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Pharmacometrics and Machine Learning 
Partner to Advance Clinical Data Analysis
Gilbert Koch1,*, Marc Pfister1, Imant Daunhawer2, Melanie Wilbaux1, Sven Wellmann3 and Julia E. Vogt2,*

Clinical pharmacology is a multidisciplinary data sciences field that utilizes mathematical and statistical methods 
to generate maximal knowledge from data. Pharmacometrics (PMX) is a well-recognized tool to characterize 
disease progression, pharmacokinetics, and risk factors. Because the amount of data produced keeps growing with 
increasing pace, the computational effort necessary for PMX models is also increasing. Additionally, computationally 
efficient methods, such as machine learning (ML) are becoming increasingly important in medicine. However, ML is 
currently not an integrated part of PMX, for various reasons. The goals of this article are to (i) provide an introduction 
to ML classification methods, (ii) provide examples for a ML classification analysis to identify covariates based on 
specific research questions, (iii) examine a clinically relevant example to investigate possible relationships of ML and 
PMX, and (iv) present a summary of ML and PMX tasks to develop clinical decision support tools.

Data science is defined as a multidisciplinary field that deals with 
the extraction of knowledge from data.1 Dhar et al.1 stated that  
“a data scientist requires an integrated skill set spanning mathe-
matics, machine learning, artificial intelligence, statistics, data-
bases and optimization, along with a deep understanding of the 
craft of problem formulation to engineer effective solutions.”

Clinical pharmacology is a multidisciplinary data science 
field. In the 1950s, pharmacologists/clinicians2 started to apply 
a mathematical linear one-compartment model to characterize 
drug concentrations in patients. Obviously, from a mathematical 
perspective, such models were not new. As such, the need to ad-
vance pharmacology with mathematical modeling emerged from 
clinical pharmacologists and not from mathematicians. The com-
bination of clinical pharmacology and mathematical modeling, 
the so-called pharmacokinetic modeling, was brought to the next 
level by applying statistical mixed-effects methods, as introduced 
by Sheiner,3 and Sheiner and Beal4 in the 1970s. With such ap-
proaches, not only can individual pharmacokinetic profiles be 

described, but the pharmacokinetic behavior of many individu-
als could also be characterized by simultaneously quantifying its 
sources of variabilities.

The application of mathematical models and statistical methods 
are our current basis for data sciences in clinical pharmacology, 
drug research, and development.5–9 Currently, we call this phar-
macokinetics/pharmacodynamics modeling and quantitative data 
analysis pharmacometrics (PMX). Over the years, mathematical 
models became more complex, and, as such, a mathematical and 
computational special interests group was formed10 within the 
International Society of Pharmacometrics, with the aim to advance 
clinical pharmacology using sophisticated mathematical methods. 
However, game-changing improvements, which may bring PMX 
as a discipline to a next level, have not yet materialized.

Current PMX models are constructed with differential equa-
tions and, therefore, rely on (semi-) mechanistic knowledge based 
on biological and pharmacological principles. This allows biologi-
cal interpretation of model parameters and provides the capability 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Currently, pharmacometrics (PMX) models are almost 
exclusively utilized in drug development and clinical pharma-
cology. However, for increasing amounts of data, the computa-
tional effort for these models significantly increases.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This study investigates how PMX can partner with machine 
learning (ML) to advance clinical data analysis.

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 This study investigates possible intersections to combine 
PMX and ML and demonstrates commonalities and differ-
ences of both methods. Furthermore, it suggests applying ML 
classification as an initial step for a covariate analysis.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Combination of ML and PMX might strongly decrease 
computational efforts for analysis of clinical datasets and con-
sequently advance clinical data science.
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to simulate “what-if ” scenarios with different parameters. However, 
PMX models are often quite complex and, therefore, solving them 
numerically can be time-consuming, resulting in huge computa-
tional effort for large populations. Covariate selection is especially 
laborious and is usually the most time-consuming part. Therefore, 
combining PMX with more computationally powerful data sci-
ence tools might be the next game-changing milestone in clinical 
pharmacology for precision medicine utilizing “big data” sets.11

Machine learning (ML), which lies at the intersection of com-
puter science and statistics, provides such computationally power-
ful tools for the analysis of large and heterogeneous data sets and 
has become increasingly popular in different domains in the last 
decade, including medicine.12–17 These methods are capable of an-
alyzing large datasets almost in real time. This provides the opportu-
nity to leverage ML in clinical pharmacology, and the combination 
of ML with PMX might lead to great scientific achievements. 
Recently, ML was recognized by the American Conference on 
Pharmacometrics in 2018 with a preconference. The major ad-
vantage of ML is its data-driven approach, thereby eliminating the 
need for mechanistic assumptions. However, from a PMX perspec-
tive this might be considered as black-box and, therefore, clinical 
pharmacologists may be reluctant to embrace this opportunity.

In this paper, we have four core components. The first aim is 
to provide a brief introduction to supervised ML classification 
methods (called classifiers), such as decision trees and random for-
ests. We will show that it is necessary to first formulate a specific 
research question and to define a target variable that contains the 
data labels. Based on these labels, we will demonstrate how a classi-
fier is trained to differentiate between different labels. The second 
aim is to present examples for a ML classification analysis to iden-
tify covariates based on specific research questions. We will show 
how an ML classifier is applied to answer specific research ques-
tions, which will demonstrate the difference when compared to a 
PMX model. A one-compartment pharmacokinetic model will be 
utilized to show how the formulated research question affects the 
identified features. Furthermore, a maximum effect Emax-model 
will be applied to illustrate how a time-dependent component 
can be included in an ML classifier. These examples will help us 
to investigate the possibility of applying ML as an initial step for a 
subsequent PMX covariate analysis. The third aim is to examine a 
clinically relevant example to investigate possible relationships be-
tween ML and PMX, namely applying ML to perform an initial 

covariate selection for a more complex PMX example. The fourth 
aim is to present a summary of the ML and PMX tasks required to 
develop clinical decision support tools.18

Overall, the goal of this article is to identify intersections 
and differences between PMX modeling and ML classification. 
Understanding these relationships may help us in the future to (i) 
maximize the generated knowledge from available data, (ii) de-
crease computational time in data analysis, and (iii) allow possible 
integration of both methods.

MATERIALS AND METHODS
Brief introduction to supervised ML classification methods
ML models, in general, cover data-driven modeling for data analysis. ML 
can be broadly divided into two sub-areas: supervised and unsupervised 
learning. In supervised learning, not only the input data but also the cor-
responding target values, such as disease classes, are observed. Typically, 
an expert (e.g., a physician) assigns an annotation (the “label“) to every 
patient (e.g., diseased or healthy). Hence, a specific research question is 
necessary from the beginning of the data analysis process. The aim is 
then to find the model that best distinguishes between those classes, in 
order to either correctly assign the label to new patients, or to identify 
relevant covariates. In unsupervised learning, the training data consists 
of a set of variables without any corresponding target values. The goal in 
unsupervised learning problems is to find patterns and to extract hidden 
structures from data, in an entirely data-driven manner, without any ex-
pert-labeling. In this paper, we focus on supervised ML models.

A main question in clinical applications is: What are the risk factors 
that a patient will be above or below a predefined clinically relevant thresh-
old? In neonatology, time (i.e., postnatal age) plays an additional import-
ant role because of fast changing maturation processes in the first days of 
life.19,20 Hence, the question is often extended to: What are the risk fac-
tors that a patient will be above or below a threshold within a certain time 
frame (e.g., 24  hours)? Such questions are typical classification tasks to 
predict a probability for the occurrence of a specific incident. In addition 
to binary labels, ML can also be used to predict a real-valued target (that is, 
perform regression), but for this brief introduction we will only consider 
classification methods, especially tree-based classification methods.

Decision trees and random forest
A decision tree is a tree-structured classifier (see Figure 1 for a simple sche-
matic). The tree is iteratively built by selecting variables according to their 
relevance for discriminating between classes, where relevance can be mea-
sured in terms of information gain or drop in misclassification error. There 
are several decision tree algorithms (e.g., CART21 or ID322), which use 
different methods to construct the rules that are represented by individual 
branches in the tree. The algorithms are similar in that they all recursively 

Figure 1  Schematic visualization of a decision tree, an ensemble of several decision trees (the random forest), and the pharmacometrics 
modeling approach. [Colour figure can be viewed at wileyonlinelibrary.com]

Decision Tree Random Forest Pharmacometrics Model
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apply new rules to discriminate between classes until the classes can be per-
fectly distinguished (on the data that the tree has already seen), or until a 
predefined stopping criterion is met. To make a prediction for a new obser-
vation, the algorithm proceeds through the decision tree, branching based 
on the variable values of the observation. This process ends when a terminal 
node is reached, which determines the prediction of the decision tree. The 
random forest classifier23 generalizes this concept by building an ensemble 
of decision trees, a decision forest (see Figure 1 for a simple schematic).

In general, for the evaluation of classification methods it is common 
to divide the dataset into training and test sets, where the former is used 
to learn the parameters of the model and the latter for its evaluation. It 
is important that evaluation data is not used for training, this division 
is used to safeguard against overfitting (i.e., against finding parameters 
that fit the training data perfectly), but do not generalize well to un-
seen observations (see Figure 2 for an example illustrating overfitting). 
Special care must be taken when dealing with multiple measurements 
from the same patient: If a prediction is required for each measure-
ment, then all measurements of a single patient should be either in the 
training or test dataset (stratification by patient), because otherwise one 
would violate the independence of training and test sets. The evaluation 
of a classifier is typically done based on a metric (e.g., accuracy, sensitiv-
ity, and specificity) or with the help of a confusion matrix. A confusion 
matrix contrasts the predictions of the classifier with the actual classes 
and can be used to compute different metrics.

While training a random forest, all samples in the training set (in our case 
neonates) are in addition randomly divided into a training (bag) set and a test 
(out-of-bag) set using resampling techniques. The random forest has become 
extremely popular because it is a straightforward learning algorithm, it has 
few parameters to tune, and it performs well in practice even when the sample 
size is small and the number of variables is large. Furthermore, the random 
forest can identify the features (risk factors) that are most important for dif-
ferentiating between the different classes. This is especially important in the 
medical domain, where we need explainable solutions, and where we aim to 
reduce our model to few explainable features. The feature importance in the 
random forest can for example be obtained by computing the mean decrease 
in accuracy. The underlying idea of this measure is, if a feature is important, a 
random permutation of this feature will change the result of the classifier. See 
the Supplementary Material for more information.

RESULTS
Examples for an ML classification analysis to identify 
covariates based on specific research questions
We investigate two detailed examples to demonstrate how a data-
set needs to be organized based on a specific research question to 

allow the application of an ML classifier. In these two examples, 
the goal is to investigate the possibility of applying an ML classi-
fier as an initial step for a subsequent PMX covariate analysis. In 
the first example, we omit a time component, which means that 
we are only interested if a certain incident will happen, not when 
it will happen. In the second example, such a time component will 
be included to demonstrate differences in dataset preparation.

The work flow is as follows. We start with a PMX model de-
scribing disease progression over time. Individual disease progres-
sions are realized by including the effect of covariates on the model 
parameters. The PMX model is then applied to simulate patient 
profiles. Additionally, fake covariates without any effect on the 
model parameters were included in the dataset. The developed 
dataset then has the typical PMX form. To train an ML classifier, 
we need to further process the dataset by labeling the data accord-
ing to the formulated research questions.

The ML classifier is trained in the software R (R Foundation 
for Statistical Computing, Vienna, Austria, 2019) with the 
package “rpart” (4.1-15). Parts of the code are presented in the 
Supplementary Material.

EXAMPLE OF A TIME-INDEPENDENT ML ANALYSIS BASED 
ON A ONE-COMPARTMENT MODEL
Simulation of artificial data

Pharmacometrics model. We apply a linear one-compartment 
pharmacokinetic model to characterize drug concentration C  with 
absorption rate ka, elimination rate kel and volume of distribution 
is V (see Supplementary Material). For simplicity, every patient 
received the same dose.

Let i = 1,…,n be the i-th individual in a population of n subjects. 
We apply standard pharmacology assumptions, such as log-nor-
mal distributions, for the model parameters and covariate effects 
described with a power function. In this example, two covariates 
Cov1i and Cov3i modulate the elimination rate by:

kel,i= kel,pop

(

Cov1i
Cov1Ref

)�1
(

Cov3i
Cov3Ref

)�3

exp
(

�i
)

with �i∼
(

0,�2
kel

)

.

Figure 2  Illustration of the problem of underfitting and overfitting based on a polynomial regression. Different models (red curves) are fit to 
a set of noisy samples (blue points) from the function y = sin(5x) (green curve). Each subplot present the results from a regression model 
of degree n (i.e., a model f(x) = β0 + β1 x1 + β2 x2 + … + βnxn with scalar regression coefficients β0, …, βn). Underfitting (left subplot) occurs 
when the model has too little capacity to capture the complexity of the data, whereas overfitting (right subplot) fits the data points well, but 
is unlikely to generalize well to new samples from the underlying function. The central subplot shows a fit that is “just right” in that it closely 
approximates the true function given a set of samples.
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Additionally, a covariate Cov2i acts on the volume of distribution

with CovXRef=mean
(

CovXi

)

 for X = 1,…,3. A proportional re-
sidual error model was applied.

Set-up of the covariate effects. We consider n = 500 patients with m = 7 
measurements at the time points (0, 2, 4, 6, 8, 12, and 24). The time 
points > 0 were additionally perturbed by adding a normal distributed 
time variation 

(

0,0.25
)

. For simplicity, we produced uniformly 
distributed covariates CovX∼

(

aX,bX
)

 (see Supplementary 
Material) and added two randomly produced fake covariates.

Simulation of drug concentration profiles. The produced dataset in the 
standard PMX style consists of d = 10 columns (ID, TIME, AMT, 
DV, MDV, COV1, COV2, COV3, FAKE1, and FAKE2) where 
ID is the individual patient number, TIME the time point (e.g., 
postnatal age (PNA)) of the measurement, AMT the administered 
dose, DV the actual measurement, and MDV a flag indicating a 
missing DV. Because drug administration is at t = 0, we follow the 
typical PMX style and have two rows for this time point, one with 
the dose and one with the measurement. Hence, the size of the PMX 
dataset is ((m + 1))·n, d). With the chosen simulation set-up, a .csv file 
of (4,000, 10) = 40,000 entries was produced (size 522 KB).

Training a decision tree to identify risk factors based on 
specific research questions
We put ourselves in the realistic situation that only a dataset is 
available (i.e., no knowledge about the applied model (or the sys-
tem) that produced the data or any knowledge about an existing 
PMX analysis is available). Visual inspection of the data showed a 
linear trend and therefore a noncompartmental analysis was per-
formed to produce the labels for two different research questions.

The first research question is: What are the risk factors that a 
patient will have a half-life higher than a given threshold? To an-
swer this question, the dataset is extended with a label that provides 
for every patient a yes (1) or no (0). The half-life was computed 
from the data after the maximal concentration was reached (see 
Supplementary Material). Two hundred twenty-three patients 
were assigned the LABEL = 1 (half-life above the predefined thresh-
old thalf TSH = 7 hours) and the rest were assigned the LABEL = 0. 
Because we have no time component in this research question, 
only one row per patient is necessary for the labeled classification 
dataset, see Table 1. Hence, the entire labeled dataset has the size  
(n, d-4) = (500, 6) = 3,000 (.csv file = 45 KB), which is tremen-
dously smaller than the PMX dataset. Note that no information 
about the ID, TIME, AMT, the DV itself, or MDV is necessary.

A decision tree was trained with the entire labeled dataset, which 
resulted in a feature importance (presented in parentheses) of COV1 
(65%) and COV3 (27%). We are not interested in developing a pre-
diction tool in this example, therefore, the dataset was not divided 
into training and test sets. The first node was the decision COV1 
with a split at value 5.7, which is close to Cov1Ref = 6.6. Hence, the 

results from the decision tree confirm the covariates affecting the 
elimination rate in the model. Furthermore, the decision tree pre-
dicted a higher feature importance for COV1 compared to COV3, 
which also corresponds to the covariate effects included in the model.

The second research question is: What are the risk factors that a pa-
tient will have a drug concentration above a given threshold? To answer 
this question, the maximal concentration was first identified and then 
compared to the threshold CTSH

max
 = 3.5. Similar to the above example, 

the labeled dataset was prepared and resulted in 232 patients being 
assigned LABEL = 1, and a decision tree was trained. The covariate 
COV2 (78%) was identified as the most important feature with a value 
for the first split of 0.47, which is close to Cov2Ref = 0.50. Hence, the re-
sult confirms the covariate that most affects the volume of distribution.

Pushing it to the limit—analyzing one million patients
With the above settings, a PMX dataset consisting of 
n = 1,000,000 patients with m = 24 measurements each at the 
same time points was constructed. This pure PMX simulation 
step needed several hours and produced a PMX dataset with a 
.csv file of size 2.9 GB. Again, the data were labeled to answer the 
first research question. The resulting labeled dataset consisted of 
a 110 MB .csv file. Training a decision tree for these one million 
patients took only 45 seconds on a standard laptop. Results were 
similar to the previous example with n = 500 patients.

EXAMPLE OF A TIME-DEPENDENT ML ANALYSIS BASED ON 
AN EMAX-MODEL
Simulation of artificial data

Pharmacometrics model. We consider an Emax-model (see 
Supplementary Material) with the maximal value Emax and the 
time ET50 of the half-maximal value. Log-normally distributed 
individual model parameters

are assumed. Again, a proportional error model was applied.

Set-up of the covariate effects. We consider n = 1,000 patients with 
m = 6 measurements each and uniformly distributed covariates, 
together with two additional fake covariates.

Vi=Vpop

(

Cov2i
Cov2Ref

)�2

exp
(

�i
)

with �i∼
(

0,�2
V

)

.

Emax ,i=Emax ,pop

(

Cov1i
Cov1Ref

)β1

exp
(

�i
)

with �i∼

(

0,�2
Emax

)

.

ET50,i=ET50,pop

(

Cov2i
Cov2Ref

)β2

exp
(

�i
)

with �i∼

(

0,�2
ET50

)

.

Table 1  Example of a labeled classification dataset for 
three patients

COV1 COV2 COV3 FAKE1 FAKE2 LABEL

9.74 0.73 1.16 9.07 −0.27 0

4.44 0.40 1.71 4.99 0.10 0

3.60 0.48 1.46 9.30 −0.26 1

COV, covariate; FAKE, covariate without any effect; LABEL, assigned label (0 or 1).
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Simulation of patient profiles. The produced PMX dataset consists 
of d  =  7 columns (ID, PNA, DV, COV1, COV2, FAKE1, and 
FAKE2), where PNA is the postnatal age, which relates to TIME. 
Hence, the size of the PMX dataset is (m·n, d) = (6 000, 7), which 
corresponds to a .csv file of 355  KB. Exemplarily, the first two 
patients are shown in Table 2.

The research question is: What are the risk factors that a neo-
nate will have measurements greater than a predefined threshold 
of gTSH  =  0.75 in the next 24  hours? Now, the construction of 
the labeled classification dataset becomes more complex because 
PNA, corresponding to time since birth, is included. Let us con-
sider Table 2 again. As an example, at PNA = 0 the DV value in 
the future at PNA = 24 is 0.46. This is smaller than the threshold 
and, therefore, a row with LABEL = 0 is generated. Similarly, at 
PNA = 24 the DV value in the future (PNA = 48) is smaller than 
the threshold. This holds for all values of patient ID = 1. The sit-
uation is different for ID = 2. At PNA = 0 the DV value in the 
future (PNA = 24) is smaller than the threshold as well, but for 
the next values we get at PNA = 24 that the DV value in the future 
(PNA = 48) is greater than the threshold. Therefore, this row in 
the dataset is labeled with LABEL = 1. All other DVs of this pa-
tient are above the threshold as well. The labeled dataset is shown 
in Table 3. We kept the ID in the table for a possible division into 
training and test set. Hence, every patient has five rows in the la-
beled dataset and the size is ((m-1)·n, d) = (5 000, 7) and, therefore, 
comparable to the PMX dataset.

Training a decision tree to identify risk factors based on the 
research question
In the labeled dataset, we have 2,034 rows (from the 5,000) with 
LABEL = 1. A decision tree was trained with the entire dataset 
and the three most important features were PNA (49), COV1 
(47), and COV2 (3). This shows that now the time component 
(i.e., the PNA, plays an important role). As expected, COV1 is of 
importance as well.

CLINICALLY RELEVANT EXAMPLE TO INVESTIGATE 
POSSIBLE RELATIONSHIPS OF ML AND PMX
We focus on an example from neonatology and investigate whether 
ML can be used to perform an initial covariate selection for a more 
complex PMX example. Available data has already been analyzed 
with an ML classifier and published,14 therefore, our focus is on 
the relationships with PMX rather than on the ML development 
process.

Clinical context of hyperbilirubinemia in neonates and 
available data
Neonatal jaundice due to hyperbilirubinemia is the most common 
pathology in neonates and one of the major reasons for hospital-
ization in the first year of life. Almost 10% of newborn infants 
develop significant hyperbilirubinemia and a substantial number 
require phototherapy treatment. Data from n = 368 neonates (98 
had phototherapy treatment) was available for up to 6  days. In 
total, 44 covariates were available from every patient.14

ML component
The research question was: What is the probability that a new-
born will need phototherapy in the next 48  hours? Note that 
obtaining phototherapy is equivalent to being above a certain 
bilirubin threshold. Hence, the formulated research question is 
similar to the time-dependent example and the time component 
was included in the dataset as previously presented. Because ML 
is computationally efficient, we can even test whether ratios of co-
variates improve the prediction performance.

It was demonstrated that the bilirubin/weight ratio has the 
highest feature importance.14 In descending order, bilirubin, 
weight, gestational age, and PNA were additionally identified as 
risk factors. The final model had a prediction accuracy above 90%. 
This result was derived not only from a random forest, but also 
from other ML methods, which are not in the scope of this paper.

PMX component
The structural model for bilirubin progression B driven by PNA t, 
maturation processes, and effect of phototherapy reads

Table 2  Two patients in the PMX dataset for the  
time-dependent Emax-model example

ID PNA DV COV1 COV2 FAKE1 FAKE2

1 0 0 1.67 10.9 0.28 −0.19

1 24 0.46 1.67 10.9 0.28 −0.19

1 48 0.50 1.67 10.9 0.28 −0.19

1 72 0.59 1.67 10.9 0.28 −0.19

1 96 0.60 1.67 10.9 0.28 −0.19

1 120 0.71 1.67 10.9 0.28 −0.19

2 0 0 2.22 11.7 6.79 −0.16

2 24 0.59 2.22 11.7 6.79 −0.16

2 48 0.87 2.22 11.7 6.79 −0.16

2 72 1.06 2.22 11.7 6.79 −0.16

2 96 1.00 2.22 11.7 6.79 −0.16

2 120 1.03 2.22 11.7 6.79 −0.16

COV, covariate; DV, the actual measurement; Emax, maximum effect; 
FAKE, covariate without any effect; LABEL, assigned label (0 or 1); PMX, 
pharmacometrics; PNA, postnatal age.

Table 3  Labeled classification dataset for the  
time-dependent Emax-model example

ID PNA COV1 COV2 FAKE1 FAKE2 LABEL

1 0 1.67 10.9 0.28 −0.19 0

1 24 1.67 10.9 0.28 −0.19 0

1 48 1.67 10.9 0.28 −0.19 0

1 72 1.67 10.9 0.28 −0.19 0

1 96 1.67 10.9 0.28 −0.19 0

2 0 2.22 11.7 6.79 −0.16 0

2 24 2.22 11.7 6.79 −0.16 1

2 48 2.22 11.7 6.79 −0.16 1

2 72 2.22 11.7 6.79 −0.16 1

2 96 2.22 11.7 6.79 −0.16 1

COV, covariate; Emax, maximum effect; FAKE, covariate without any effect; 
LABEL, assigned label (0 or 1); PNA, postnatal age.
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where the effect of the phototherapy PT(t) is described as an on-
off switch [Correction added on 5th March, 2020, after first on-
line publication: Spacing issue in Equation 1 is corrected as above]. 
Hence, Eq. 1 is a typical indirect response model24,25 but with 
time-dependent production and elimination.26,27 In Eq. 1, kAD is the 
adult bilirubin production rate and kin the basal neonatal production 
rate that decreases for increasing PNA. The maximal stimulation of 
bilirubin elimination is kelMax and T50 is the time when the half-max-
imal stimulation is reached. The additional effect of phototherapy at 
the bilirubin elimination is described by the rate kp. Log-normally 
distributed interindividual variability was utilized on the model pa-
rameters kin, kelMax, T50, kPNA, kp, and B0.

Covariate analysis was performed at different levels: (i) Initial 
screening of possible correlations within covariates, (ii) assessment of 
covariates for their clinical relevance, and (iii) capability to be part 
of a decision support tool. Finally, standard step-wise forward/back-
ward selection was performed, and identified covariates were further 
assessed based on their ability to affect an identified model parameter.

Comparison of the ML classification and PMX modeling 
approaches
Interestingly, bilirubin and PNA (i.e., the time), identified as 
important features by ML, are the structural components of the 
PMX model, refer to Eq. 1. Obviously, without these two com-
ponents, a PMX model cannot be developed. However, from the 
ML perspective, PNA is simply one feature among many and does 
not necessarily need to be included in the final classifier. The 
feature weight (time-varying) was also identified by the PMX 
model as acting nonlinearly on T50. The feature gestational age 
(time-independent) is highly correlated with delivery mode, and 
the PMX model identified delivery mode acting on kin to be more 
important. For more details, see the Supplementary Material. 
The interpretation of the bilirubin/weight ratio in the context 
of a PMX model is challenging. In PMX modeling, such a bili-
rubin/weight ratio would probably never be accepted as a covari-
ate because it is strongly related to the dependent variable in the 

PMX model, which is bilirubin. Furthermore, it is also correlated 
to weight, which is already included as covariate. Nevertheless, 
from a clinical perspective, the bilirubin/weight ratio can be in-
terpreted as a marker for the bilirubin elimination capacity. In 
fact, because weight acts on the elimination in Eq. 1, this is some-
what comparable to the feature bilirubin/weight ratio.

ML AND PMX TASKS TO DEVELOP CLINICAL DECISION 
SUPPORT TOOLS
To summarize the commonalties and differences of the necessary 
tasks to develop and apply an ML classifier and a PMX model, 
we focus on three main components: Dataset preparation, model 
building process, and prediction capability, as shown in Figure 3. 
The latter is especially important for developing a decision sup-
port tool and understanding the possibilities such a tool provides 
for each method. Roughly speaking, the ML classifier predicts a 
probability that a certain incident will happen within the next 
hours, as in the hyperbilirubinemia example, whereas the PMX 
model predicts the bilirubin progression over time and, further-
more, can be used to perform “what-if ” simulations.

DISCUSSION
In every interdisciplinary collaboration, it is important to develop 
a common vocabulary because often similar things have different 
names (features vs. variables vs. covariates), whereas identical terms 
are used but with different meanings (e.g., “model”). In addition, 
in ML one “trains a model” whereas PMX scientists “develop a 
model.” At first glance, this might mean the same but it does not, 
because ML is a data-driven approach and in PMX the model is 
developed based on some mechanistic assumptions.

ML is an umbrella for many different methods and, therefore, 
“the” ML tool does not exist. For several reasons, ML has the image 
of being a “black-box.” One reason might be that the functionality 
of the underlying algorithms is not as obvious as in PMX modeling. 
Another reason might be that the training is entirely data-driven, 
without consideration given to biological/pharmacological mech-
anisms. However, this clean data-driven perspective might even be 
an advantage because no human bias impacts data analysis.

The first aim was to provide a brief introduction to supervised 
ML classification methods, where we explained the functionality 

(1)

d

dt
B= kAD + k

in
exp (−kPNAt)− ((kelMax ⋅ t

h)∕(Th
50
+ t h)+ kpPT(t))B

B(0)=B0

Figure 3  Comparison of the machine learning (ML) classification and pharmacometrics (PMX) modeling approach with respect to dataset 
preparation, model building, and prediction capability. [Colour figure can be viewed at wileyonlinelibrary.com]
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of such classifiers. A fundamental difference between a supervised 
ML classifier and a PMX model is that the classifier solves a pre-
defined prediction task based on a specific research question and 
the corresponding data labels, which have to be provided. Hence, 
the research question is built into the labeled dataset. In PMX 
modeling, it is obviously also important to have the research ques-
tion in mind when building the model, however, it is not essential.

The second aim was to present examples for an ML classification 
analysis to identify covariates based on specific research questions. We 
showed how an ML classifier is applied to answer specific research 
questions. With a one-compartment pharmacokinetic model it was 
demonstrated how the research question is related to the computed 
feature importance. With an Emax-model it was illustrated how a 
time-dependent component is included in an ML classifier and how 
this impacts the size of the labeled dataset. However, once the dataset 
is accordingly labeled, we demonstrated the computational advantage 
of utilizing ML. Hence, the time expenses of a data analysis are shifted 
more to the dataset preparation rather than training the model.

The third aim was to examine a clinically relevant example, to 
investigate possible relationships of ML and PMX (i.e., the appli-
cation of ML to perform an initial covariate selection for a more 
complex PMX example). On one hand, the identified features 
from the ML classifier are closely related to the PMX model struc-
ture and the identified covariates. On the other hand, ratios of fea-
tures might be difficult to interpret from a PMX perspective.

The fourth aim was to present a summary of the ML and PMX 
tasks to develop decision support tools (refer to Figure 3). Most 
notably, the obvious differences are (i) that the random forest clas-
sifier that we introduced in this work predicts the probability for 
an incident for a given time point, whereas a PMX model predicts 
the disease progression for any time point and additionally is able to 
simulate “what-if ” scenarios for varying model parameters, and (ii) 
the tremendous difference in computational efficacy for analyzing 
“big-data.”

We identified intersections between PMX modeling and ML 
classification that have the potential to advance data sciences. Our 
clinical example illustrates how PMX can partner with ML meth-
ods. In another recent example, ML was utilized to supplement a 
population pharmacokinetic/pharmacodynamic model of tumor 
growth inhibition. This model was used to understand the various 
sources of between patient variability, thereby improving model 
predictions for drug development support.28

In this paper, we discussed opportunities where ML may be uti-
lized as an initial step to investigate a dataset for possible covariate 
effects. Let us partner across scientific and clinical disciplines to 
identify new opportunities for leveraging and integrating ML and 
PMX approaches, with the ultimate goal to innovate and advance 
clinical data science.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).

Supplemental Material.
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