

the matching ones in siRNA target candidates.

Finally, we obtained nine potential siRNA targets in the

SARS-COV-2 genome (MN908947). The information

about their position and region in the virus genome, length,

AR and RAR was provided in Table 1.

In addition, we also analyzed the mutations of the target

sequences by comparing all the 143 high quality strains in

the 2019nCoVR database (as of March 15, 2020). SNP

were found in two of the nine target sequences (indicated

by bold character in Table 1). For the potential target

‘AAUAGUUUAAAAAUUACAGAAGA’, only one SNP

was found in the strain BetaCoV/Wuhan/HBCDC-HB-05/

2020, which is a coding_sequence_variant that changes the

coding sequence. For ‘CAACUAUAAAUUAAACA-

CAGA’, the SNP was found in the strain BetaCoV/Sin-

gapore/6/2020 and BetaCoV/Singapore/2/2020,

respectively, which is a missense_variant that changes G to

A resulting in a different amino acid sequence. These

results indicate that the selected targets are conserved

among the existing SARS-COV-2 genomes.

Although there are still some challenges that needed to

be overcome for the clinic applications of siRNA, pro-

gresses have been made to solve the fundamental problems,

such as off-target effects and effective delivery. For

example, the position-specific chemical modification of

siRNAs could can significantly reduce off targeting; safe

and effective in vivo delivery systems have also been

developed, such as nanoparticles, cationic lipids, antibod-

ies, cholesterol, aptamers delivery strategies. Therefore, we

hope that the above results would be useful in drug design

and treatments against SARS-COV-2.
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Table 1 siRNA target sequence in plus strand of coronavirus (MN908947).

Target 50–30 Position Region Length AR (RAR) Number of mutation strain

AAUAGUUUAAAAAUUACAGAAGA 6509–6531 Orf1ab 23 20 (20) 1

UCCUUCUUUAGAAACUAUACA 7168–7188 Orf1ab 21 18 (12.6) 0

UGGUUUCACUACUUUCUGUUU 11,997–12,017 Orf1ab 21 15 (10.5) 0

UUCACUACUUUCUGUUUUGCU 12,001–12,021 Orf1ab 21 15 (10.5) 0

AUGUCAUCCCUACUAUAACUCAAA 15,041–15,064 Orf1ab 24 18 (18) 0

UUAAAAUAUAAUGAAAAUGGA 22,391–22,411 S 21 18 (12.6) 0

CUUGAAGCCCCUUUUCUCUAUCUUU 25,693–25,717 Orf3a 25 18 (12.6) 0

CAACUAUAAAUUAAACACAGA 27,128–27,148 M 21 19 (19) 2

UUGAAUACACCAAAAGAUCACAUU 28,688–28,711 N 24 18 (18) 0

The bold and underlined characters indicate the SNP found in different strains.
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