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Abstract

Decades of research on the Aryl hydrocarbon Receptor (AhR) has unveiled its involvement in the 

toxicity of halogenated and polycyclic aromatic hydrocarbons, and a myriad of normal 

physiological processes. The molecular dissection of AhR biology has centered on a canonical 

signaling pathway in an effort to mechanistically reconcile the diverse pathophysiological effects 

of exposure to environmental pollutants. As a consequence, we now know that canonical signaling 

can explain many but not all of the AhR-mediated effects. Here we describe recent findings that 

point to non-canonical signaling pathways, and focus on a novel AhR interaction with the 

Krüppel-like Factor 6 protein responsible for previously un-recognized epigenetic changes in the 

chromatin affecting gene expression.

1. Introduction

Since its discovery in the 1980s, the aryl hydrocarbon receptor (AhR) has been a major 

focus in toxicology due to the fact that it mediates the effects of the halogenated aromatic 

hydrocarbon environmental pollutants [1]. AhR studies have mainly focused on 

understanding molecular basis of toxicity induced by the prototypical AhR ligand 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD). As a result, the AhR has been implicated in regulatory 

processes affecting the immune system, liver homeostasis, cardiac development, wound 

healing, cell proliferation and apoptosis, tumor promotion and metabolic diseases [2–7]. 

Studies into the underlying molecular mechanisms have centered on a now well-defined 

canonical signaling pathway. This commentary seeks to compare and contrast canonical 

signaling with a recently identified non-canonical pathway that promises to enrich our 

understanding of AhR biology in response to toxic insults as well as normal physiological 

processes.

2. The aryl hydrocarbon receptor

The murine AhR was first purified in 1991 and subsequently cloned in 1992 [8,9]. This work 

revealed that the AhR is a member of the basic helix-loop-helix (bHLH) PAS family of 

transcription factors defined by the Period (PER), AhR nuclear translocator (Arnt), and 
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single-minded (SIM) proteins [10]. AhR expression is essentially ubiquitous in mammals 

consistent with a broad-spectrum homeostatic role, however expression levels varying 

widely across tissues with the liver, thymus, lung, kidney, spleen, and placenta exhibiting 

greatest expression [11]. Additionally, AhR expression is developmentally regulated [12], 

and more recent evidence indicates a role for the AhR in developmental process affecting 

hematopoiesis, immune system biology, neural differentiation, and liver architecture [13–

17]. Structurally, the N-terminal half of the mammalian AhR is well-conserved, suggestive 

of functional importance in fundamental physiological activities. In contrast, the receptor’s 

C-terminal region exhibits species differences reflected as polymorphisms and variations in 

protein length which largely account for the size differences observed between species [18]. 

The functional impact of the polymorphisms remains largely undefined. A basic sequence 

and juxtaposed helix-loop-helix region in the (bHLH) domain located near the N-terminus is 

responsible for DNA binding and Arnt protein dimerization, respectively [16]. The PAS 

domain, specifically the PAS-B region overlaps with the AhR’s ligand binding domain, and 

confers protein–protein interactions with Hsp90 and the Retinoblastoma tumor suppressor 

protein [19,20]. The C-terminal half of the AhR protein encompasses a glutamine-rich 

transactivation domain, and harbors the binding sites for several cofactors including p300, 

SMRT, SRC1, and RIP140 [21–24]. It is noteworthy that the C-terminal region is also 

responsible for the interaction with the Krüppel-like factor 6 (KLF6) protein [25,26], the 

focus of the discussion on non-canonical signaling below.

3. Canonical AhR signaling

Canonical AhR signaling has received attention for decades, and is described in detail in 

several excellent reviews [5,27,28]. In order to provide context in this commentary, a few of 

the salient findings are presented here. Canonical signaling begins in the cytoplasm where 

unliganded AhR is bound by a chaperone complex. This chaperone complex includes heat 

shock protein 90 (Hsp90) [29], immunophilin-like protein XAP2 (also known as ARA9 or 

AIP) [30–32], and p23 [33]. Transformation of the AhR by ligand binding is thought to 

involve a conformational change that reveals the nuclear localization sequence to mediate 

nuclear translocation of the receptor–chaperone complex via β-importins [34]. The 

conformational change in the PAS-A domain following ligand binding also facilitates 

subsequent dissociation of the chaperonins and heterodimerization with Arnt protein through 

the HLH domain inside the nucleus [35]. The AhR–Arnt heterodimer binds DNA at 

xenobiotic response elements (XRE) defined by the 5’-GCGTG-3’ core consensus motif 

[36] (Fig. 1, canonical signaling pathway). It should be noted however, that while the core 

sequence is essential for AhR–Arnt complex binding, evidence exists implicating a role for 

nucleotides flanking the core motif in DNA binding and function [37,38]. Studies revealed 

1) that the AhR’s DNA binding affinity was influenced by the nucleotide sequence flanking 

the core motif, 2) that DNA binding affinity and transcriptional responsiveness were not 

strictly correlated, and 3) that flanking residues could affect AhR-DNA binding in an 

agonist-specific manner. However, the veracity of the last observation is challenged by more 

recent findings [39].

The AhR–Arnt–XRE interactions regulate the expression of a plethora of genes including 

those encoding both phase I and phase II xenobiotic metabolism enzymes (e.g., the Cyp1a1, 
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Cyp1a2, Cyp1b1, and the Gst-ya genes) associated with adaptive or toxic responses to 

exogenous agonists [40–42]. While much is now know about the molecular events that lead 

to AhR activation and DNA binding, the mechanistic basis for AhR-mediated dioxin toxicity 

is not yet fully understood. Nevertheless, the widely held consensus is that most, if not all of 

the toxic manifestations caused by TCDD are AhR mediated [43], and several of the better 

characterized toxicities are clearly mediated by the canonical AhR–Arnt signaling complex 

[44].

4. Non-canonical signaling

To better understand TCDD toxicity, several groups sought to identify AhR target genes 

through DNA microarray studies using cell culture and whole animal models [45–48]. A 

general observation stemming from these studies is that despite computational analyses 

covering 3 Kb [47] or 6 Kb [48] of the sequence flanking the transcription start sites of 

responsive genes, many did not contain a readily identifiable XRE. One possible explanation 

is that expression of genes lacking a XRE reflects indirect AhR-mediated signaling, and 

indeed, such changes in expression may be attributed to latent secondary effects. However, it 

is formally possible that the AhR alters transcription directly through a site(s) distinct from 

the consensus XRE. For instance, the ligand-activated AhR–Arnt dimer can interact directly 

with unliganded estrogen receptor to promote formation of a transcriptionally active 

complex binding to estrogen response elements [49]. Correspondingly, the AhR can form a 

quaternary complex with p300, pRb and E2F to suppress S phase gene expression [50,51], 

or with an unknown protein(s) upstream of the CYP1A2 gene [52]. Evidence is also 

accumulating for direct AhR-DNA binding in conjunction with the RelB protein to a distinct 

response element located in the interleukin-8 gene regulatory region [53].

5. KLF6 is a novel AhR DNA-binding partner

The plasminogen activator inhibitor-1 (PAI-1) gene represents an example where direct 

TCDD responsiveness is attributed to a regulatory region devoid of a canonical XRE [54]. 

Huang and Elferink [55] recently characterized a novel non-consensus XRE (NC-XRE) 

consisting of a 5’-GGGA-3’ tetranucleotide motif within the PAI-1 promoter that supports 

direct DNA binding and function by the AhR independently of the Arnt protein. The lack of 

sequence homology between the XRE and NC-XRE (Fig. 2) presupposes recruitment of a 

unique AhR DNA binding complex. Our studies confirmed that AhR-DNA binding to the 

NC-XRE is absolutely dependent on Krüppel-like Factor 6 (KLF6), a novel AhR partner 

protein [25]. KLF6 (also known as Zf9 or CPBP) is a ubiquitously expressed Cys2-His2 

transcription factor belonging to a growing family (17 currently) of Krüppel-like zinc finger 

transcription factors that regulate processes including cell proliferation, signal transduction, 

differentiation, and development [56,57]. KLFs are evolutionarily highly conserved across 

vertebrate species, sharing an 81 amino acid C-terminal zinc finger DNA-binding domain 

that can interact with “GC-box” or “CACCC-box” DNA motifs in responsive promoters 

[58,59]. Therefore, it was intriguing to discover that the 5’ basic region in KLF6 juxtaposing 

the first zinc finger conferred binding to the NC-XRE [25]. Likewise, targeted deletion of 

the AhR’s basic region necessary for XRE binding had no noticeable impact on DNA 
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binding to the NC-XRE, suggesting that AhR binding to the NC-XRE is fundamentally 

different from binding to the XRE.

Mutations in KLF6 and loss-of-heterozygosity have been associated with several human 

malignancies including prostate, colorectal and liver cancer suggesting that KLF6 is a tumor 

suppressor [60], functioning by regulating expression of the p21Cip1 cyclin-dependent kinase 

inhibitor [61]. Jackson et al. [62] recently showed that transient expression of the G1 phase 

cyclin-dependent kinase inhibitor p21Cip1 during liver regeneration is dependent on NC-

XRE-mediated AhR-KLF6 regulatory control [62]. This study also demonstrated that 

sustained p21Cip1 induction by TCDD is responsible for the previously observed inhibition 

of normal liver regeneration [63]. Moreover, these data confirm that the AhR-KLF6 complex 

is responsible for both normal cell cycle control processes, and the deleterious effects of 

TCDD resulting in disrupted liver regeneration.

6. Carbamoyl phosphate synthase 1 (CPS1) is a novel AhR-KLF6 cofactor

Using the NC-XRE as a DNA affinity reagent to purify the TCDD-inducible AhR-KLF6 

complex, mass spectrometry peptide sequencing identified CPS1 as a component of the 

complex [64]. CPS1 is an ≈160 kDa multidomain protein that catalyzes the irreversible 

reaction: 2ATP + HCO3
− + NH3 2ADP + Pi + carbamoyl‐phosphate[65]. While CPS1 is 

customarily regarded as a mitochondrial enzyme involved in the detoxification of ammonia 

through the urea cycle [66], the characterization of CPS1 as a component of the NC-XRE-

bound AhR-KLF6 complex revealed a novel role for this protein. Specifically, carbamoyl 

phosphate, the product of CPS1 catalysis, was shown to carbamylate lysine-rich histones to 

produce homocitrulline through a non-enzymatic mechanism [67]. The proposed mechanism 

involves nucleophilic attack of lysine residues by the highly electrophilic acylphosphate 

group on carbamoyl phosphate. A similar process was previously reported for 1,3-

bisphosphoglycerate forming a specific, functionally important post-translational 

modification on glyceral-dehyde-3-phosphate dehydrogenase [68]. Joshi et al. [64] recently 

demonstrated that a functionally important lysine residue in histone H1 (K34) is reversibly 

homocitrullinated (H1K34hcit) following AhR-KLF6 recruitment to NC-XRE sites in the 

genome. Formation of H1K34hcit is dependent on CPS1 expression. It is noteworthy that 

acetylation of a K34 on the histone H1.4 variant (H1.4K34Ac) is associated with increased 

H1 mobility and transcriptional activation [69]. In comparison to core histones that remain 

in place for several hours, H1 proteins are substantially more mobile with a mean residence 

time at any one binding site estimated to be ≈3 min [70]. It is tempting to speculate that the 

H1K34hcit post-translational modification may reduce the mean residence time, resulting in 

a more open chromatin conformation conducive to increased transcription. It is also possible 

that the H1K34hcit may represent a distinctive modification in the “histone code” read by 

regulatory proteins to promote transcription [71].

Peptidylarginine deiminase (PADI) enzymes convert arginine and methylarginine residues to 

citrulline via a hydrolytic process called citrullination or deimination [72]. Recruitment of 

PADI2 to the genome was shown to citrullinate arginine 26 on histone H3 culminating in 

local chromatin decondensation and transcriptional activation [73]. Hence the discovery that 

the PADI2 gene is a transcriptional target for the AhR-KLF6-CPS1 complex implies that 
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CPS1 and PADI2 function in concert to modify histones H1 (H1K24hcit) and H3 

(H3R26cit), respectively, to alter the epigenome in response to AhR activation [64].

7. Conclusions

The discovery of non-canonical AhR signaling pathways represents new opportunities to 

reconcile TCDD toxicity at a molecular level. The recent identification of the AhR-KLF6 

complex dramatically increases the repertoire of AhR target genes, and ongoing studies will 

ascertain how they contribute to toxic and normal physiological processes. The complexity 

in understanding AhR biology is highlighted by findings showing that carcinogenic receptor 

agonists induce the canonical AhR signaling pathway to promote tumor formation, yet AhR-

regulated expression of p21Cip1 through the non-canonical pathway is consistent with tumor 

suppression. Hence, future studies will need to reconcile the contribution of both signaling 

pathways in order to reach a comprehensive understanding. Since both the AhR and KLF6 

are ubiquitously expressed, it is reasonable to assume that this complex is functional in 

many different tissues, however the role for CPS1 is envisioned to be somewhat restricted 

given that its expression is predominantly hepatic. Hence, involvement of homocitrullination 

in epigenetic programming may be largely specific to liver functions. Nevertheless, this does 

not preclude the AhR-KLF6 complex from recruiting other co-factors to regulate tissue-

specific gene expression—be they hitherto known, or ones yet to be discovered. What is 

evident from the recent studies on non-canonical signaling is that the AhR still holds secrets 

that need to be revealed before a complete understanding of receptor biology is realized.
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XRE xenobiotic response element

hcit homocitrulline

NC-XRE non-consensus xenobiotic response element

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

KLF6 Krüppel-like factor 6

CPS1 carbamoyl phosphate synthase 1
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Fig. 1. 
The diagram depicts the canonical and non-canonical signaling pathways. The unliganded 

cytosolic AhR in complex with the chaperones (Hsp90, XAP2, p23) is common to each 

pathway. Upon ligand binding—by either exogenous or endogenous agonists—the complex 

translocates into the nucleus, dissociates from the chaperones and forms a DNA-bound 

complex with the Arnt protein at XRE sites defined by the 5’ -GCGTG-3’ core recognition 

motif (canonical signaling), or the KLF6 protein at NC-XRE sites defined by the 5’-

(GGGA)4-3’ tetranucleotide repeat motif (non-canonical signaling), respectively. The AhR–

Arnt complex is known to recruit several co-activators (Co-A) in a context dependent 

manner, and induces CYP1A1 expression resulting in the biotransformation and depletion of 

AhR agonists. The AhR-KLF6 complex has been shown to recruit CPS1 as a cofactor 

responsible for histone H1 homocitrullination on lysine 34 (H1K34hcit). The non-canonical 

signaling pathway is active in cell cycle control through regulated expression of p21Cip1.
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Fig. 2. 
The CYP1A1 XRE and PAI-1 NC-XRE sequences are presented with the core nucleotides 

necessary for protein-DNA binding depicted in bold italic type.
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