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Intelligent Adversary Risk Analysis: A Bioterrorism Risk
Management Model

Gregory S. Parnell,1,∗ Christopher M. Smith,2 and Frederick I. Moxley3

The tragic events of 9/11 and the concerns about the potential for a terrorist or hostile state
attack with weapons of mass destruction have led to an increased emphasis on risk analysis for
homeland security. Uncertain hazards (natural and engineering) have been successfully ana-
lyzed using probabilistic risk analysis (PRA). Unlike uncertain hazards, terrorists and hostile
states are intelligent adversaries who can observe our vulnerabilities and dynamically adapt
their plans and actions to achieve their objectives. This article compares uncertain hazard
risk analysis with intelligent adversary risk analysis, describes the intelligent adversary risk
analysis challenges, and presents a probabilistic defender–attacker–defender model to evalu-
ate the baseline risk and the potential risk reduction provided by defender investments. The
model includes defender decisions prior to an attack; attacker decisions during the attack; de-
fender actions after an attack; and the uncertainties of attack implementation, detection, and
consequences. The risk management model is demonstrated with an illustrative bioterrorism
problem with notional data.
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1. INTELLIGENT ADVERSARY RISK
ANALYSIS IS DIFFERENT THAN HAZARD
RISK ANALYSIS

Risk analysis has helped public and private or-
ganizations assess, communicate, and manage the
risk posed by uncertain hazards (i.e., natural hazards
and engineered systems).(1−3) Public and private de-
cisionmakers have been informed on the risk of natu-
ral events and engineered system failures by credible
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and timely risk analysis. In probabilistic risk analy-
sis (PRA), the uncertain hazards have been modeled
using probability distributions for threats, vulnerabil-
ities, and consequences. The data have been obtained
from statistical analysis of past events, tests, models,
simulations, and assessments from subject matter ex-
perts. Risk analysts have used PRA techniques, in-
cluding event trees, fault trees, attack trees, systems
dynamics, and Markov models, to assess, communi-
cate, and manage the risk of uncertain hazards.

The nuclear power industry, perhaps more than
any other risk application area, has integrated the use
of PRA for risk assessment, risk communication, and
risk management. The original PRA process was de-
veloped in the commercial nuclear power industry
in the 1970s.(4) The U.S. Nuclear Regulatory Com-
mission and the nuclear power industry jointly de-
veloped procedures and handbooks for PRA mod-
els.(5,6) Today, the nuclear power industry is moving
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toward risk-based regulations, specifically using PRA
to analyze and demonstrate lower cost regulations
without compromising safety.(7,8) Research in the nu-
clear industry has also supported advances in human
reliability analysis, external events analysis, and com-
mon cause failure analysis.(9−11)

More recently, leaders of public and private or-
ganizations have requested risk analyses for prob-
lems that involve the threats posed by intelligent
adversaries. For example, in 2004, the president di-
rected the Department of Homeland Security (DHS)
to assess the risk of bioterrorism.(12) Homeland Se-
curity Presidential Directive 10 (HSPD-10): Biode-
fense for the 21st Century, states that “[b]iological
weapons in the possession of hostile states or ter-
rorists pose unique and grave threats to the safety
and security of the United States and our allies” and
charged the DHS with issuing biennial assessments
of biological threats to “guide prioritization of our
on-going investments in biodefense-related research,
development, planning, and preparedness.” A sub-
sequent Homeland Security Presidential Directive
18 (HSPD-18): Medical Countermeasures Against
Weapons of Mass Destruction directed an integrated
risk assessment of all chemical, biological, radiolog-
ical, and nuclear (CBRN) threats.(13) The critical
risk analysis question addressed in this article is:
Are the standard PRA techniques for uncertain haz-
ards adequate and appropriate for intelligent ad-
versaries? As concluded by the NRC (2008) study
on bioterrorism risk analysis, we believe that new
techniques are required to provide credible in-
sights for intelligent adversary risk analysis. We will
show that treating adversary decisions as uncertain
hazards is inappropriate because it can provide a
different risk ranking and may underestimate the
risk.

In the rest of this section, we describe the differ-
ence between natural hazards and intelligent adver-
saries and demonstrate, with a simple example, that
standard PRA applied to attacker’s intent may un-
derestimate the risk of an intelligent adversary at-
tack. In the second section, we describe a canoni-
cal model for resource allocation decision making for
an intelligent adversary problem using an illustrative
bioterrorism example with notional data. In the third
section, we describe the illustrative analysis results
obtained from the model and discuss the insights
they provide for risk assessment, risk communica-
tion, and risk management. In the fourth section, we
describe the benefits and limitations of the model. Fi-
nally, we discuss future work and our conclusions.

1.1. Intelligent Adversary Risk Analysis Requires
New Approaches

We believe that risk analysis of uncertain haz-
ards is fundamentally different than risk analysis of
intelligent adversaries.(14,15) Some of the key differ-
ences are summarized in Table I.(16) A key differ-
ence is historical data. For many uncertain events,
both natural and engineered, we have not only his-
torical data of extreme failures or crises, but many
times we can replicate events in a laboratory envi-
ronment for further study (engineered systems) or
analyze using complex simulations. Intelligent adver-
sary attacks have a long historical background, but
the aims, events, and effects we have recorded may
not prove a valid estimate of future threat because of
changes in adversary intent and capability.

Both uncertain hazard risks of occurrence and
geographical risk can be narrowed down and identi-
fied concretely. Intelligent adversary targets vary by
the goals of the adversary and can be vastly dissimilar
between adversary attacks.

Information sharing between the two events dif-
fers dramatically. After hurricanes or earthquakes,
engineers typically review the incident, publish re-
sults, and improve their simulations. Sometimes af-
ter intelligent adversary attacks, or near misses, the
situation and conduct of the attack may involve crit-
ical state vulnerabilities and protected intelligence
means. In these cases, intelligence agencies may be
reluctant to share complete information even with
other government agencies.

The ability to influence the event is also dif-
ferent. Though we can prepare, we typically have
no way of influencing the natural event to oc-
cur or not occur. On the other hand, governments
may be able to affect the impact of terrorism at-
tacks by a variety of offensive, defensive, and re-
covery measures. In addition, adversary attacks can
take on so many forms that one cannot realisti-
cally defend/respond/recover/etc. against all types of
attacks.

Although there have been efforts to use event
tree technologies in intelligent adversary risk anal-
ysis (e.g., BTRA), many believe that this approach
is not credible.(19) The threat from intelligent ad-
versaries comes from a combination of both intent
and capability. We believe that PRA still has an
important role in intelligent adversary risk analy-
sis for assessment of the capabilities of adversaries,
the vulnerabilities of potential targets, and potential
consequences of attacks. However, intent is not a
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Table I. Uncertain Hazards Versus Intelligent Adversaries

Uncertain Hazards Intelligent Adversaries

Historical Data Some historical data: Very limited historical data:
A record exists of extreme events that have already

occurred.
Events of September 11, 2001, were the first foreign

terrorist attacks worldwide with such a huge
concentration of victims and insured damages.

Risk of Occurrence Risk reasonably well defined: Considerable ambiguity of risk:
Well-developed models exist for estimating risks

based on historical data and experts’ estimates.
Adversaries can purposefully adapt their strategy

(target, weapons, time) depending on their
information on vulnerabilities. Attribution may
be difficult (e.g. anthrax attacks).

Geographic Risk Specific areas at risk: All areas at risk:
Some geographical areas are well known for being

at risk (e.g., California for earthquakes or Florida
for hurricanes).

Some cities may be considered riskier than others
(e.g., New York City, Washington), but terrorists
may attack anywhere, any time.

Information Information sharing: Asymmetry of information:
New scientific knowledge on natural hazards can be

shared with all the stakeholders.
Governments sometimes keep secret new

information on terrorism for national security
reasons.

Event Type Natural event: Intelligent adversary events:
To date, no one can influence the occurrence of an

extreme natural event (e.g., an earthquake).
Governments may be able to influence terrorism

(e.g., foreign policy; international cooperation;
national and homeland security measures).

Preparedness and
Prevention

Government and insureds can invest in well-known
mitigation measures.

Attack methodologies and weapon types are
numerous. Local agencies have limited resources
to protect potentially numerous targets. Federal
agencies may be in a better position to develop
better offensive, defensive and response
strategies.

Modified from Kunreuther.(17,18) 431–461.(18)

factor in natural hazard risk analysis. In intelligent
adversary risk analysis, we must consider the intent
of the adversary. The adversary will make future
decisions based on our preparations, its objectives,
and information about its ability to achieve its objec-
tives that is dynamically revealed in a scenario. Bier
et al. provides an example of addressing an adversary
using a defender–attacker game theoretic model.(20)

NRC provides three examples of intelligent adver-
sary models.(16) We believe it will be more useful to
assess an attacker’s objectives (although this is not a
trivial task) than assigning probabilities to their de-
cisions prior to the dynamic revelation of scenario
information.

We believe that modeling adversary objectives
will provide greater insight into the possible actions
of opponents rather than exhaustively enumerating
probabilities on all the possible actions they could
take. Furthermore, we believe the probabilities of ad-
versary decisions (intent) should be an output of, not
an input to, risk analysis models.(16) This is a princi-
pal part of game theory as shown in Aghassi et al. and
Jain et al.(21,22)

1.2. An Illustrative Bioterrorism Example

To make our argument and our proposed al-
ternative more explicit, we use a bioterrorism il-
lustrative example. In response to the 2004 HSPD,
in October 2006, the DHS released a report called
the Bioterrorism Risk Assessment (BTRA).(19) The
risk assessment model contained a 17-step event
tree (18 steps with consequences) that could lead
to the deliberate exposure of civilian populations
for each of the 27 most dangerous pathogens
that the Center for Disease Control tracks (emer-
gency.cdc.gov/bioterrorism) plus one engineered
pathogen. The model was extremely detailed and
contained a number of separate models that fed into
the main BTRA model. The BTRA resulted in a
normalized risk for each of the 28 pathogens, and
rank-ordered the pathogens from most risky to least
risky.

The National Research Council (NRC) con-
ducted a review of the BTRA model and provided
11 specific recommendations for improvement to
the model.(16) In our example, we will use four of
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the recommendations: model the decisions of in-
telligent adversaries, include risk management, sim-
plify the model by not assigning probabilities to
the branches of uncertain events, and do not nor-
malize the risk. The intelligent adversary technique
we developed builds on the deterministic defender–
attacker–defender model and is solved using decision
trees.(16) Because the model has been simplified to
reflect the available data, the model can be devel-
oped in a commercial off-the-shelf (COTS) software
package, such as the one we used for modeling, DPL
(www.syncopation.org). Other decision analysis soft-
ware may work as well.4(23)

1.3. Event Trees Underestimate Intelligent
Adversary Risk

Event trees have been useful for modeling un-
certain hazards.(24) However, there is a key differ-
ence in the modeling of intelligent adversary deci-
sions that event trees do not capture. As Norman C.
Rasmussen, the director of the 1975 reactor safety
study that validated PRA for use in nuclear reactor
safety, states in a later article, while the basic assump-
tion of randomness holds true for nuclear safety, it is
not valid for human action.(25) The attacker makes
decisions to achieve his or her objectives. The de-
fender makes resource allocation decisions before
and after an attack to try to mitigate vulnerabilities
and consequences of the attacker’s actions. This dy-
namic sequence of decisions made by first the de-
fender, then an attacker, then again by the defender
should not be modeled solely by assessing probabil-
ities of the attacker’s decisions. For example, when
the attacker looks at the defender’s preparations for
their possible bioterror attack, it will not assign prob-
abilities to its decisions; it chooses the agent and the
target based on perceived ability to acquire the agent
and successfully attack the target that will give it the
effects it desires to achieve its objectives.(15)

Representing an attacker decision as a proba-
bility may underestimate the risk. Consider the sim-
ple bioterrorism event tree given in Fig. 1 with no-
tional data. Using an event tree, for each agent (A
and B) there is a probability that an adversary will
attack, a probability of attack success, and an ex-
pected consequence for each outcome (at the ter-
minal node of the tree). The probability of success

4 A useful reference for decision analysis software is located on the
ORMS website (http://www.lionhrtpub.com/orms/surveys/das/
das.html).

Fig. 1. Event tree example.

Fig. 2. Decision tree example.

involves many factors, including the probability of
obtaining the agent and the probability of detection
during attack preparations and execution. The con-
sequences depend on many factors, including agent
propagation, agent lethality, time to detection, and
risk mitigation; in this example, the consequences
range from 0 or no consequences to 100, the max-
imum consequences (on a normalized scale of con-
sequences). Calculating expected values in Fig. 1, we
would assess expected consequences of 32. We would
be primarily concerned about agent B because it con-
tributes 84% of the expected consequences (30 ×
0.9 = 27 for B out of the total of 32). Look-
ing at extreme events, we would note that the
worst-case consequence of 100 has a probability of
0.05.

However, adversaries do not assign probabilities
to their decisions; they make decisions to achieve
their objectives, which may be to maximize the con-
sequences they can inflict.(26) If we use a decision tree
as in Fig. 2, we replace the initial probability node
with a decision node because this is an adversary de-
cision. We find that the intelligent adversary would
select agent A, and the expected consequences are
50, which is a different result than with the event tree.
Again, if we look at the extreme events, the worst-
case event (100 consequences) probabilities are 0.5
for the agent A decision and 0.6 for the agent B
decision.

The expected consequences are greater and
the primary agent of concern is now A. In this
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simple example, the event tree approach underesti-
mates the expected risk and provides a different risk
ranking. Furthermore, the event tree example under-
estimates the risk of the extreme events. However,
while illustrating important differences, this sim-
ple decision tree model does not sufficiently model
the fundamental structure of intelligent adversary
risk.

2. CANONICAL INTELLIGENT ADVERSARY
RISK MANAGEMENT MODEL
FOR HOMELAND SECURITY

This model has a large number of applications
for Homeland Security. For example, it would be
easy to see the use of this canonical model applied
to a dirty bomb example laid out in Rosoff and von
Winterfeldt(27) or any other intelligent adversary sce-
nario. In this article, we show a use of a bioterror-
ism application. We believe that the canonical risk
management model must have at least six compo-
nents: the initial actions of the defender to acquire
defensive capabilities, the attacker’s uncertain acqui-
sition of the implements of attack (e.g., agents A, B,
and C), the attacker’s target selection and method of
attack(s) given implement of attack acquisition, the
defender’s risk mitigation actions given attack detec-
tion, the uncertain consequences, and the cost of the
defender actions. From this model, one could also
conduct baseline risk analysis by looking at the sta-
tus quo. In general, the defender decisions can pro-
vide offensive, defensive, or information capabilities.
We are not considering offensive decisions such as
preemption before an attack; instead, we are consid-
ering decisions that will increase our defensive capa-
bility (e.g., buy vaccine reserves)(28) or provide ear-
lier or more complete information for warning of an
attack (add a Bio Watch city).(29) In our defender–
attacker–defender decision analysis model, we have
the two defender decisions (buy vaccine, add a Bio
Watch city), the agent acquisition for the attacker
is uncertain, the agent selection and target of attack
is another decision, the consequences (fatalities and
economic) are uncertain, the defender decision after
attack to mitigate the maximum possible casualties,
and the costs of defender decisions are known. The
defender risk is defined as the probability of adverse
consequences and is modeled using a multiobjective
additive model similar to multiobjective value mod-
els.(30) We have assumed that the defender minimizes

the risk and the attacker maximizes the risk.5 We
implemented this model as a decision tree (Fig. 3)
and an influence diagram (Fig. 4) using DPL. The
mathematical formulation of our model and the no-
tional data are provided in the Appendix

2.1. Defender

The illustrative decision tree model (Figs. 3 and
4) begins with decisions that the defender (United
States) makes to deter the adversary by reducing the
vulnerabilities or be better prepared to mitigate a
bioterrorism attack of agents A, B, or C. We modeled
and named the agents to represent notional bioterror
agents using the CDC’s agent categories in Table II.
For example, agent A represents a notional agent
from category A. Table III provides a current listing
of the agents by category. There are many decisions
that we could model; however, for our simple illustra-
tive example, we chose to model notional decisions
about the Bio Watch program for agents A and B
and the BioShield vaccine reserve for agent A.

Bio Watch is a program that installs and mon-
itors a series of passive sensors within a major
metropolitan city.(29) The BioShield program is a
plan to purchase and store vaccines for some of the
more dangerous pathogens.(28) The defender first de-
cides whether or not to add another city to the Bio
Watch program. If that city is attacked, this decision
could affect the warning time, which influences the
response and, ultimately, the potential consequences
of an attack. Of course, the Bio Watch system does
not detect every agent, so we modeled agent C to
be the most effective agent that the Bio Watch sys-
tem does not sense and provide additional warning.
Adding a city will also incur a cost in dollars for the
United States.

The second notional defender decision is the
amount of vaccine to store for agent A. Agent A
is the notional agent that we have modeled with
the largest probability of acquisition and potential
consequences. The defender can store a percentage
of what experts think we would need in a large-
scale biological agent attack. The more vaccine the
United States stores, the fewer consequences we will
have if the adversaries use agent A and we have
sufficient warning and capability to deploy the vac-
cine reserve. However, as we store more vaccine,
the costs for purchasing and storage increase. For

5 This is a key assumption and other assumptions are possible. We
will discuss other assumptions later in the article.
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Fig. 3. Canonical bioterrorism decision tree.

Fig. 4. Canonical bioterrorism influence diagram.

Table II. CDC BioTerror Agent Categories(31)

Category Definition

A The U.S. public health system and primary healthcare providers must be prepared to address various biological agents,
including pathogens that are rarely seen in the United States. High-priority agents include organisms that pose a risk to
national security because they: can be easily disseminated or transmitted from person to person; result in high
mortality rates and have the potential for major public health impact; might cause public panic and social disruption;
and require special action for public health preparedness.

B Second highest priority agents include those that: are moderately easy to disseminate; result in moderate morbidity rates
and low mortality rates; and require specific enhancements of CDC’s diagnostic capacity and enhanced disease
surveillance.

C Third highest priority agents include emerging pathogens that could be engineered for mass dissemination in the future
because of: availability; ease of production and dissemination; and potential for high morbidity and mortality rates and
major health impact.
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Table III. Pathogens(32,33)

National Institutes of Health
National Institute of Allergy and Infectious Diseases (NIAID)

Category A, B, and C Priority Pathogens

Category A Category B Category C

• Bacillus anthracis (anthrax) • Burkholderia pseudomallei Emerging infectious disease threats such as Nipah
• Clostridium botulinum toxin • Coxiella burnetii (Q Fever) virus and additional hantaviruses.

(botulism) • Brucella species (brucellosis)
• Yersinia pestis (plague) • Burkholderia mallei (glanders) NIAID priority areas:
• Variola major (smallpox) and • Chlamydia psittaci (Psittacosis) • Tickborne hemorrhagic fever viruses

other related pox viruses • Ricin toxin (from Ricinus communis) • Crimean-Congo hemorrhagic fever virus
• Francisella tularensis • Epsilon toxin of Clostridium perfringens • Tickborne encephalitis viruses

(tularemia) • Staphylococcus enterotoxin B • Yellow fever
• Viral hemorrhagic fevers • Typhus fever (Rickettsia prowazekii) • Multi-drug resistant TB
• Arenaviruses • Food and waterborne pathogens • Influenza
• LCM, Junin virus, Machupo • Bacteria • Other Rickettsias

virus, Guanarito virus • Diarrheagenic E. coli • Rabies
• Lassa Fever • Pathogenic Vibrios • Prions
• Bunyaviruses • Shigella species • Chikungunya virus
• Hantaviruses • Salmonella • Severe acute respiratory syndrome associated
• Rift Valley Fever • Listeria monocytogenes coronavirus (SARS-CoV)
• Flaviruses • Campylobacter jejuni
• Dengue • Yersinia enterocolitica)
• Filoviruses • Viruses (Caliciviruses, Hepatitis A)
• Ebola • Protozoa
• Marburg • Cryptosporidium parvum

• Cyclospora cayatanensis
• Giardia lamblia
• Entamoeba histolytica
• Toxoplasma
• Microsporidia
• Additional viral encephalitides
• West Nile virus
• LaCrosse
• California encephalitis
• VEE
• EEE
• WEE
• Japanese Encephalitis virus
• Kyasanur Forest virus

The list of potential bioterrorism agents was compiled from both CDC and NIH/NIAID websites.

simplicity’s sake, each of the defender decisions cost
the same amount; therefore, at the first budget level
of US$ 10 million, the defender can only choose to
one decision.

2.2. Attacker

After the defender has made its investment de-
cisions, which we assume are known to the attacker,
the attacker makes two decisions: the type of agent
and the target. We will assume that the attacker
has already made the decision to attack the United

States with a bioterror agent. In our model, there
are three agents it can choose, although this can be
increased to represent the other pathogens listed in
Table III. As stated earlier, if we only looked at
the attacker decision, agent A would appear to be
the best choice. Agents B and C are the next two
most attractive agents to the attacker, respectively.
Again, agents A and B can be detected by Bio Watch
whereas agent C cannot. The attacker has some prob-
ability of acquiring each agent. If the agent is not ac-
quired, the attacker cannot attack with that agent. In
addition, each agent has a lethality associated with
it, represented by the agent casualty factor. Finally,
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each agent has a different probability of being de-
tected over time. Generally, the longer it takes for
the agent to be detected, the more consequences the
United States will suffer.

The adversary also decides what size of popu-
lation to target. Generally, the larger the popula-
tion targeted, the more potential consequences could
result. The attacker’s decisions affect the maximum
possible casualties from the scenario. However, re-
gardless of the attacker’s decisions, there is some
probability of actually attaining a low, medium, or
high percentage of the maximum possible casual-
ties. This sets the stage for the next decision by the
defender.

2.3. Defender

After receiving warning of an attack, the de-
fender decides whether or not to deploy the agent
A vaccine reserve. This decision depends upon how
much of the vaccine reserve the United States chose
to store, whether the attacker used agent A, and the
potential effectiveness of the vaccine given timely
attack warning. In addition, there is a cost associ-
ated with deploying the vaccine reserve. Again, for
simplicity’s sake, the cost for every defender deci-
sion is the same, thus forcing the defender to only
choose the best option(s) for each successive US$
10 million increase in budget up to the maximum of
US$ 30 million.

2.4. Consequences

In our model (Fig. 4), we have two types of con-
sequences: casualties and economic impact. Given
the defender–attacker–defender decisions, the po-
tential casualties and the economic impact are as-
sessed. Casualties are based on the agent, the pop-
ulation attacked, the maximum potential casualties,
the warning time given to the defender, and the effec-
tiveness of vaccine for agent A (if the agent A is the
agent and the vaccine is used). Economic effects are
modeled using a linear model with a fixed economic
cost that does not depend on the number of casualties
and a variable cost of the number of casualties multi-
plied by the cost per casualty. Of course, the defender
would like potential consequences (risk) given an at-
tack to be low, whereas the attacker would like the
potential consequences (risk) to be high.

Our economic consequences model was derived
using a constant and upper bound from Wulf et al.(34)

The constant cost we used is $10 billion, and from

the upper bound, also given in Wulf et al., we derived
the cost per casualty.(34) We believe this fixed cost
is reasonable because when looking at the example
of the anthrax letters of 2001, experts estimate that
although there were only 17 infected and five killed,
there was a US$ 6 billion cost to the United States.(35)

In this tragic example, there was an extremely high
economic impact even when the casualties were low.

2.5. Budget

Each U.S. defender decision incurs a budget
cost. The amount of money available to home-
land security programs is limited by a budget de-
termined by the president and Congress. The model
will track the costs incurred and only allows spend-
ing within the budget (see the Appendix). We con-
sidered notional budget levels of US$ 0 million,
US$ 10 million, US$ 20 million, and US$ 30 million.

2.6. Risk

Normally, a decision tree is solved by maximiz-
ing or minimizing the expected attribute at the termi-
nal branches of the tree. In our model however, the
defender risk depends on the casualty and economic
consequences given an attack. We use multiple ob-
jective decision analysis with an additive value (risk)
model to assign risk to the defender consequences.6

The defender is minimizing risk and the attacker is
maximizing risk. We assign a value of 0.0 to no con-
sequences and a value of 1.0 to the worst-case conse-
quences in our model. We model each consequence
with a linear risk function and a weight (see the Ap-
pendix). The risk functions measure returns to scale
on the consequences. Of course, additional conse-
quences could be included and different shaped risk
curves could be used.

2.7. Assumptions

Some of the key assumptions in our model are
listed in Table IV (the details are in the Appendix)
along with some possible alternative assumptions.
Given different assumptions, the model may produce
different results.

We model the uncertainty of the attacker’s ca-
pability to acquire an agent with a probability distri-
bution and we vary detection time by agent. Clearly,

6 Here we define risk to be a weighted expected value using an
additive value model instead of the probability of a bad outcome.
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Table IV. Modeling Assumptions

Categories Our Assumptions Possible Alternative Assumptions

Uncertain Variables Probability of acquiring the agent, detection time varies by agent Other indications and warning

Decisions Add Bio Watch city for agents A and B Additional detection and warning systems
Increase vaccine reserve stocks for agent A Increase stocks of multiple agents
Deploy vaccine A Other risk mitigation decisions

Consequence Models One casualty model for all three agents Different casualty models for different agents

Risks Casualties and economic consequences Additional risk measures

Defender minimizes risk and attacker maximizes risk Other defender and attacker objectives
Solve decision tree at various budget levels Other solution approaches

other indications and warnings exist to detect possi-
ble attacks. These programs could be included in the
model.

We model three defender decisions: add a Bio
Watch city for agents A and B, increase vaccine re-
serve for agent A, and deploy agent A. We assume
limited decision options (i.e., 100% storage of vac-
cine A, 50% storage, 0% storage), but other deci-
sions could be modeled (e.g., other levels of storage,
storing vaccines for other agents, etc). We used one
casualty model for all agents. Other casualty and eco-
nomic models could be used.

Finally, our model makes some assumptions
about objectives. In the first of these we assume that
the risks important to the defender are the number
of casualties and the economic impact, but additional
measures could be used. Second, we assume defend-
ers and attackers have a diametrically opposed view
of all of the objectives. Clearly, we could model ad-
ditional objectives. In addition, we made some bud-
get assumptions, which could be improved or mod-
ified. We assumed a fixed budget, but this budget
could be modeled with more detailed cost models
(e.g., instead of a set amount to add a city to the
Bio Watch program, the budget could reflect differ-
ent amounts depending upon the city and the ro-
bustness of the sensors installed). Finally, our model
results in a risk of a terrorist attack; the same
methodology for a defender–attacker–defender de-
cision tree can be used to determine a utility score
instead of a risk; an example of this is in Keeney.(15)

One thing to consider when altering or adding to the
assumptions is the number of strategies the model
evaluates. Currently, the canonical model has 108 dif-
ferent strategies to evaluate (Table V). With more
complexity, the number of strategies that would
need to be evaluated could grow significantly. Large-
scale decision trees can be solved with Monte Carlo
simulation.

Table V. Total Number of Strategies

Owner Decision No. of Strategies

United States Bio Watch 2
United States BioShield 3
Attacker Agent selection 3
Attacker Target 3
United States Deploy reserve 2
Total No. of Strategies 108

3. ILLUSTRATIVE DECISION
ANALYSIS RESULTS

After modeling the canonical problem, we
obtained several insights. First, we found that
in our model economic impact and casualties
are highly correlated. Higher casualties result in
higher economic impact. Other consequences, for
example, psychological consequences, could also
be correlated with casualties. Second, a bioter-
ror attack could have a large economic impact
(and psychological impact), even if casualties are
low.

The major risk analysis results are shown in
Fig. 5. Risk shifting occurs in our decision analy-
sis model. In the baseline (with no defender spend-
ing), agent A is the most effective agent for the
attacker to select and, therefore, the agent against
which the defender can protect if the budget is in-
creased. As we improve our defense against agent
A, at some point the attacker will choose to at-
tack using agent B. The high-risk agent will have
shifted from agents A to B. As the budget level
continues to increase, the defender adds a city to
the Bio Watch program and the attackers choose
to attack with agent C, which Bio Watch cannot
detect. We use notional data in our model, but if
more realistic data were used, the defender could
determine the cost/benefit ratios of additional risk
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Fig. 5. Budget versus U.S. risk.

reduction decisions. This decision model uses COTS
software to quantitatively evaluate the potential
risk reductions associated with different options and
make cost–benefit decisions.

Fig. 5 provides a useful summary of the expected
risk. However, it is also important to look at the com-
plementary cumulative distribution (Fig. 6) to better
understand the likelihood of extreme outcomes. For
example, the figure shows that spending US$ 0 or
US$ 10 million gives the defender a 10% chance of
zero risk, whereas spending US$ 20 or US$ 30 million
gives the defender an almost 50% chance of having
zero risk. The best risk management result would be
that option 4 deterministically or stochastically dom-
inates (SD) option 3, option 3 SD option 2, and op-
tion 2 SD option 1. The first observation we note
from Fig. 6 is that options 2, 3, and 4 stochasically
dominate 1 because option 1 has a higher probability
for each risk outcome. A second observation is that
while option 4 SD option 3, option 4 does not SD
option 2 because option 4 has a larger probability of
yielding a risk level of 0.4. Along the x-axis, one can
see the expected risk (ER) of each alternative. This
expected risk corresponds to the expected value of
risk from the budget versus risk rainbow diagram in
Fig. 5. This example illustrates a possibly impor-
tant relationship necessary for understanding and

communicating how the budget might affect the de-
fender’s risk and choice of options.

Risk managers can run a value of control or value
of correlation diagram to see which nodes most di-
rectly affect the outcomes and which are correlated
(Fig. 7). Because we only have two uncertainty nodes
in our canonical model, the results are not surprising.
The graphs show that the ability to acquire the agent
is positively correlated with the defender risk. As the
probability of acquiring the agent increases, so does
defender risk. In addition, the value of control shows
the amount of risk that could be reduced given per-
fect control over each probabilistic node, and that it is
clear that acquiring the agent would be the most im-
portant variable for risk managers to control. Admit-
tedly, this is a basic example, but with a more com-
plex model, analysts could determine which nodes
are positively or negatively correlated with risk and
which uncertainties are most important.

Using COTS software also allows us to easily
perform sensitivity analysis on key model assump-
tions. From the value of correlation and control
above, the probability of acquiring the agent was
highly and positively correlated with defender risk
and had the greatest potential for reducing defender
risk. We can generate sensitivity analysis such as rain-
bow diagrams. The rainbow diagram (Fig. 8) shows
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Fig. 6. Complementary cumulative distribution.

the decision changes as our assumption about the
probability of acquiring agent A increases. The dif-
ferent shaded regions represent different decisions,
for both the attacker and the defender. This rainbow
diagram was produced using a budget level of US$ 20
million, so in the original model, the defender would
choose not to add a city to Bio Watch, store 100% of
vaccine for agent A, but not choose to deploy it be-
cause the attacker chose to use agent B. If the proba-
bility of acquiring agent A was low enough (in section
A from Fig. 8), we see that the attacker would choose
to use agent C because we have spent our money on
adding another city to Bio Watch, which is the only
thing that affects both agents A and B, but not agent
C. As the probability of acquiring agent A increases,
both the attacker’s and the defender’s optimal strate-
gies change. Our risk management decision de-
pends on the probability that the adversary acquires
agent A.

4. BENEFITS AND LIMITATIONS
OF DEFENDER–ATTACKER
DECISION ANALYSIS MODEL

4.1. Benefits

Risk analysis of intelligent adversaries is fun-
damentally different than risk analysis of uncertain
hazards. As we demonstrated in Section 1.3, assign-
ing probabilities to the decisions of intelligent adver-
saries can underestimate the potential risk. Decision
tree models of intelligent adversaries can provide in-
sights into the risk posed by intelligent adversaries.

The defender–attacker–defender decision anal-
ysis model presented in this article provides four
important benefits. First, it provides a risk assessment
(the baseline or status quo) based on defender and
attacker objectives and probabilistic assessment of
threat capabilities, vulnerabilities, and consequences.
Second, it provides information for risk-informed
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Fig. 7. Value of correlation and value of control.

decision making about potential risk management
options. Third, using COTS software, we can provide
a variety of very useful sensitivity analysis. Fourth,
although the model would be developed by a team,
the risk analysis can be conducted by one risk ana-
lyst with an understanding of decision trees and op-
timization and training on the features of the COTS
software.

The application of risk assessment and risk man-
agement techniques should be driven by the goals
of the analysis. In natural hazard risk analysis, there
is value in performing risk assessment without risk

management. Some useful examples are “Unfinished
Business,” a report from the EPA and the 2008 U.K.
National Risk Register.(36,37) In intelligent adversary
risk analysis, the defender–attacker–defender deci-
sion analysis can provide essential information for
risk management decision making. In our example,
risk management techniques are important, and this
type of model provides insights about resource allo-
cation decisions to reduce or shift risk. In addition,
with budget set to US$ 0, the model can be used to
assess the baseline risk. As the budget increases, the
model clearly shows the best risk management deci-
sions and the associated risk reduction.

This model enables the use of COTS risk analysis
software. In addition, the use of COTS software en-
ables the use of standard sensitivity analysis tools to
provide insights into areas in which the assumptions
are critical or where the model should be improved
or expanded.

Currently, many event tree models including the
DHS BTRA event tree require extensive contrac-
tor support to run, compile, and analyze.(16) Al-
though one would still need a multidisciplinary team
to create the model, once completed the defender–
attacker–defender decision analysis model is usable
by a single risk analyst who can provide near real-
time analysis results to stakeholders and decision-
makers as long as the risk analyst understands the
risk management options, decision trees, optimiza-
tion, and has training in the COTS tool.

4.2. Limitations

The technique we advocate in this article has lim-
itations. Some of the limitations of this model are the
same as those of event trees. There are limitations
on the number of agents used in the models. We eas-
ily modeled 28 bioagents with reasonable run times,
but more agents could be modeled. In addition, there
are challenges in assessing the probabilities of uncer-
tain events, for example, the probability that the at-
tacker acquires agent A. Next, there is a limitation in
the modeling of the multiple consequences. Another
limitation may be that to get more realistic results,
we may have to develop “response surface” models
of more complex consequence models. These limita-
tions are shared by event trees and decision trees.

However, decision trees also have some limita-
tions that are not shared by event trees. First, only
a limited number of risk management decisions can
realistically be modeled. Therefore, care must be
used to choose the most appropriate set of potential
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Fig. 8. Rainbow diagram probability of acquiring agent A versus U.S. risk.

decisions.(15,18) In addition, there may be an upper
bound on the number of decisions or events that can
be modeled in COTS software. It is important to
note that it may be difficult to determine an objec-
tive function for the attacker. As mentioned before,
there is a tradeoff in replacing the probabilities as-
signed to what an attacker might do (event tree ap-
proach) with attacker objectives (decision tree ap-
proach). We believe it is easier to make informed as-
sessments about the objectives of adversaries than to
assess the probabilities of their future actions. How-
ever, we need more research on assessing the robust-
ness of risk management decisions to assumptions
about adversary objectives. Finally, successful model
operation and interpretation requires trained ana-
lysts who understand decision analysis and defender–
attacker–defender optimization.

5. CONCLUSION

This article has demonstrated the feasibility of
modeling intelligent adversary risk using defender–
attacker–defender decision analysis. Table IV and

Section 2.7 identified several alternative modeling as-
sumptions that could be considered. We can modify
and expand our assumptions to increase the complex-
ity and fidelity of the model. The next step is to use
the model with the best data available on the agents
of concern and a proposed set of potential risk man-
agement options.

Use of our defender–attacker–defender model
does not require a major intelligent adversary re-
search program; it requires only the willingness to
change.(16) Much of the data used for event tree mod-
els can be used in the decision analysis model. As-
sessing probabilities of attacker decisions will not in-
crease our security but defender–attacker–defender
decision analysis models can provide a sound assess-
ment of risk and the essential information our nation
needs to make risk-informed decisions.
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APPENDIX: MODEL FORMULATION

This model is a multiobjective decision analy-
sis/game theory model that allows for risk manage-
ment at the U.S. governmental level in terms of bud-
geting and certain bioterror risk mitigation decisions.
The values for probabilities as well as factors are no-
tional and could easily be changed based on more ac-
curate data. It uses the starting U.S. (defender) deci-
sions of adding a city to the Bio Watch program (or
not) and the percent of storing an agent in the na-
tion’s vaccine reserve program to set the conditions

Table A1. Notional Data for Variable Nodes

0% 50% 100%

Agent A reserve
factor (arv)

0 0.3 0.6

Vaccine reserve
cost factor (vrcfv)

0 0.5 1

Agent A Agent B Agent C

Warning time
factor (wfa)

0.87 0.7 0.8

Agent casualty
factor (afa)

0.9 0.5 0.4

Small Medium Large

Target population
factor (popt)

0.001 0.1 1

Low Nominal High

Potential casualties
factor (pcfc)

0.6 0.8 0.99

Weight of casualties
(w1)

0.5

Agent A Agent B Agent C

Probability of
acquiring agent a
(P(aca))

0.9 0.5 0.49

Table A2. Notional Data for Probability of Potential Casualties c
with Agent a

Probability of
Potential Casualties c
with Agent a (P(pcac)) Agent A Agent B Agent C

Low 0.3 0.3 0.3
Nominal 0.4 0.4 0.4
High 0.3 0.3 0.3

for an attacker decision. The attacker can choose
which agent to use as well as what size of population
to target. There is some unpredictability in the abil-
ity to acquire the agent as well as the effects of the
agent given the defender and attacker decisions. Fi-
nally, the defender gets to choose whether to deploy
the vaccine reserve to mitigate casualties. The model
tracks the cost for each U.S. decision and evaluates
them over a specified budget. The decisions cannot
violate the budget without incurring a dire penalty.
The objectives that the model tracks are U.S. casual-
ties and impact to the U.S. economy. They are joined
together using a value function with weights for each
objective.

We outline our model using a method suggested
by Brown and Rosenthal.(38)

Indicies
w = add Bio Watch city {0, 1}
v = store vaccine A at percent {0%, 50%, 100%}
a = agent {A, B, C}
t = target population {small—0.0001 million, med-

ium—0.1 million, large—1 million}
c = potential casualties given an attack {low, nomi-

nal, high}
d = deploy reserve vaccine {0, 1}
i = risk measure {1, 2}

Data
aca = agent acquired {0, 1}
wi = weight of i value measure {w1, 1 − w1}

Probability Data

P(aca) = probability acquire agent a
P(pcac) = probability of potential casualties c with

agent a
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Casualty Data
bwf = Bio Watch factor {0.9}
arv = agent A reserve factor
wfa = warning time factor
afa = agent casualty factor
popt = target population factor
mpop = max population targeted {1 million people}
pcfc = potential casualties factor

Economic Impact Data
eif = economic impact of attack (fixed) {US$ 10 bil-

lion}
dtc = dollars to casualty effect ratio {US$ 1 million/

person}

Cost Data
mbw = maximum Bio Watch cost {US$ 10 million}
mcvr = maximum cost for vaccine reserve {US$

10 million}
vrcfv = vaccine reserve cost factor
mcd = maximum cost to deploy 100% of vaccine

agent A {US$ 10 million}
mb = maximum budget (United States) {US$ 30 mil-

lion or variable}
cbp = cost greater than budget penalty = 1

Equations

Casualty Equations
wtaw = warning time factor (U.S.)

wtaw = wf a × bw

mcat = maximum casualties given an attack

mcat = aca × popdt × af a

pcatc = potential casualties given attack

pcatc = mcat × pcf c

drfvd = deploy reserve factor

drfvd = if drd ≤ 0 then drf vd = 1,

otherwise drf vd = (1 − ar)v

x1 = U.S. casualties due to bioterrorism attack given
response

x1 =⎧⎨
⎩

if agenta = agent A then, pcatc × wtaw × drf vd
if agenta = agent B then, pcatc × wtaw

if agenta = agent C then, pcatc

Economic Impact Equations
mei = maximum economic impact

mei = eif + dtc × mpop

x2 = U.S. economic effects due to a bioterrorism
attack

x2 = aca × (eif + x1 × dtc)

Cost Equations
bwcw = Bio Watch cost (United States)

bwcw = if bw = 0, then = 0, otherwise = mbw

vrcv = vaccine reserve cost (United States)

vrcv = mcvr × vrcf v

drcfav = deploy reserve cost factor

drcf av = if agenta < 1

then (if arv <= 0.1

then drcf v = mb + 1,

otherwise drcf v = arv)

otherwise drcf av = mb + 1

cdavd = deploy vaccine cost (United States)

cdavd = if drd = 1 then drcf av × drd × mcd,

otherwise = 0

costawvd = U.S. cost to prepare and mitigate a poten-
tial bioterrorism attack

costawvd = bw + vrcv + cdavd

Decision Variables
bw = Bio Watch decision (United States)
rv = vaccine reserve decision (United States)
agenta = agent selection decision (terrorist)
popdt = target population decision (terrorist)
drd = deploy reserve decision (United States)

Objectives
r1(x1) = risk function for U.S. casualties due to

bioterrorism attack

r1(x1) = x1

mpop

r2(x2) = risk function for U.S. economic effects due
to a bioterrorism attack

r2(x2) = x2

mei
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r(x) = risk to the United States

r(x) = if costawvd ≤ mb then
n∑

i=1
wi ri (x1) , else cbp

min
w

(
min

v

(
max

a

(∑
a

Prob(aca)

· max
t

(
min

d

(∑
ac

Prob(pcac) × r(x)

)))))
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