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Abstract

Surveillance systems are commonly used to provide early warning detection or to assess

an impact of an intervention/policy. Traditionally, the methodological and conceptual

frameworks for surveillance have been designed for infectious diseases, but the rising

burden of non-communicable diseases (NCDs) worldwide suggests a pressing need for

surveillance strategies to detect unusual patterns in the data and to help unveil important

risk factors in this setting. Surveillance methods need to be able to detect meaningful

departures from expectation and exploit dependencies within such data to produce unbi-

ased estimates of risk as well as future forecasts. This has led to the increasing develop-

ment of a range of space-time methods specifically designed for NCD surveillance.

We present an overview of recent advances in spatiotemporal disease surveillance for

NCDs, using hierarchically specified models. This provides a coherent framework for

modelling complex data structures, dealing with data sparsity, exploiting dependencies

between data sources and propagating the inherent uncertainties present in both the

data and the modelling process. We then focus on three commonly used models within

the Bayesian Hierarchical Model (BHM) framework and, through a simulation study, we

compare their performance. We also discuss some challenges faced by researchers

when dealing with NCD surveillance, including how to account for false detection and

the modifiable areal unit problem. Finally, we consider how to use and interpret the com-

plex models, how model selection may vary depending on the intended user group and

how best to communicate results to stakeholders and the general public.
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The Importance of Non-communicable
Diseases

According to the World Health Organization (WHO), sur-

veillance is the ‘ongoing systematic data collection, analy-

sis and interpretation and dissemination of information in

order for action to be taken’.1 National public health agen-

cies, such as the US Centers for Disease Control and

Prevention (CDC) and Public Health England (PHE), rou-

tinely carry out surveillance data analysis to provide early

warnings of unexplained changes in incidence patterns of

diseases as well as to aid policy formation and resource al-

location.2 Specific examples include the international influ-

enza monitoring system which started in 1948 and is now

distributed in 82 countries,3 the HIV and AIDS Reporting

System (HARS) used by PHE4 and the National HIV

Surveillance System used by CDC.4,5

To date, the majority of methods and models commonly

used in public health surveillance are designed for monitoring

cases of infectious diseases.6 Due to the rising burden of non-

communicable diseases (NCDs) worldwide, there is a press-

ing need to implement surveillance strategies to detect trends,

highlight unusual changes and consequently assist in outlin-

ing emerging NCD risk factors. NCD surveillance shares

many objectives with infectious disease surveillance, includ-

ing generating information to guide public health action and

detecting the health impact of environmental exposures or of

environmentally driven disease vectors; however, it also

presents some different methodological challenges.7,8

Health data contain both a time and a space component.

Surveillance methods must be able to capture spatial and

temporal patterns in both lifestyle/environmental exposures

and health outcomes. Here, we present an overview of the

approaches developed for spatiotemporal disease surveillance

of NCDs. We focus on model-based methods and, among

these, on Bayesian hierarchical models (BHMs) which can

naturally accommodate complex data structures, as well as

propagate uncertainty due to the data themselves and the

modelling process.

In this section, we first discuss how data availability is

one of the key challenges in surveillance studies, before giv-

ing a generic overview of test-based approaches for NCD

surveillance. We then focus on BHMs and describe disease

mapping and mixture-based models for anomaly detection.

Later we introduce the computational aspects of the BHM

modelling framework for NCD surveillance; then we run a

simulation study to evaluate advantages and drawbacks of

the approaches presented in detecting areas deviating from

the expected trend. Finally, in the Discussion, we conclude

with a summary and some remaining discussion points.

Data availability

One of the major challenges of surveillance studies is the

availability of suitable data. This applies to both infectious

disease and NCD surveillance. It is a particularly impor-

tant issue in low-income settings because surveillance stud-

ies often need to rely on information from surveys, and the

lack of financial resources may make comprehensive cover-

age of data sources (e.g. mortality/cancer registries) over

an entire country infeasible.9

In the past 15 years, a number of Health and Demographic

Surveillance Systems (HDSS) have been established in low-

income settings to provide a reliable source of health data,

and are now linked together through the International

Network for the continuous Demographic Evaluation of

Populations and Their Health (INDEPTH10). Such continu-

ous surveys are an invaluable source of data, but researchers

face issues related to population representativeness. A recent

study proposed a Bayesian probabilistic clustering method to

evaluate the network representativeness in terms of

Key Messages

• There is increasing recognition of the importance of surveillance for NCDs.

• Spatiotemporal variation in health outcomes and lifestyle and environmental exposures needs to be explicitly mod-

elled in order to reduce bias and uncertainty.

• Hierarchical modelling provides a coherent framework within which spatiotemporal dependencies can be explicitly

modelled with integration of the uncertainties associated with both the data and the modelling process.

• In a simulation study, we found that mixture models designed for detection perform better than standard disease mapping

models. However, attention should be paid to the choice of threshold, as this affects the results. It is recommended that a sim-

ulation study based on the characteristics of the data in hand is run each time for the selection of suitable threshold values.

• Current research challenges in this area include: the use of data from multiple sources at different spatial and tempo-

ral scales and with different sources of bias and uncertainty; computationally intense processes; and control for falsei-

positive findings.
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socioeconomic and environmental variables in sub-Saharan

Africa, identifying areas of poor coverage in the existing net-

work and using predictive probability distributions to suggest

the best location for new HDSS sites.11

Even in high-income settings where administrative

resources are available for the entire population, there may

be issues regarding the population at risk, used as denomi-

nator in the risk estimates. In small-area studies on mortal-

ity or hospital admissions, the denominator is usually the

resident population in each administrative area, typically

estimated from national census statistics, but there may be

estimation problems for intercensual years. In addition, it

is not straightforward to define the denominator where the

interest is for less-defined geographies, such as the catch-

ment areas of clinical centres (e.g. general practices in

England).

Furthermore, the availability of administrative or health

data may become more limited: for instance, within the

UK National Health Service, patients can now decide not

to share their medical records for research purposes. This

clearly impacts on spatial coverage and could potentially

lead to biased statistical inference if the data gaps are clus-

tered in space and/or if they differentially affect specific

population groups (e.g. elderly, more deprived).12

Test-based methods

Methods for NCD surveillance have largely been based

around the idea of detecting whether the outcome of

interest shows a particular behaviour in a defined subset

(e.g. an area, period of time, or combination of space and

time) when compared with the whole study region.

Perhaps the most popular test-based methods used for

NCD surveillance are the scan statistics. These were

developed originally in the temporal setting only13; here,

a fixed length ‘scanning window’ is passed over the time-

series data with the number of cases in the window being

recorded. A log likelihood ratio (LLR)14 is calculated for

each interval, and the test statistic is defined as the maxi-

mum LLR over all intervals. This idea was extended to a

spatial version of the scan statistic,15 which was later

further extended to the spatiotemporal setting.16 In this

case, the scanning window is represented by a cylinder,

where the diameter specifies the spatial dimension and the

height the temporal dimension. An additional version

of spatial scan statistic was proposed to account for

correlation across spatial units, which was not considered

before.17 Scan statistics have been extensively applied to

numerous health care applications. Part of their popular-

ity lies in the availability of free user-friendly SaTScanTM

software [https://www.satscan.org/]. Recent applications

of SaTScan include the identification of signals for

colorectal cancer,18 drug activity,19 criminality20 and bat

activity.21

A further development has been the detection of spatial

variations in temporal trends (SVTT). These methods

extend the scan statistics to estimate the time trend via a

regression-based model specifying either a linear or a qua-

dratic function. The quadratic SVTT method has, for

example, been applied to cervical cancer data in women in

the USA from 1969 to 1995, highlighting areas where the

risk was significantly different from the rest.22

Test-based methods such as scan statistics can only

answer questions related to the deviation from the null hy-

pothesis. An alternative approach is to explicitly model the

spatiotemporal structure in the data and to assess whether

differences between observed data and those predicted

from the model provide evidence of anomalies. There are

a number of advantages to adopting a model-based

approach over a test-based method, including the ability

to: (i) have more statistical power to handle sparsity in the

observed disease counts; (ii) explore more subtle depar-

tures from the expectation; (iii) account for the spatial and

temporal correlation that is typically evident in health

data; (iv) ‘borrow’ information over space and time, there-

fore increasing the precision of the estimates generated;

and (v) include covariates that might explain some of the

spatiotemporal variability.

Hierarchical Models and Likelihood-based
Inference

Hierarchical models (HM) are able to deal with complex

data structures, to exploit dependencies between data sour-

ces and to propagate the inherent uncertainties that are

present in both the data and the modelling process. In the

current context, an HM combines two elements: a process

model that describes how disease risk varies over space

and time, typically involving both extant covariate effects

and a latent spatiotemporal stochastic process; and a data

model that describes the statistical properties of the avail-

able health outcome data conditional on the realization of

the underlying risk process. Both elements are specified up

to the values of a set of unknown parameters, which can

be estimated by Bayesian or non-Bayesian versions of

likelihood-based inference, typically implemented using

Markov chain Monte Carlo integration and Monte Carlo

likelihood maximization methods, respectively. In addition

to estimating parameters, the scientific goals of health

surveillance include prediction of relevant properties of

the unobserved risk surface as it evolves in real time.

Parameters and latent stochastic processes are fundamen-

tally different things, but within the Bayesian paradigm

they are both treated as unobserved sets of random
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variables, and the operational calculus of estimation and

prediction coalesces. In what follows, we use BHM as a

shorthand for Bayesian inference applied to a hierarchi-

cally specified model.

Space-time disease mapping

A class of BHMs which has been extensively used for the

analysis of NCD data comprises the so-called disease map-

ping models (DM). These are hierarchical models in which

the latent component of area-level disease risk is modelled

as a spatially discrete Markov random field23 and, depend-

ing on the sampling design, the conditional distribution

of area-level case-counts is Poisson or Binomial.24–27

Whereas the objectives of these are descriptive, they have

been used as the basis for the development of detection

models, which are framed in a surveillance perspective.

Disease mapping models have been extensively used to esti-

mate and visualize the spatial or spatiotemporal distribu-

tion of a disease (see for instance Diggle and Giorgi, Adam

and Fenton, and WHO9,21,28).

Spatial dependence in the latent component of a DM is

modelled by specifying neighbourhood relationships

among the area-level risks, the most widely used definition

being that two areas are neighbours if they share a com-

mon boundary. A common choice for capturing temporal

dependence is a random walk prior,29 but extensions to in-

corporate spatiotemporal interactions among neighbouring

areas and time points have also been developed.30 This

framework can also account for factors known to modify

spatial and temporal trends that, in the context of NCDs,

will include demographic variables (e.g. age/sex/ethnicity)

and social economic status. Random effects can be

assigned for each factor (with appropriate priors) and for

interactions if required. An example is provided by Goicoa

et al.31 who proposed a space-time-age model to study

prostate cancer incidence across 50 provinces in Spain for

nine age groups over 25 years, accounting for all pair-wise

interactions. The authors used ranking of all provinces

according to mortality rates to identify high-risk groups.

A key characteristic of BHMs is the ready availability of

joint posterior/predictive distributions for parameters/latent

processes and whatever of their properties are relevant to the

public health questions of interest. In the context of disease

mapping, this leads to a spatial, temporal and spatiotemporal

risk distribution that researchers can map, in terms of point

estimates but also of associated measures of uncertainty. For

the latter, a common choice is the predictive probability that

the relative risk exceeds a prespecified threshold.32,33

Exceedance probabilities can be used to flag areas and/or

time points characterized by increased risk that may then be

further investigated. In this way disease mapping, though not

formally a surveillance method, can be used as a descriptive

tool for the identification of areas and/or time periods with

marked deviation from expectation. It is important to note

that the strong smoothing effect of disease mapping models

leads to conservative risk estimates, hence to a small number

of false-positive findings, at the expense of a low power for

detecting high-risk areas with low signal. To minimize that,

an extensive simulation was run to find the best threshold on

the exceedance probability scale to classify an area as high

risk.33 The authors showed that a good trade-off between

false-positive and false-negative rates is achieved with a prob-

ability above 0.8 for a relative risk to be higher than 1; how-

ever, this largely depends on the number of expected counts,

the number of areas and time points and the spatial risk.34

As an example of the typical disease mapping output,

Figure 1 shows the incidence of malignant melanoma in

males, at the census ward level in England and Wales over

the period 1985–2009, from the Environmental and

Health Atlas produced by the UK Small Area Health

Statistics Unit (SAHSU).36 The map on the left presents the

spatial distribution of the posterior relative risk mean esti-

mates, and the map on the right plots the posterior proba-

bility that the corresponding relative risk is above 1, using

the categorization suggested in Richardson et al.33

Disease mapping models can be extended to two or

more outcomes that might share spatial (and temporal)

patterns, for instance due to common risk factors. A joint

model allows information to be borrowed across the out-

comes, thus helping stabilize estimates, particularly when

the outcomes are rare. The shared component model,37

originally developed for two diseases, includes a common

component (likely to reflect common risk factors) and a

disease-specific one, which can point towards specific risk

factors otherwise masked in a single disease model. It was

applied to male and female lung cancer38 and later ex-

tended to jointly model multiple diseases,30,39 with an ap-

plication on oral cavity, oesophagus, larynx and lung

cancers in males in the 544 districts of Germany from

1986 to 1990. Recently, it was further extended to jointly

model age- and gender-specific diseases.40

An alternative multivariate specification considers spatial

and temporal terms explicitly, modelling the correlation

among the outcomes in space/time. As an example, road traf-

fic accidents characterized by different severity were analysed

over the period 2005–11 at the ward level in England while

detection of high-risk areas was performed using exceedance

probabilities of the area ranks based on accident rates.41

Space-time anomaly detection

The standard disease mapping approach has been used in-

formally to detect anomalies (unusual observations) in
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space and time, i.e. areas and/or time points with trends

different from the expected ones, adding a space-time in-

teraction parameter into the latent process.38 The detection

of anomalies may indicate the presence of an emerged lo-

calized risk factor, the impact of an intervention, or differ-

ences in the quality of data, such as misdiagnosis of a

disease, and under- or over-reporting of cases.

Mixture models have been proposed as a formal approach

to anomaly detection. In particular, Abellan et al.42 devel-

oped a BHM model (termed STmix) where a mixture of two

normal distributions characterized by different variances is

specified for the space-time interaction. Then, the interaction

is used to classify areas as common or as unusual. The

authors performed a simulation study to compare the method

against the standard disease mapping approach. The results

of the simulation study showed that the standard approach

was not able to capture the variability in the spatiotemporal

interactions and therefore it was not able to distinguish be-

tween common and unusual areas. This is due to the exces-

sive smoothing following the assumption of a common

variance across all the areas and time points. STmix was ap-

plied to mammography screening data in Brisbane, Australia,

at the statistical local area (SLA) level from 1997 to 2008, in

order to identify SLAs whose temporal trend exhibited vola-

tility.35 A well-known drawback of this approach is its

limitation in incorporating specific time patterns, for example

step changes that could signal the emergence of a new risk

factor.

Another mixture model, proposed by Li et al.,43 accom-

modates this issue. Here, the mixture specification of the

method is defined directly on the relative risks in space and

time, to allow for detection of areas with unusual time trends

rather than space-time deviations. In particular, two alterna-

tive models are considered: the first one assumes a global

time trend for all areas (common trend), and the second esti-

mates a time trend for each area independently (area-specific

trend). Through a simulation study, the authors showed bet-

ter performance in terms of both sensitivity and proportion

of false-positives compared with SaTScan, on a wide range of

scenarios. This approach, named BaySTDetect, was applied

to detect unusual trends for asthma and chronic obstructive

pulmonary disease at Clinical Commissioning Group (CCG)

level in England (211 in total) on monthly data between

August 2010 and March 2011, across mortality, hospital

admissions and general practice drug prescriptions.44

To illustrate the typical output obtained from this model,

Figure 2 shows the area-specific time trends of the CCGs

which were detected as unusual, plotted against the national

trend. Other applications of this method include burglary

data,45 grey whale abundance46 and mammography data.35

Figure 1. (a) Area-specific posterior mean relative risk of malignant melanoma. Source: Environment and Health Atlas.35 (b) Area-specific posterior

probability that an area is characterized by a relative risk of malignant melanoma above 1. Source: Environment and Health Atlas.42
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This method was further extended to increase its flexibil-

ity by accounting for different space-time patterns in the un-

usual observations, as well as by allowing for longer time

series to be analysed. This improved method, termed

FlexDetect, had a better performance when compared with

the original method through an extensive simulation study.47

Multiple testing

As surveillance studies involve evaluating trends for different

health outcomes, many areas and different time periods at

the same time, false detections are likely to occur by chance.

Bonferroni correction has been extensively used in epidemiol-

ogy to correct for multiple testing, particularly in omics stud-

ies,48,49 but it is well known that this approach leads to

conservative results. Benjamini and Hochberg first introduced

an alternative index, the false-discovery rate (FDR)50 as the

expected value of the rate of false-positive findings among all

rejected hypotheses, and used it in a frequentist approach.

The same method was suggested in the context of descriptive

spatial epidemiology, to obtain areas characterized by a

Standardised Mortality Ratio different from 1.51 Even in the

Bayesian setting, FDR rules were suggested by many

authors.52–56 The mixture model proposed by Li et al. uses

the specification suggested by Newton et al.,53 later used by

Ventrucci et al.57 in order to account for multiple testing. The

authors base the FDR statistic on the posterior model proba-

bility, which represents the likelihood of the space-time unit

investigated to follow the common trend model, i.e. to ex-

hibit a risk pattern not deviating from the expected one.43

Whereas the importance of controlling for multiple testing

is clear in classical significance testing, the analogous problem

in predictive setting is less of a concern.58 One reason for this

is that local predictions from hierarchical models are natu-

rally smoothed towards the global mean, making these conse-

quently less prone to false-positive findings than unsmoothed

area-by-area interval estimates. Another is that the Monte

Carlo sampling method allows the computation of whatever

joint probability statements are required. For example, if the

public health question is whether current risk exceeds an

agreed acceptable level in all areas that do, and in no areas

that do not, meet a particular criterion such as adherence to a

particular advisory policy, the correct predictive probability

to attach to this statement can be calculated.

Computational Aspects

One of the biggest challenges researchers face when analy-

sing large and complex space-time datasets is their compu-

tational burden. This applies particularly in the small-area

Figure 2. (a) Relative risks and 95% credible intervals of hospital admissions for asthma and COPD for the national (common) temporal trend and for

Harrow CCG, classified as unusual. (b) Relative risks and 95% credible intervals of hospital admissions for asthma and COPD for the national (com-

mon) temporal trend and for Hillingdon CCG, classified as unusual.
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context, where the number of space-time units investigated

can vary substantially depending on the chosen spatial and

temporal resolution, from a few hundreds to hundreds

of thousand units, particularly when several outcomes

are jointly analysed (for instance, Foreman et al.59 consid-

ered jointly deaths/age/sex specific space-time trends in the

USA).

The degree of complexity of the model (e.g. the number

of parameters) also impacts on the computational burden,

for instance in terms of convergence time when running

MCMC simulations. Under the Bayesian paradigm, the

choice of the prior will also influence convergence; an in-

formative prior, assuming that there is no conflict with the

data, will normally speed up convergence, whereas a vague

prior will most likely lead to longer time to reach conver-

gence. Finally, the choice of software used for the analysis

will affect the model running time. The user-friendly soft-

ware BUGS (Bayesian inference Using Gibbs Sampling)60

has been traditionally used for Bayesian inference using

MCMC methods; however, it can be slow when high-di-

mensional data and/or complex models are used. Other

MCMC-based methods, such as Stan61 and NIMBLE,62

are currently attracting attention due to their active devel-

opment community. An alternative way of dealing with

computational limitations is to use approximative meth-

ods; for instance INLA (Integrated Nested Laplace

Approximations)63 has been successfully used for running

space-time disease mapping models (e.g.31,64) however,

this method is somewhat less flexible than the aforemen-

tioned ones and, as it relies on Normality of the latent pro-

cess, is not able to deal with mixture distributions.

Computationally intensive BHMs benefit from high-

performance computing clusters to speed up computation

times, but these are not necessarily required. For instance

in road traffic accidents,41 data of different severity in

England were analysed simultaneously at the ward level

(�8000) over 9 years (for a total of around 150 000 units

and 32 000 parameters); the analysis was run in

OpenBUGS and took 20-27 h on an Intel Core processor at

3.40 GHz with 8 Gbytes of random-access memory. On a

much bigger scale, a US small-area study considered more

than half a million units and nearly 6000 parameters59; the

analysis was implemented in Stan using higher perfor-

mance computing (HPC) clusters for faster calculations.

Simulation-based Example

Considering the multitude of space-time methods available

as described above, it is important to formally evaluate

their respective detection performance. In this paper we

carried out a simulation study to formally evaluate the de-

tection performance and compare DM, STmix and

FlexDetect (see description of the models in Space-time dis-

ease mapping). Following the design initially proposed by

Li et al.,43 and later used by Boulierei et al.,47 we used real

asthma hospital episode statistics (HES) data to generate

50 simulated datasets. The asthma dataset was obtained

from SAHSU, Imperial College London, and consisted of

disease counts across 211 Clinical Commissioning Groups

(CCG) in England for 15 months, from January 2010 to

March 2011. The 50 simulated datasets were generated to

closely resemble the patterns seen in the real dataset. A

standard spatiotemporal model27 was first fitted to the real

data, and the obtained parameters were selected for the

generation of the simulated data. We selected 15 areas to

deviate from the overall time trend over the last five time

points. For these 15 areas, we selected the signal to be in-

creased by log(2) for time points 3 and 10, and decreased

by log(2) for time points 6, 12 and 15 out of the total 15

time points. In this way, we ensured that a realistic sce-

nario was used (for more details see Boulieri et al.,47 and

Supplementary materials, Scenario 1, available as

Supplementary data at IJE online). The R code used for the

data simulation, together with the three models written in

BUGS, can be found on [https://github.com/aretib/

bayesSTmodels.git].

The results are presented in Table 1 in terms of four dif-

ferent performance measures. We defined TP as the num-

ber of true-positives, FP as false-positives, TN as true-

negatives and FN as false-negatives, respectively.

Sensitivity measures the ability of the model to correctly

classify an unusual observation as such, defined as TP/

(TPþFN), and similarly specificity measures the ability of

the model to correctly classify a common observation as

such [TN/(TNþFP)]. In addition, it is crucial to control

the proportions of observations that are falsely classified

as unusual [false-discovery rate (FDR)] and common [false

omission rate (FOR)], respectively; these should typically

not exceed a value of 0.05, specified based on the standard

P-value threshold. We consider: (i) two different thresholds

for DM: 0.8 as commonly used and previously described

(DM1): a more conservative threshold of 0.9 (DM2), un-

der the assumption that false-positives are more important

to minimize than false-negatives; and (ii) two different

rules for STmix as presented in the original paper: an area

is modified if at least for one time point the space-time in-

teraction has a probability greater than 0.8 to be above 1

(STmix1); an area is modified if for at least three time

points the space-time interactions have an average proba-

bility greater that 0.8 to be above 1 (STmix2).

As can be seen, the disease-mapping approach using the

standard threshold of 0.8 on the posterior probability scale

(DM1) shows the worst performance. As expected, the

method is able to detect nearly all unusual areas, with a
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sensitivity of 0.979; however, roughly 79% of the detected

findings are not actually unusual (FDR ¼ 0.785) (Table 1).

Fixing a 0.9 threshold (DM2), FDR decreases, despite still

being above the standard threshold of 0.05, while at the

same time sensitivity also decreases (0.660) (Table 1).

The two mixture models returned more comparable

performances. STmix1 gave no false-positive results (FDR

¼ 0) and a sensitivity of 0.773, whereas for STmix2 sensi-

tivity increased to 0.969, but at the same time a much

higher proportion of false-positives was detected (FDR ¼
0.220). The results of FlexDetect provided a balance be-

tween the two extremes, giving a proportion of FDR equal

to 0.019 and a sensitivity of 0.796. In terms of specificity

and FOR, both STmix and FlexDetect behave similarly.

Differences across the competing models were observed

in terms of computation time, an important factor in

assessing their performance. All models were run in an

Intel Xeon Core processor 3.40 GHz with 125GB RAM.

Each of the 50 simulations took on average 33.4 min for

models DM1 and DM2, 39.2 min for models STmix 1 and

STmix2 and 66.8 min for FlexDetect. The simulation

results suggest that using disease mapping (DM) for sur-

veillance purposes is not appropriate and that one of the

mixture models designed for detection should be used in-

stead. Between STmix and FlexDetect, it is worth mention-

ing that STmix can only identify areas where anomalies

are present, and not the time points when these occur.

In addition to this, its detection mechanism does not con-

sider specific patterns in the time trends. These can be

accommodated by FlexDetect, which however is more

computationally intensive. Also note that mixture models

notoriously have problems converging, suffering from

issues such as label switching, which lead to multimodal

posterior distributions. Both the detection methods deal

with this through the modelling specification,42 constrain-

ing the variance of the modified areas to be larger than

that of unmodified areas, or through informative priors on

the variances of the two components.43

Discussion

In this paper we have presented an overview of the main

statistical methods for disease surveillance in the context of

NCDs, both from a test-based and model-based perspec-

tive and with a particular focus on the BHM approach,

which provides a flexible framework to allow for complex

data dependencies present in surveillance studies. Through

a simulation study we showed that disease mapping is not

satisfactory when looking for data anomalies, whereas the

two methods based on mixture models provide a better

compromise between detecting areas characterized by a

deviation from the expected trend and limiting false-posi-

tives. Note that our perspective is on methods that detect

single areas, rather than clusters of adjacent spatial units.

If the interest lies in detection in the presence of spatial

proximity, recent methods have been developed to com-

bine clustering with spatial smoothing, see for example

Anderson et al.65 and Adin et al.66

An interesting aspect of the general hierarchical frame-

work presented is that it can easily incorporate forecasting

of the disease risk, which is relevant in the context of epi-

demiological surveillance to evaluate the need for resour-

ces/policies/costs in specific areas and at future time points.

Some work in this area includes Foreman et al.59 who, us-

ing annual vital statistics for 1974–2011 at the US state

spatial resolution, forecasted mortality up to 2024; and

Ugarte et al.67 used P-splines to forecast cancer mortality

counts in Spanish regions for 2009–11 using data from

1975–2008.

Most of the work presented is based on routinely col-

lected data for retrospective studies. However, there is in-

creased importance of early warning detection, so that

Table 1. Posterior mean and 95% credible intervals for the competing models in the simulation study. We compared the detec-

tion performance of disease mapping (DM1, DM2), the mixture model on the spatiotemporal interaction (STmix1, STmix2) and

the mixture model on the spatiotemporal rates (FlexDetect)

FDR FOR Sensitivity Specificity

DM1 0.785 0.002 0.979 0.722

(0.773, 0.800) (0.000, 0.006) (0.933, 1.000) (0.695, 0.744)

DM2 0.191 0.026 0.660 0.987

(0.100, 0.267) (0.020, 0.030) (0.600, 0.733) (0.981, 0.995)

STmix1 0.000 0.017 0.773 1.000

(0.000, 0.000) (0.010, 0.024) (0.683, 0.867) (1.000, 1.000)

STmix2 0.220 0.002 0.969 0.978

(0.167, 0.300) (0.000, 0.005) (0.933, 1.000) (0.969, 0.985)

FlexDetect 0.019 0.005 0.796 1.000

(0.015, 0.031) (0.004, 0.006) (0.763, 0.827) (0.999, 1.000)
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unusual behaviour can be detected at the earliest possible

time. Syndromic data, such as primary care data, drug pre-

scriptions, nurse calls and home visits, which are indicative

of a potential anomaly, may provide an additional level of

information leading to a detection event before the data

aberration occurs.68 Diggle et al.69,70 analysed NHS non-

emergency telephone calls reporting symptoms of gastroin-

testinal diseases. The authors specified a spatiotemporal

point process on the location and time of the individual

calls and modelled the spatial and temporal dependency on

the intensity of the process. They used exceedance proba-

bilities to define maps of potential outbreaks. Another ex-

ample can be found in Morrison et al.71 who forecasted

multiple measures of healthcare use (including physician

visits and prescriptions of asthma medication) within

British Columbia, Canada, where seasonal wildfires pro-

duce high levels of air pollution, significantly affecting

population health. Here, the focus was on efficient, near

real-time, computation which was achieved using INLA to

perform approximate Bayesian inference.

Potentially syndromic information can also be linked

with routine data such as Hospital Episode Statistics and

can provide predictors in order to obtain a better descrip-

tion of the data and more accurate one-step-ahead fore-

casts. Lately work has been done to take advantage of the

rich data from social media in a surveillance perspective.

For instance, Dai et al.72 linked tweets with the American

Community Survey and the Behavioral Risk Factor

Surveillance System to study asthma prevalence at the state

level in the USA. The authors claimed that the inclusion of

social media data could be a cost-effective real-time health

detection system. However, there may be challenges in fu-

ture due to selective data availability following perceived

concerns about data security and confidentiality, as dem-

onstrated by the newly implemented NHS National Data

Optout Programme. This will potentially lead to bias in

population representativeness due to non-random missing-

ness12 which will need to be addressed using advanced sta-

tistical methods, for instance through the integration of

data from appropriate surveys/cohorts, as proposed in the

context of residual confounding.73

An important issue with surveillance studies is that of

the spatial resolution and the type of geographical areas

considered; modifying these might lead to different results,

as the spatial distribution of the outcome will depend on

these choices. For instance, if within-area variability is sub-

stantial, results from statistical inference might suffer from

false-negative observations, as potentially high-risk places

are aggregated with low-risk ones. The more spatial vari-

ability is present in the data, the more profound the poten-

tial impact of the modifiable areal unit (MAUP).74,75 As

MAUP depends on the level of aggregation, this issue has

been linked to ecological bias,76 and the general suggestion

in the scientific literature is to consider the finest spatial

scale available. This can be particularly challenging for

rare diseases where the numbers of cases at small-area level

are very low. Furthermore, the choice of spatial resolution

is mostly dependent on data availability and sparsity.

BHMs have been suggested as a way to, at least partially,

deal with MAUP. As there is an explicit relationship

among areas globally and/or locally, through structured

random effects, places belonging to a particularly small-

area can influence results for other areas, hence alleviating

the MAUP problem.77

A key aspect of surveillance studies concerns how to

communicate information to public health researchers and

policy makers. This is particularly challenging as the statis-

tical modelling of surveillance data becomes more sophisti-

cated. In this context it is essential to develop user-friendly

tools such as atlases, web applications and reporting serv-

ices, which allow for data visualizations and easy imple-

mentation of the advanced methodologies. The

Environment and Health Atlas for England and Wales36

(typical output from the Atlas was presented in Figure 1) is

an example of work in this direction, providing stakehold-

ers and the general public with a collection of maps to in-

form on the spatial distribution of environmental factors

and diseases. Through the exceedance probabilities, these

maps give a perception of the uncertainty around the area-

level relative risks estimates.

Web applications allow the ready implementation of

statistical methods and perform complex data analyses, of-

ten through interactive data visualizations. These can be

particularly useful for practitioners less skilful in statistical

modelling and programming. As an example, the Rapid

Inquiry Facility (RIF) which is currently being redeveloped

within SAHSU, is designed to facilitate disease mapping

and risk analysis studies and has been employed by more

than 45 institutions in a number of countries.78 A more re-

cent example is the SpatialEpiApp that integrates two

methods for disease mapping and cluster detection.79

To conclude, in this paper we presented a range of

BHMs, which have proved to be useful for non-

communicable disease surveillance. The choice of model

should depend on various factors and, most importantly,

on the objective of the study, characteristics of the data,

and computational resources. It is commonly recom-

mended to perform simulation studies based on the data in

hand, to inform the model and to select detection rules that

are most appropriate in each case.

We believe that epidemiological surveillance will be at

the centre of future methodological research to match the

continuous increase in data availability, e.g. through social

media; this will also open up issues related to data
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integration, selection bias and spatiotemporal misalign-

ment. At the same time there will be the need to reduce the

computational burden of increasingly complex models ap-

plied to large datasets, in order to provide timely results

for decision making.
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