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Abstract

Background -—Deep learning algorithms derived in homogeneous populations may be poorly 

generalizable and have the potential to reflect, perpetuate, and even exacerbate racial/ethnic 

disparities in health and healthcare. In this study we aimed to (1) assess if the performance of a 

deep learning algorithm designed to detect low left ventricular ejection fraction (LVEF) using the 

12-lead electrocardiogram (ECG) varies by race/ethnicity, and to (2) determine whether its 

performance is determined by the derivation population, or by racial variation in the ECG.

Methods -—We performed a retrospective cohort analysis that included 97,829 patients with 

paired ECGs and echocardiograms. We tested the model performance by race/ethnicity for 

convolutional neural network (CNN) designed to identify patients with a LVEF ≤35% from the 12-

lead ECG.

Results -—The CNN which was previously derived in a homogeneous population (derivation 

cohort N=44,959; 96.2% non-Hispanic White) demonstrated consistent performance to detect low 

LVEF across a range of racial/ethnic subgroups in a separate testing cohort (N=52,870): Non-

Hispanic white (N= 44,524, AUC 0.931), Asian (N=557, AUC 0.961), black/African American 

(N=651, AUC 0.937), Hispanic/Latino (N=331, AUC 0.937), and American Indian/Native Alaskan 

(N=223, AUC 0.938). In secondary analyses, a separate neural network was able to discern racial 

subgroup category (Black/African-American [AUC of 0.84], and white, non-Hispanic [AUC 0.76] 

in a five-class classifier), and a network trained only in non-Hispanic whites from the original 
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derivation cohort performed similarly well across a range of racial/ethnic subgroups in the testing 

cohort with an AUC of at least 0.930 in all racial/ethnic subgroups.

Conclusions -—Our study demonstrates that while ECG characteristics vary by race, this did 

not impact the ability of a CNN to predict low LVEF from the ECG. We recommend reporting of 

performance amongst diverse ethnic, racial, age and gender groups for all new AI tools to ensure 

responsible use of AI in medicine.

Graphical Abstract

Convolutional Neural Network (CNN) able to predict from ECG low LVEF across races
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Introduction

Though momentum for the application of artificial intelligence (AI) to medicine continues to 

build,1–3 there are several examples of initially promising findings that struggle when 

applied to diverse populations. For instance, Google’s algorithm for diagnosis of diabetic 

retinopathy performed poorly in populations in India outside where the model had been 

developed.4 Other dramatic examples outside clinical medicine include failure of facial 

recognition software to recognize non-White faces,5 and, more ominously, examples from 

the criminal justice system in which structural flaws in the data create prediction networks 

that perpetuate bias and inequity.6, 7

These problems can arise when datasets used to train the algorithms lack demographic 

diversity or when the datasets themselves reflect disparities in outcomes or bias in human 

behavior. For instance, if a network used to predict outcomes after a particular intervention 

reflects racial disparities unrelated to either the patient’s intrinsic risk profile or the 

intervention (uninsured status, for example), then application of the model for patient 

selection could perpetuate the disparity. As such, these technologies have the potential to 

reflect, perpetuate, and even exacerbate disparities in health and healthcare. Addressing 

generalizability in AI, and the contribution of racial and ethnic categories to algorithm 

performance, will therefore remain key barriers towards its implementation into clinical 

practice.

We have previously developed a convolutional neural network (CNN) that can determine the 

presence of left ventricular (LV) systolic dysfunction from an electrocardiogram (ECG). The 

algorithm demonstrated very strong overall performance with an area under the curve (AUC) 

of 0.93,8, 9 and has the potential to offer a scalable and low-cost screening test for LV 

systolic dysfunction. The model performance was consistent across age and sex subgroups. 

However, the derivation population was overwhelmingly non-Hispanic White (>95%) and, 

like many biometric variables, ECG features are known to vary by race.10–12 In our initial 

report, we did not assess the performance of the CNN by race, leaving a key issue of 

generalizability unexplored.

In this analysis, we aimed to determine the impact of race on the performance of our CNN to 

detect the presence of LV systolic dysfunction from an ECG. Furthermore, to explain the 

generalizability (or lack thereof) of the network, we also evaluated whether a similar 

algorithm, trained on a completely homogenous population, would achieve the same 

outcomes. Finally, we assessed whether a CNN could discern race using the ECG itself.

Methods

Data Sources and Study Population

As previously described,8, 9 we identified all adult patients (18 years or older) with at least 

one digital, standard 10-second 12-lead ECG and a standard transthoracic echocardiogram 

obtained within two weeks of each other, from January 1994 and February 2017. All ECGs 

were acquired at a sampling rate of 500 Hz using a GE-Marquette ECG machine (Marquette, 

WI) and stored using the MUSE data management system for later retrieval. All ECGs were 

Noseworthy et al. Page 3

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recorded by a trained technician while the patients were supine and still for 10 seconds. We 

did not perform any preprocessing of the signals. The ECG recording system used 0.15–100 

Hz filters that resulted in consistent recordings with minimal noise. LVEF was routinely 

determined using a hierarchical priority from the most to the least valid method (3-D, 

volumetrics, biplane, M-Mode, and visual estimation).13 Race and ethnicity were self-

reported according the U.S. Census Bureau Office of Management and Budget standards on 

Race and Ethnicity categories14 and recorded in the medical record (non-Hispanic White, 

Asian, Black/African American, Hispanic/Latino, and American Indian/Native Alaskan). 

Patients who did not report race or ethnicity or who reported multiple categories were not 

included in the analysis. No other exclusions were applied. The Mayo Clinic Internal 

Review Board approved waiver of the requirement to obtain informed consent in accordance 

with 45 CFR 46.116, and waiver of HIPAA authorization in accordance with applicable 

HIPAA regulations. The data that support the findings of this study are available from the 

corresponding author upon reasonable request.

Primary Analysis

The primary outcome was the ability of the deep learning network to identify patients with a 

low LVEF of ≤35% using the ECG signal alone in patients with prior echocardiographic 

assessments of LV function performed within each racial/ethnic subgroup: non-Hispanic 

White, Asian, Black/African American, Hispanic /Latino, and American Indian/Native 

Alaskan. Details of the previously-described CNN identification of patients with a low 

LVEF of ≤35% using the ECG signal are included in Appendix 1. We used the previously 

published model architecture. The model input was the 12 lead ECG as a matrix of 5000×12 

values representing 10 seconds of ECG sampled at 500Hz. The last layer of the model was a 

1×12 convolution filter that combines the data from the different leads. The weights for the 

lead-specific combining function were learned in the training process. We did not use 

regularization.

Based on the network output (the probability of the patient having an LVEF ≤35%), we 

created a receiver-operating curve (ROC) and AUC as the primary assessment of network 

strength to diagnose low LVEF in each of the racial subgroups. The threshold probability to 

define a positive screen for low LVEF was determined from the prior publication on the 

internal validation set. 9

Secondary Analyses

We performed two secondary analyses. First, we retrained a network using a population 

restricted to non-Hispanic White patients and tested the algorithm on each of the racial 

subgroups. Similar to the primary analysis, we created a receiver-operating curve (ROC) and 

measured its AUC as primary assessment of network strength to diagnose low LVEF in each 

of the racial/ethnic subgroups.

Second, a separate neural network was trained on the self-reported race/ethnicity categories 

in order to detect ECG features suggestive of an individual’s racial/ethnic subgroup. The 

network structure of the multiclass network was similar to the LVD classification network, 

however, the output layer was replaced by a 5-neuron layer, each reprinting a different racial/
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ethnic subgroup. During training, the network with the highest overall validation accuracy 

was selected and testing in the testing dataset (the testing dataset was not used for any model 

training and was ‘unseen’ by the model until model testing phase).

Statistical Considerations

Continuous data are presented as mean +/− standard deviation (SD) and median and 

interquartile range (IQR) if highly skewed. For measures of diagnostic performance (AUC, 

ROC, sensitivity, specificity), 95% confidence intervals were computed under the 

assumption of independence. Since the current study was aimed at validating the previously 

derived model, the threshold for determining accuracy, sensitivity and specificity was 

selected based on the original work and alerted for any ECG that had an output greater than 

25.6% (i.e. the ECG indicates at least a 25.6% probability of EF ≤35%). These routine 

statistical analyses were conducted using R (version 3.4.2).

The original testing cohort was used for the primary analyses (testing the performance of the 

CNN across racial/ethnic subgroups) and the original derivation cohort was used in the two 

sensitivity analyses to retrain two networks (for race classification and for low LVEF 

detection using a homogeneous sample) which were then applied to the “unseen’ testing 

cohort. The testing cohort was a holdout dataset and was never used or shown to the model 

during any stage of the development.

Results

Study Population

The overall sample included 97,829 patients with paired ECG and echocardiographic data 

(Figure 1). During the previously published model derivation and testing,9 the group was 

divided into a derivation cohort (N=44,959) and a testing cohort (N=52,870). The 

breakdown of self-reported race/ethnicity in the testing cohort are shown in Figure 1. Self-

reported race was not available in 6,587 patients. The majority of patients in the sample were 

non-Hispanic Whites (44,524/46,283, 96.1%).

The baseline characteristics, stratified by self-reported race and ethnicity are shown in Table 

1. As shown in Figure 2, the distribution of age and the probability of low LVEF varied by 

race/ethnicity. The non-Hispanic white patients were slightly older but had a lower 

proportion of patients with LVEF ≤35%.

Primary Analysis: Model Performance across Racial and Ethnic Subgroups

The previously derived CNN demonstrated consistent performance to detect low LVEF 

across a range of racial subgroups in the testing cohort (Figure 3; N=52,870): non-Hispanic 

White (N=44,524, AUC 0.931), Asian (N=557, AUC 0.961), Black/African American 

(N=651, AUC 0.937), Hispanic/Latino (N=331, AUC 0.937), and American Indian/Native 

Alaskan (N=223, AUC 0.938).

Noseworthy et al. Page 5

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Secondary Analysis: Detection of Racial Subgroup using ECG Features

A multi class neural network (with more balanced representation of the different racial/

ethnic groups) was able to discern racial/ethnicity subgroup in the testing cohort with an 

accuracy of 56.2% (Figure 4). The performance was best of classification of Black/African-

American (AUC of 0.84), and White, non-Hispanic(AUC 0.76) race/ethnicity, but less robust 

for the other subgroups (AUC was between 0.65–0.70).

Secondary Analysis: Performance of a CNN trained on a Completely Homogeneous Group

A network trained only on White non-Hispanic individuals from the derivation cohort 

performed similarly well across a range of racial/ethnic subgroups in the testing cohort with 

an AUC of at least 0.930 in all racial/ethnic subgroups.

Discussion

The primary finding of this study is that a previously derived CNN demonstrated consistent 

performance for the detection of low LVEF using the ECG across a range of racial/ethnic 

subgroups. Though this and other studies have demonstrated that ECG features vary by 

race10–12 and the population used to train the network was quite homogeneous, our network 

was able to classify tracings with high accuracy. Taken together, these findings illustrate the 

importance of validating the applicability of AI across racial and ethnic categories, while 

also highlighting the unpredictable relationship between race, biophysical signals, and 

algorithm performance.

LV systolic dysfunction is associated with adverse outcomes,15 but progression to overt 

heart failure is preventable.16, 17 There is currently no established approach to population-

level screening for asymptomatic LV systolic dysfunction,15, 18 but this algorithm could 

potentially be incorporated into existing ECG interpretation work flow in order to provide 

front-line clinicians with a tool to identify such patients. Implementation of the algorithm 

would allow prospective collection of data on model performance and provide data for 

further tuning and refinement of the network.

Although it is highly preferable to derive models in heterogeneous populations, our study 

demonstrates that even when diverse populations are not available for training, some 

networks may be (at least in this particular case) widely applicable. It is important, however, 

not to make this assumption but instead to examine rigorously the performance of any given 

algorithm across a range of demographic subgroups. In order to avoid potentially hidden 

bias in AI tools used for healthcare, subgroup reporting and AI test assessment in different 

populations is critical. In light of our findings, the features used by this specific neural 

network for the detection of ventricular dysfunction appear to be race invariant. However, it 

is imperative that future algorithms intended for broad application similarly pursue 

validation according to the diversity reflected in the target population.

Need for consistent reporting of racial/ethnic subgroup effects

Although the current algorithm was demonstrated to be race-invariant in its performance, 

other algorithms may not be. It will be critical as new algorithms are introduced, that the 
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performance across a range of demographic subgroups is tested and reported. Only with 

consistent and rigorous reporting will we be able to determine which algorithms may be less 

generalizable and require further training before they can be integrated into clinical practice. 

It is also critical that race and ethnicity data be consistently collected and reported to allow 

consistency of these algorithms.

We recommend four potential strategies to minimize bias in AI. We suggest that (1) 

investigators remain mindful of the potential for racial/ ethnic bias in AI, (2) investigators 

report performance across a range of demographic subgroups, particularly race/ethnicity in 

all initial derivation/validation studies, (3) when models are poorly generalizable, 

investigators perform additional model training on diverse populations (seeking 

collaborations when needed), and (4) investigators perform external validation in 

populations that are representative of the population for intended clinical application.

Limitations

While the number of racial/ethnic minorities in our study was sufficient to calculate an AUC 

for the model in each group, the sample sizes were still small. Furthermore, the sample was 

geographically limited to Mayo Clinic, Rochester MN, which in addition to being a 

relatively homogenous population of predominantly non-Hispanic Whites, could have other 

issues related to geographic, socioeconomic, or healthcare setting generalizability. The 

algorithm was derived and validated on ECG signals obtained using the GE system and other 

healthcare organizations that obtain ECG data through other means may also not be able to 

apply the algorithm. Lastly, as is true of all deep learning exercises, the specific ECG 

characteristics used by our unsupervised CNN to classify individuals are not known. We are 

conducting ongoing studies to create interpretable read outs from the network, but this is not 

required to apply the current algorithm.

Conclusion

A previously-derived CNN had consistent performance for the detection of low LVEF using 

the ECG across a range of racial/ethnic subgroups. This is not to say that the ECG is race-

invariant (indeed a separate CNN was able to discern race using ECG features), rather it 

suggests that the ECG features associated with ventricular dysfunction are race invariant. 

Other applications of the ECG to risk stratification could be highly sensitive to race. As 

such, we need to be aware that AI has the potential to exacerbate racial bias and health and 

healthcare disparities. We recommend vigilance, maintenance of diverse datasets, consistent 

subgroup reporting, and external validation in order to ensure responsible use of AI in 

medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNN convolutional neural network
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What is Known:

• ECG features vary by race which could affect the generalizability of deep 

learning approaches to ECG interpretation.

• Many examples of poorly generalizable AI algorithms exist indicating a 

potential for these technologies to reflect, perpetuate, and even exacerbate 

racial/ethnic disparities in healthcare.

What this study adds:

• A previously developed convolutional neural network that can determine the 

presence of LV systolic dysfunction from the ECG performs well across a 

wide range of racial/ethnic subgroups.
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Figure 1. 
Breakdown of race and ethnicity in the testing cohort (N=52,870, these previously ‘unseen’ 

patients were not part of the derivation cohort). The population was divided into four groups 

based on self-reported race (non-Hispanic White, Asian, Black/African American, and 

Native American/Alaskan).
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Figure 2. 
Histograms demonstrating the distribution of (A) age and (B) ejection fraction, stratified by 

race/ethnicity group.

Noseworthy et al. Page 12

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The performance of the CNN across each of the six race/ethnic subgroups for the detection 

of an ejection fraction ≤35% and ≤40%.
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Figure 4. 
Confusion matrix demonstrating the accuracy of the multiclass classifier (trained on the 

initial derivation cohort) to identify race based on the ECG (testing in the ‘untouched’ 

testing cohort). The classifier was most accurate for Black/African American and non-

Hispanic White racial/ethnic groups but less accurate for the other subgroups.
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