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Abstract
Background.  Early detection of increased aggressiveness of brain tumors is a major challenge in the field of neuro-
oncology because of the inability of traditional imaging to uncover it. Isocitrate dehydrogenase (IDH)-mutant gliomas 
represent an ideal model system to study the molecular mechanisms associated with tumorigenicity because they appear 
indolent and non-glycolytic initially, but eventually a subset progresses toward secondary glioblastoma with a Warburg-
like phenotype. The mechanisms and molecular features associated with this transformation are poorly understood.
Methods. We employed model systems for IDH1 mutant (IDH1mut) gliomas with different growth and proliferation 
rates in vivo and in vitro. We described the metabolome, transcriptome, and epigenome of these models in order 
to understand the link between their metabolism and the tumor biology. To verify whether this metabolic repro-
gramming occurs in the clinic, we analyzed data from The Cancer Genome Atlas.
Results. We reveal that the aggressive glioma models have lost DNA methylation in the promoters of glycolytic enzymes, 
especially lactate dehydrogenase A (LDHA), and have increased mRNA and metabolite levels compared with the indolent 
model. We find that the acquisition of the high glycolytic phenotype occurs at the glioma cytosine-phosphate-guanine 
island methylator phenotype (G-CIMP)-high molecular subtype in patients and is associated with the worst outcome.
Conclusion. We propose very early monitoring of lactate levels as a biomarker of metabolic reprogramming and 
tumor aggressiveness.

Key Points

1. � Loss of methylation in glycolytic genes, especially LDHA, is associated with a more 
aggressive phenotype in IDH1mut gliomas.
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2.  High glycolytic metabolism occurs in the G-CIMP-high molecular subtype.

3. � Lactate production is associated with increased aggressiveness in clinical samples 
and IDH1mut models.

Rewiring of metabolism has been highlighted as a hallmark 
of cancer1,2 since nearly a century ago by Otto Warburg. He 
first described the upregulation of lactate production from 
glucose in cancer cells under aerobic conditions known as 
“aerobic glycolysis” or the “Warburg effect.” 3–6

Metabolic reprogramming through mutation of key 
metabolic enzymes can by itself lead to tumor for-
mation. Most notably, gain-of-function mutations in 
isocitrate dehydrogenase 1 and 2 (IDH1/2mut) that pro-
duce D-2-hydroxyglutarate (D-2HG) are initiator events 
responsible for 80% of lower grade gliomas (LGGs, 
World Health Organization grades II–III) and close to 10% 
of glioblastomas (GBMs, grade IV).7–13 The accumulation 
of D-2HG leads to gliomagenesis through reshaping of 
the epigenome via the inhibition of α-ketoglutarate–de-
pendent demethylases.14–16 IDH mutations are sufficient 
to produce the glioma cytosine-phosphate-guanine (CpG) 
island methylator phenotype (G-CIMP) in gliomas, which is 
a unique, genome-wide hypermethylated signature at CpG 
sites frequent in IDH1mut 1p/19q intact LGG and IDHmut sec-
ondary GBM. The G-CIMP signature can be further categor-
ized according to the degree of methylation: prognostically 
favorable G-CIMP-high and less favorable G-CIMP-low.17–22

Despite their markedly better prognosis, LGGs that are 
IDH mutated often transform into higher grades and de-
velop resistance to therapy.23–25 Therefore, IDH1mut gliomas 
that progress toward more aggressive phenotypes offer 
a unique opportunity to study metabolic reprogramming. 
They appear initially indolent and are metabolically de-
fective—characterized by lower glycolytic rates and lower 
energy production—and yet evolve to meet the metabolic 
demands of fast-growing aggressive tumor phenotypes. 
However, few studies have profiled the metabolic repro-
gramming within the LGGs that are IDH1 mutated.25–27 
Current hypotheses regarding disease progression within 
the IDH1mut subtypes are related to the global loss of 
DNA methylation from G-CIMP-high to G-CIMP-low, loss 
of IDH1 mutant allele, or the accumulation of multiple 
mutations.22,28–32

In this study, we used 3 patient-derived cell lines as 
model systems that recapitulate indolent and aggressive 

phenotypes in order to study the metabolic reprogram-
ming associated with increasing aggressiveness of only 
IDH1mut LGGs. To determine the molecular mechanisms 
by which these models become aggressive, we compared 
their epigenomic, transcriptomic, and metabolomic pro-
files with those of a non-aggressive IDH1mut cell line in 
vitro, and in vivo via hyperpolarized (HP)-MRI. Our results 
show that the patient-derived IDH1mut aggressive cell lines 
have acquired a high glycolytic phenotype by the specific 
loss of promoter methylation in glycolytic genes, espe-
cially lactate dehydrogenase A (LDHA). We further showed 
that a high glycolytic signature in patient samples from The 
Cancer Genome Atlas (TCGA) is associated with the worst 
survival. The glycolytic signature splits the G-CIMP-high 
molecular group into 2 subgroups, which we have defined 
as “G-CIMP-high high-glycolytic” and “G-CIMP-high low-
glycolytic.” We propose that the specific loss of promoter 
methylation of glycolytic genes, especially LDHA, is asso-
ciated with aggressiveness and the non-invasive, in vivo 
monitoring of the pyruvate-to-lactate ratio as a predictive 
biomarker of aggressiveness of LGGs that are IDH1mut.

Methods

Cell Models and Culture

TS603 (grade III oligodendroglioma), BT142 (grade III 
oligoastrocytoma), and NCH1681 (grade III astrocytoma)33 
were grown in Dulbecco’s modified Eagle’s medium/F12 
medium supplemented with 1% N2 growth supplement, 
heparin sulfate, penicillin-streptomycin, epidermal growth 
factor, and fibroblast growth factor. Cell lines were cul-
tured and utilized for experiments immediately after ex-
panding in vitro in order to avoid the loss of heterozygosity 
previously reported.34 Proliferation rate was assessed 
through daily monitoring of cell growth using a Vi-Cell au-
tomatic counter. For 13C-tracing experiments, cells were 
grown in the same media described above but lacking 
glucose, which was added as 13C-U-glucose in the same 

Importance of the Study

DNA methylation shapes the metabolism of tumors by 
silencing metabolic genes; however, this can be remod-
eled providing these tumors with new metabolic capabil-
ities. While IDH1mut gliomas have been considered low 
glycolytic tumors, this work reveals how the remodeling 
of their epigenome is associated with a high glycolytic 
phenotype, and accordingly, patient’s outcome. Herein, 

we establish the feasibility of using the lactate:pyruvate 
ratio in preclinical models for monitoring tumor ag-
gressiveness and metabolic reprogramming in IDH1mut 
gliomas. This biomarker could be readily applied to 
human clinical trials due to its non-invasive nature and 
has the potential to identify increased aggressiveness 
very early.



 482 Ruiz-Rodado et al. Aggressive metabolism in IDH1mut gliomas

concentrations as the original media. Cells were grown in 
this labeled media for 72 hours prior to collection for liquid 
chromatography–mass spectrometry (LC-MS) analysis.

Mice Bearing Tumors

Intracranial orthotopic mouse models with IDH1mut glioma 
cell lines TS603, NCH1681, BT142, and BT142 overexpressing 
LDHA were established according to approved animal study 
proposal NOB-008 by the National Cancer Institute‒Animal 
Use and Care Committee. Briefly, cells were harvested, 
washed with phosphate buffered saline and counted. The 
resulting pellet was resuspended in Hank’s Balanced Salt 
Solution, and 5 μL of the cell suspension was injected ster-
eotactically into the striatum of female severe combined 
immunodeficient (SCID) mice 6–8 weeks old (Charles River 
Frederick Research Model Facility) using a stereotactic de-
vice. Tumor growth was monitored for neurological symp-
toms daily. For comparison of survival curves, the log-rank 
(Mantel–Cox) test has been used. The BT142 cell line 
overexpressing LDHA was generated as described in the 
Supplementary Methods and the corresponding mouse 
model following the same procedure described above.

Hyperpolarized 13C-MRI of Pyruvate Metabolism

Samples of [1-13C]-pyruvate acid (30 µL) containing 15 mM 
of OX063 and 2.5 mM of the gadolinium chelate ProHance 
(Bracco Diagnostics) were polarized in the Hypersense 
dynamic nuclear  polarizer  (Oxford Instruments). After 
40–60 min, the hyperpolarized sample was rapidly dissolved 
in 4.5 mL of a superheated Tris based alkaline buffer. NaOH 
was added to the dissolution buffer to be pH 7.4 after mix-
ture with [1-13C]-pyruvate. Hyperpolarized [1-13C]-pyruvate 
solution (96  mM) was intravenously injected through a 
catheter placed in the tail vein of the mouse (12 µL/g body 
weight). A more detailed description of animal handling can 
be found in the Supplementary Methods. 13C two-dimen-
sional spectroscopic images were acquired 30 seconds after 
the start of the pyruvate injection, with a 28 × 28 mm2 field 
of view in an 8 mm slice through the tumor, a matrix size of 
14 × 14, spectral width of 3330 Hz, repetition time of 85 ms, 
and Gaussian excitation pulse with a flip angle of 10°.

Magnetic Resonance Spectroscopic Data Analysis

13C chemical shift images and 1H anatomical images were 
merged using MatLab software v9.2. Displayed represen-
tative spectra were derived from spectra in tumor regions. 
Heatmap of the [1-13C] pyruvate, [1-13C] lactate, and [1-13C] 
lactate to [1-13C] pyruvate ratio was calculated in each pixel 
of chemical shift images and the resolution was digitally en-
hanced from matrix size of 14 × 14 to 32 × 32. The median 
value of the lactate:pyruvate ratio was calculated from chem-
ical shift images in the tumor region. All magnetic reso-
nance spectroscopic (MRS) data analysis except the merging 
process was performed using ImageJ software v1.51.

LC-MS Metabolomics

Analysis for cell extracts was performed on the 
Agilent Quadrupole Time-of-Flight Mass Spectrometer 
coupled with an Infinity II 1290 Liquid Chromatography 

Ultra-High-Pressure unit. LC-MS data acquisition was con-
ducted through 3 experiments consisting of 3 gradients and 
2 columns to enhance coverage and resolution of amino acid 
and central carbon metabolites. Global profiling of polar me-
tabolites and relative quantification for steady state, time-
dependent 13C-label flux of polar metabolites was conducted 
on both the AdvanceBio Glycan Map 2.1 x 150 mm 2.7 µm 
column (Agilent Technologies) and Acquity UPLC BEH Amide 
2.1 x 100 mm, 1.7 µm column (Waters Corporation). A more 
detailed description of the methods and analysis of LC-MS 
experiments can be found in the Supplementary Methods.

DNA Methylation of Promoter Region in Genes 
Involved in the Glycolytic Pathway

For the DNA methylation probe selection, we got informa-
tion of gene genomic location from the Gencode v2835 for 
the 9 genes involved in the glycolysis pathway. Next, we 
retrieved the promoter region of each gene by using the 
function “promoters” from the GenomicRanges package,36 
considering 2000 bp upstream and downstream the tran-
scription start site. We identified 159 probes from the EPIC 
array that overlapped with the promoter regions of the 9 
genes of interest. We then selected only probes that were 
hypomethylated in the TS603 cell line compared with 
BT142 (mean methylation levels greater than 0.2). A total of 
19 probes were selected (Fig. 5).

TCGA Data Analysis

For methylation, a total of 656 glioma samples were 
downloaded from TCGA Data Portal using TCGAbiolinks 
functions “GDCquery” and “GDCdownload” importing 
into R (http://www.r-project.org) for further analysis.37,38 
The raw IDAT files were processed according to the de-
scription above. For RNA expression data, TCGA RNA se-
quence normalized data were downloaded from the GDC 
Data Portal using TCGAbiolinks functions “GDCquery,” 
“GDCdownload,” and “GDCprepare” 38,39 importing into 
R (http://www.r-project.org) for further analysis. Glioma 
patient RNA sequencing, clinical, and molecular annota-
tion data generated from TCGA Research Network (https://
cancergenome.nih.gov/) were downloaded and processed 
using the R40 package TCGAWorkflow37 for the analysis of 
the 26 selected genes.

For a more detailed description of all the methods, see 
the Supplementary Material. RNA-seq and methylation 
data were deposited in the Gene Expression Omnibus da-
tabase under accession number GSE138873 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138873).

Results

Patients with Secondary GBM IDH1mut Have 
Increased mRNA Levels of Glycolytic Enzymes 
and Shorter Survival Compared with IDH1mut LGG

We compared mRNA levels of glycolytic enzymes of 
IDH1mut secondary GBM and IDH1mut LGGs using TCGA 
data revealing an upregulation of these enzymes in 
the progressed state of the disease (Fig. 1A). The fold 

http://www.r-project.org
http://www.r-project.org
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138873
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138873
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Fig. 1  Identification of model systems that reflect patient’s LGG and secondary GBM glycolytic phenotype. (A) mRNA levels comparison between 
LGGs (circles, n = 369) and secondary GBM (triangles, n = 11) containing an IDHmut. The y-axes are displayed as log2 from the mRNA counts, in-
cluding the mean and SD in red. FDR corrected P-values obtained from a t-test, *P < 0.05; **P < 0.005; ***P < 0.001. A detailed version of the fold 
change and p-values is located in the Supplementary Table. (B) Kaplan–Meier survival plot generated from TCGA data stratified according to the 
grade and IDH mutational status. Blue: IDHmut LGG patients. Red: secondary IDHmut GBM patients. Orange: IDHwt LGG patients. Green: IDHwt GBM. 
(C) Growth rate of TS603 ND BT142 over time. (D) Kaplan–Meier survival plot for mice inoculated with IDH1mut cell lines. (E) 2HG levels in both the 
tumor and contralateral tissue obtained from mice inoculated with IDH1mut cell lines. (F) Immunostaining of tissue collected from our IDH1mut 
mouse models displaying both hematoxylin and eosin and Ki67 as a marker of proliferation. Scale bars and percentage of staining are provided 
within the images. Significance based on t-test for 2HG levels and growth rate. *P < 0.05; **P < 0.005; ***P < 0.001.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data


 484 Ruiz-Rodado et al. Aggressive metabolism in IDH1mut gliomas

change (FC) in mRNA varied from 1.1 to 4, with LDHA 
and phosphoglycerate mutase 2 experiencing the most 
significant changes (FC = 3.1 and FC = 3.7, respectively) 
(Supplementary Table 1). In addition, mRNA levels 
of LDHB, normally upregulated in the IDH1mut LGGs 
compared with IDH1 wild-type (IDH1wt), were lower in 
higher-grade tumors (Fig. 1A). As expected, the overall 
survival (OS) of patients with secondary GBM was sig-
nificantly lower than that of patients with LGG despite 
their IDH1mut status (Fig. 1B, red and blue lines, respec-
tively). These results, correlating metabolic pathway 
alterations and patients’ outcome, further suggest 
that glycolysis is an upregulated pathway between 
the lower- and higher-grade gliomas harboring IDH1 
mutations.

IDH1mut Cell Lines with Aggressive Phenotypes 
as Model Systems to Study Metabolic 
Reprogramming

To identify cell lines that represent useful model sys-
tems for studying metabolic reprogramming and ag-
gressiveness, we classified patient-derived IDH1mut cell 
lines according to their growth rate and proliferation 
patterns in vitro and in vivo (Fig. 1C–E). BT142 displayed 
slower growth in vitro, increased survival of mice, and 
decreased rate of proliferation in vivo assessed by Ki67 
immunostaining. We therefore considered the TS603 
cell line as aggressive, while BT142 was defined as in-
dolent. In addition, we found NCH1681 to be the most 
aggressive in vivo based on the survival of mice har-
boring this cell line. Total 2-hydroxyglutarate (2HG) 
levels were also analyzed in vivo for both BT142 and 
TS603 mouse models (Fig. 1F) revealing higher levels 
for this metabolite in the tumor tissue compared with 
those of the contralateral region. Further confirmation 
of IDH1 mutant status for TS603 was carried out through 
DNA sequencing (Fig. 1G) to show the presence of both 
wild-type and mutant alleles with the same intensity at 
the DNA level. Using methylation analyses, BT142 and 
NCH1681 cell lines were classified as G-CIMP-low, while 
TS603 as 1p/19q codeleted (Supplementary Fig. 1A–F 
and Supplementary Fig. 2). The mRNA levels of IDH1mut 
were higher in the TS603 compared with the BT142 cell 
line (Supplementary Fig. 1G). Among the genes with 
significantly lower expression of mRNA in TS603 (RNA-
seq data) were alpha thalassemia/mental retardation 
syndrome X-linked, adenomatous polyposis coli, ataxia 
telangiectasia mutated, Notch1, and MET, while higher 
mRNA expression in the TS603 cell line was displayed 
by Abelson murine leukemia viral oncogene homolog 1, 
Fms-like tyrosine kinase 3, O6-methylguanine-DNA 
methyltransferase, kinase insert domain receptor, tumor 
protein 53, Von Hippel–Lindau Tumor Suppressor, AKT1, 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha, and phosphatase and tensin homolog 
(Supplementary Fig. 1H). Next, we set out to determine 
the metabolic, transcriptomic, and epigenomic differ-
ences that lead to such aggressive phenotype by com-
paring those cell lines in vitro and in vivo.

Aggressive Cell Lines Exhibit Decreased 
Promoter Methylation in the Glycolytic Genes

We examined whether global loss of DNA methylation 
is responsible for the aggressiveness of the IDH1mut cell 
lines (TS603 and NCH1681) by profiling their DNA meth-
ylation status using the Illumina Infinium MethylationEPIC 
approach.41 In order to dismiss the adaptation to the mi-
croenvironment42 as the cause of the metabolomic and 
transcriptomic profiles, we cultured cells in both normoxic 
and hypoxic conditions. The TS603 cell line had lower DNA 
methylation levels in the so-called “open sea” region of 
the genome (regions more than 2 Kbps from a known CpG 
island) but maintained a higher genome-wide methyla-
tion as well as NCH1681 (Supplementary Fig. 2C). We con-
sidered whether oxygen levels during growth affected the 
methylation subtype and applied a similar algorithm used 
to validate the subtypes as did Ceccarelli et al.22 We found 
that under controlled culture conditions (normoxia or hy-
poxia) all cell lines maintained their original epigenomic 
subtype (Fig. 2A–E and Supplementary Fig. 2C–F). We next 
compared the methylation status of the glycolytic and pen-
tose phosphate pathway (PPP) genes and uncovered loss 
of promoter methylation of these genes in the aggressive 
cell lines (Fig. 2F–G) when cultured in both normoxia and 
hypoxia.

Increased Glycolytic mRNA and Metabolite 
Levels in Aggressive Cell Lines

Our targeted epigenetic analysis of IDH1mut cell lines re-
vealed decreased promoter methylation for metabolic en-
zymes in the aggressive cell lines (TS603 and NCH1681), 
including LDHA (Fig. 3A and Supplementary Fig. 3A–C). 
Using transcriptomic and metabolomic analyses in cul-
tured cells, we verified that the loss of promoter methyla-
tion in glycolytic genes is translated into higher mRNA and 
metabolite levels for glycolysis and the PPP. Quantification 
of 180 mRNA transcripts revealed that the BT142 (indo-
lent) and TS603 (aggressive) cell lines were clearly dis-
tinguishable in the principal component analysis biplot 
(Supplementary Fig. 3E). A  significant increase in mRNA 
levels in the aggressive cell lines was observed when com-
pared with the indolent one, regardless of the oxygen con-
ditions. The differences in over 25 transcripts exhibited 
statistical significance (false discovery rate [FDR] <5%) (Fig. 
3B). Seven out of the 25 most significantly altered tran-
scripts are related to the glycolysis pathway: hexokinase 
1, triosephosphate isomerase, glucose-6-phosphate 
isomerase, aldolase, LDHA, α-subunit of enolase (ENO1), 
and phosphofructokinase. Other glycolytic genes were 
upregulated as well, albeit with smaller fold changes 
(Supplementary Fig. 3D). The heatmap also revealed signif-
icantly higher expression levels of aconitase 1 and 2, both 
of which catalyze the conversion of citrate to isocitrate 
in either mitochondria or cytosol, in addition to PRPS2 
(phosphoribosyl pyrophosphate synthetase 2), which is in-
volved in the synthesis of purines and pyrimidines. Under 
hypoxic conditions, the differences in the transcriptome of 
these cell lines were even more pronounced.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
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The transcriptomic changes reflect the metabolic repro-
gramming of the aggressive phenotype. The TS603 ag-
gressive cell line displayed increased levels of metabolites 

from glycolysis, the PPP, and increased metabolites related 
to energy production, amino acids, and the tricarboxylic 
acid (TCA) cycle (Fig. 3C–D). Similarly, decreased DNA 
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methylation for glycolytic genes, followed by an increase 
in mRNA, and higher levels of metabolites were observed 
for NCH1681 (Supplementary Fig. 4A–E). Additionally, 
analysis of (pyruvate-free) cell media collected from cells 
grown under hypoxic conditions revealed that BT142 has 
the lowest lactate:pyruvate ratio among the cell lines in-
vestigated (Supplementary Fig. 4F). This export of lactate 
into the media further demonstrates the acquisition of 
high glycolytic phenotype routinely observed in IDH1wt cell 
lines.

High Glycolytic Phenotype Occurs In Vivo in 
IDH1mut Mice

We next examined whether the aggressive IDH1mut cell 
lines displayed elevated glycolysis in vivo and in vitro. 
Magnetic resonance spectroscopic imaging (MRSI) on SCID 
mice implanted with TS603 and NCH1681 cells showed a 
higher lactate:pyruvate ratio when hyperpolarized [13C-1]-
pyruvate was administered intravenously, validating the 
acquisition of a high glycolytic phenotype in vivo (Fig. 
4A, B). In contrast, mice harboring BT142 displayed a 
lower lactate:pyruvate ratio, similar to previously reported 
studies (Fig. 4C).25 In vitro experiments involving 13C-U-
glucose tracing also revealed a higher glycolytic activity in 
TS603, as observed by the formation of lactate and pyru-
vate m+3 (Fig. 4D). Additionally, LC-MS analysis of tissue 
extracts from the contralateral region of BT142 xenograft 
showed a low glycolytic flux, similar to that encountered 
in the tumor tissue (Fig. 4E). The results from HP-MRSI, the 
in vitro 13C analysis, and the growth and proliferation rates 
demonstrate that the high glycolytic phenotype is correl-
ated with the aggressive phenotype in IDH1mut gliomas.

High Glycolytic Phenotype Is Associated with 
Worse Prognosis in Patients

In order to evaluate the potential of glycolytic genes to 
predict a patient’s outcome, we undertook a detailed 
transcriptomic and epigenomic analysis using the data-
base of TCGA. We identified 9 genes that are only glyco-
lytic, and only the isozymes present in the brain to describe 
the high glycolytic phenotype.43–47 First, applying unsu-
pervised hierarchical clustering to mRNA expression data, 
we identified 4 groups (r1-r4) (Fig. 5A, Supplementary Fig. 
5). Both OS and progression-free interval (PFI) displayed 
good separation, revealing a trend characterized by high 
expression of glycolytic genes associated with aggressive-
ness (Figures 5B, C); indeed, the majority of OS clustering 
exhibited statistical significance (Fig. 5B). Including 26 
genes from PPP did not modify the trend previously ob-
served (Supplementary Fig. 6). The clusters are mixed in 
terms of molecular subtypes with r4, the most aggressive 
cluster, comprising mostly IDHwt gliomas (classic and mes-
enchymal), while r3, the least aggressive cluster, is pre-
dominantly formed by IDH1mut codeleted samples (n = 118) 
and few of the G-CIMP-high (n = 26) (Fig. 5D), which are 
included mainly in r1 and r2. These 2 groups show a sig-
nificant difference (P = 0.02) for OS, which is even larger 
for PFI (P < 0.001). Due to the heterogeneity of r1 and r2 

regarding the molecular subtypes, interpretation of the 
differences encountered herein present some limitations. 
Next, we mapped the promoter methylation of the 9 gly-
colytic genes in the cell lines in order to identify those 
probes that are hypomethylated in the aggressive cell 
line. The same exact probes that were hypomethylated in 
the aggressive cell line were matched in the 648 patient 
sample cohort from TCGA. Four clusters with different sur-
vival were also identified from the DNA methylation data 
(Fig. 5E, Supplementary Fig. 7). Out of the 9 genes, which 
in total present 46 probes at the promoter region, only 17 
probes were hypomethylated in the cell lines. These probes 
correspond to 3 genes: LDHA, hexokinase 2, and ENO1. 
Interestingly, LDHA had the greatest number of methyla-
tion probes, being the main contributors to the 4 observed 
clusters. DNA methylation analysis also delivered 4 stable 
clusters (d1–d4) showing that the G-CIMP-high molecular 
subgroup of patients is further split by the addition of the 
high glycolytic signature (Fig. 5F). The unsupervised clus-
tering strategy was able to group patients efficiently by 
their epigenetic or transcriptomic profiles, revealing a 
strong association between these biological profiles and 
patients’ OS and PFI (Figures 5B–H). Interestingly, mRNA 
levels of LDHA inversely correlated with the epigenome for 
the clusters d3 (defined as “G-CIMP-high low-glycolytic”) 
and d2 (defined as “G-CIMP-high high-glycolytic”), and 
there was no significant change in the mRNA levels of 
LDHA between “G-CIMP-high high-glycolytic” and G-CIMP-
low (Fig. 5I). The association between the epigenome and 
the metabolome can be summarized in the diagram dis-
played in Fig. 6A. This classification of our model systems 
based on their metabolism and aggressiveness reflects 
the outcomes obtained from our analysis of TCGA data. 
G-CIMP-high molecular subtypes could be further strati-
fied into 2 subgroups according to their glycolytic activity, 
which shows a correlation with the OS of these patients 
(Fig. 6B).

Overexpression of LDHA in the Indolent Model 
System Increases Tumor Aggressiveness

The LDHA gene was the main glycolytic gene that contrib-
uted to the DNA methylation clustering in TCGA data anal-
ysis. Therefore, we wondered whether overexpressing this 
gene in our indolent model system might affect the rate of 
proliferation and mice survival. Indeed, we noticed a de-
creased survival of mice and increased proliferation rate 
in vivo (Supplementary Fig. 8) in those mouse xenografts 
generated by injecting (intracranially) the BT142 cell line 
overexpressing the LDHA gene.

Discussion and Conclusions

To gain insights into the molecular mechanisms underlying 
glioma evolution and to identify metabolic markers of ag-
gressiveness, we undertook detailed multi-omics analyses 
on preclinical model systems that closely recapitulate pa-
tient IDH1mut LGG metabolic phenotypes. Epigenetically, 
our cell lines were classified into G-CIMP-low and 1p/19q 
codeleted subtypes. We identified 2 G-CIMP-low IDH1mut 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz207#supplementary-data
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cell lines which differ in aggressiveness despite their 
global epigenetic similarities. The methylation status of all 
the cell lines corresponded with the epigenomic subtypes 
of those patients they belong to, increasing confidence in 
their use as models of the human tumor.

A smaller study examined 4 specific cases of grades II–III 
IDH1mut astrocytomas that unexpectedly and rapidly pro-
gressed to GBM. This study reported that progression is 
correlated with hypermutation, which increases genomic 
instability and amplification of genes that are frequently 
mutated in GBM.32 The results of this investigation show 

inconsistencies in the degree to which global or specific 
epigenetic changes contribute to glioma progression.

Our DNA methylation analyses indicate that the ag-
gressive phenotype has decreased methylation levels of 
those genes involved in glycolysis and the PPP. Distinct 
from previous reports, the loss of DNA promoter meth-
ylation in our models is specific to the glycolytic genes 
and not a global event. In fact, the indolent BT142 and 
the aggressive NCH1681 have similar methylation classi-
fication (G-CIMP-low); however, NCH1681 displays higher 
global methylation compared with BT142. The aggressive 
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TS603 (1p/19q codeletion) has the highest methylation 
level among the 3.  This is expected given the known 
epigenomic differences between IDH1mut codeletion and 
IDH1mut non-codeletion (G-CIMP-low and -high).22 We 

therefore propose that there is a correlation between the 
increasing aggressiveness of the tumor and the loss of 
DNA methylation at very specific loci and does not require 
global demethylation.
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Furthermore, we demonstrate that the specific 
epigenomic modifications are translated at the level of 
the transcriptome and metabolome, and we validate the 
use of 13C-pyruvate to monitor this transformation non-
invasively. Integrating the current data, we propose a 
mechanism of increasing aggressiveness that involves the 
loss of promoter methylation in the glycolytic genes (Fig. 6, 
left panel). In our preclinical models, the loss of these spe-
cific epigenetic markers leads to increased expression of 
glycolytic and PPP-related mRNAs. We validated the pres-
ence of high glycolytic activity in the aggressive models 
in vivo using hyperpolarized 13C-pyruvate MRSI. This val-
idation demonstrates that the acquisition of a high glyco-
lytic phenotype is not due to cell culture adaptation, and 
that it is in fact supported by the brain microenvironment. 
The lactate:pyruvate ratio obtained through HP-MRSI can 
serve as a non-invasive marker of aggressiveness for clin-
ical applications.48 Combining 2HG detection via MRS and 
the proposed biomarkers could result in the improvement 
of disease management by anticipating the increased 
aggressiveness of the tumor. Although there is interfer-
ence from the lactate in the normal brain,49,50 monitoring 
lactate:pyruvate ratio in longitudinal studies in combina-
tion with other imaging modalities will still inform about 
the disease progression toward a potential more aggres-
sive phenotype.

Our study also demonstrates that metabolic profiling of 
patients adds an extra dimension of complexity and en-
hances the potential of finding novel therapeutic targets 

that are more tailored to a distinct subset of patients. The 
finding that we can further stratify the G-CIMP-high molec-
ular subgroup into 2 distinct metabolic subgroups suggests 
that metabolomic profiling complements the epigenomic 
and transcriptomic profiles. In addition, our study opens 
up the hypothesis that the shift from IDH1mut driven to high 
glycolytic metabolism, necessary for increasing the tumor 
aggressiveness, occurs at the G-CIMP-high level, and be-
fore the global loss of methylation from G-CIMP-high to 
G-CIMP-low. This relatively early metabolic reprogram-
ming provides a good rationale to screen newly identified 
patients for their glycolytic activity in order to assess the 
aggressiveness of the tumor. Therefore, the identification 
of both epigenetic and metabolic biomarkers such as the 
ones coming from glycolysis presented here, or others 
elsewhere, have the potential to contribute to improved di-
agnosis, prognosis, and personalized therapy in glioma.51 
Indeed, clinical trials investigating the correlation between 
the conversion rate of hyperpolarized [1-13C]-pyruvate to 
lactate and Ki67 levels as a marker of aggressiveness are 
under way (ClinicalTrials.gov: NCT03830151).

Limitations of the Study

Interestingly, TCGA analysis revealed that metabolic re-
programming toward higher glycolytic phenotypes oc-
curs at the G-CIMP-high molecular subtype, contrary to our 
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preclinical models, which are classified as either G-CIMP-low 
or 1p/19q codeleted. Since patient-derived cell lines are very 
difficult to grow and might adapt in cell culture conditions, 
there is a possibility that matched tumor samples might be 
G-CIMP-high and this methylation is not retained in the cell 
culture for these cell lines, therefore appear as G-CIMP-low. 
Future comparisons between matched patient samples and 
their derived cell lines will reveal the extent to which the 
global methylation profile is retained in cell culture.
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online.
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