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Abstract

Terminal duct lobular unit (TDLU) involution is the regression of milk-producing structures in

the breast. Women with less TDLU involution are more likely to develop breast cancer. A

major bottleneck in studying TDLU involution in large cohort studies is the need for labor-

intensive manual assessment of TDLUs. We developed a computational pathology solution

to automatically capture TDLU involution measures. Whole slide images (WSIs) of benign

breast biopsies were obtained from the Nurses’ Health Study. A set of 92 WSIs was anno-

tated for acini, TDLUs and adipose tissue to train deep convolutional neural network (CNN)

models for detection of acini, and segmentation of TDLUs and adipose tissue. These net-

works were integrated into a single computational method to capture TDLU involution mea-

sures including number of TDLUs per tissue area, median TDLU span and median number

of acini per TDLU. We validated our method on 40 additional WSIs by comparing with manu-

ally acquired measures. Our CNN models detected acini with an F1 score of 0.73±0.07,

and segmented TDLUs and adipose tissue with Dice scores of 0.84±0.13 and 0.87±0.04,

respectively. The inter-observer ICC scores for manual assessments on 40 WSIs of number

of TDLUs per tissue area, median TDLU span, and median acini count per TDLU were 0.71,

0.81 and 0.73, respectively. Intra-observer reliability was evaluated on 10/40 WSIs with ICC

scores of >0.8. Inter-observer ICC scores between automated results and the mean of the

two observers were: 0.80 for number of TDLUs per tissue area, 0.57 for median TDLU span,

and 0.80 for median acini count per TDLU. TDLU involution measures evaluated by manual

and automated assessment were inversely associated with age and menopausal status.

We developed a computational pathology method to measure TDLU involution. This
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technology eliminates the labor-intensiveness and subjectivity of manual TDLU assess-

ment, and can be applied to future breast cancer risk studies.

Background

Most benign breast lesions and breast cancers arise in the terminal duct lobular units (TDLUs)

[1], the milk-producing structures of the breast. Russo et al. [2] historically classified TDLUs

into four lobule types: type 1 (least developed; <12 acini/lobule), type 2 (evolves from type 1;

intermediate in degree of differentiation; between 12 and 80 acini/lobule), type 3 (fully devel-

oped structures; >80 acini/lobule), and type 4 (occurs during pregnancy and lactation).

Pathologists have used these qualitative lobule types to evaluate TDLU involution indicated by

the presence of more type 1 lobules and less type 2 and 3 lobules after the completion of child-

bearing and with physiological aging [3]. In quantitative terms, TDLU involution is character-

ized by a reduction of the size of TDLUs, the number of acini, and the number of acini per

TDLU [4–8]. Previous work by our group and others evaluated TDLU involution using quali-

tative measures and reported that women with less TDLU involution (i.e., majority of lobules

were of types 2 and 3) were more likely to develop breast cancer compared to those with pre-

dominantly type 1 lobules independent of age [5, 9, 10, 11]. Thus, TDLU involution measures

may be utilized as a biomarker to assess breast cancer risk [9, 10].

Efforts to develop quantitative measures of TDLU involution started with McKian et al. [11]

who evaluated the number of acini and TDLU area on histopathological sections. Rosebrock

et al. [12] were the first to automatically estimate quantitative measurements from TDLUs and

use those measurements to describe and classify them. Later, Figueroa et al. standardized three

quantitative measures of TDLU involution—number of TDLUs per tissue area (TDLUs/mm2),

median TDLU span, and the median number of acini per TDLU (median acini/TDLU)—by

assessing up to 10 TDLUs in the normal tissue for a WSI [4, 10, 13, 14]. The examined tissue

area was corrected for the amount of adipose tissue present. These quantitative measurements

still relied on manual histological assessment of breast tissue, and remained subjective and

labor-intensive. Thus, the need for manual qualitative and/or quantitative assessment by pathol-

ogists is a major bottleneck to studying TDLU involution in large epidemiological studies.

Automated image analysis methods have the potential to decrease the workload of patholo-

gists and standardize clinical practice [15]. Known or novel tissue biomarkers can now be

automatically quantified [15–20] and deep learning has also been applied to recognize mor-

phological tissue patterns for diagnostic purposes [21–27]. More specifically, networks have

been successfully developed for tasks in breast histopathology [28–33]. Most recently, state-of-

the-art deep convolutional neural networks (CNN) have been shown to outperform patholo-

gists in detecting metastases in sentinel lymph nodes of breast cancer patients [34]. In this

study, we developed an automated method to quantitatively assess TDLU involution. First,

we constructed and optimized three deep neural networks to detect and/or segment acini,

TDLUs, and adipose tissue. These three networks were integrated into a single method to

compute TDLU involution measures. Our automated method was validated by comparing the

automated measures with manually acquired measures on an independent set of images.

Methods

Subjects and acquisition of images

The participants in this study are from the Nurses’ Health Study (NHS) and NHSII. The NHS

was established in 1976 with 121,700 US female registered nurses between 30–55 years of age,
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and NHSII was established in 1989 (n = 116,429, ages 25–42). All NHS/NHSII participants are

followed up biennially to obtain updated information on a range of epidemiological data and

identify newly diagnosed diseases [35]. Hematoxylin and eosin (H&E) breast tissue slides were

retrieved for women who reported a biopsy-confirmed benign breast disease (BBD) and gave

permission to review their biopsy records and original H&E slides [36–42]. The tissue was

prepared and stained at the local centers and centrally reviewed. BBD H&E whole slide images

(WSIs) were obtained by scanning the slides at ×40 magnification with a resolution of 0.16 μm
per pixel using Pannoramic SCAN 150 (3DHISTECH Ltd, Budapest, Hungary). The study

protocol was approved by the institutional review boards of the Brigham and Women’s Hospi-

tal and Harvard T.H. Chan School of Public Health, and those of participating registries as

required. Informed consent was obtained from all NHS/NHSII participants.

Developing the automated method for TDLU involution measures

In total, 92 WSIs from 92 benign breast biopsies from 67 pre- and 25 post-menopausal women

were randomly selected from the NHS database. To capture the large variability in lobule sizes,

pre-menopausal women were over selected to obtain data/annotation/ground truth for type 2

and 3 lobules since post-menopausal tissues were predominantly type 1 lobules. Due to the

more challenging nature of the TDLU segmentation task, 92 WSIs were used to develop the

TDLU segmentation neural network model while a subset of 50 out of the 92 WSIs was ade-

quate to develop the acini detection and adipose tissue segmentation neural network models.

Breast tissue with more adipose tissue has fewer TDLUs and acini [4], which influences the

outcomes of TDLU involution measures (e.g. number of TDLUs per tissue area). Therefore,

the adipose tissue model was developed to estimate and account for the percentage of adipose

tissue.

TDLUs, acini, and adipose tissue were annotated within a region of interest (ROI) compris-

ing approximately 10%, 10%, and 2.5% of the total tissue area, respectively. Annotation was

done using the open-source software Automated Slide Analysis Platform (ASAP; Computation

Pathology Group, Radboud University Medical Center). TDLUs were defined as clusters of

acini in a lobular configuration. TDLU boundary was defined by the non-specialized/extra-

lobular stroma. In order to assess involution in histologically normal breast parenchyma only,

TDLUs with proliferative or metaplastic changes were not annotated as TDLUs but remained

as background. Acini were defined as small spherical structures lined by epithelial cells and

surrounded by myoepithelial cells. Acini with elongated shapes, epithelial proliferation, apo-

crine metaplasia, or without lumina were not annotated. In total, 25,645 acini and 1,631

TDLUs were annotated. Fig 1 shows examples of annotated acini, TDLUs and adipose tissue.

Acini, TDLUs, and adipose tissue were detected and segmented using the U-Net CNN

architecture [43, 44]. Since we had different datasets for the three tasks, three separate models

were trained. To construct the acini and adipose networks and evaluate the performance, the

50 annotated WSIs were split into 5 sets of 10 WSIs for cross validation. In each of the 5 folds,

training was done on 30 WSIs (60%), validation on 10 WSIs (20%), and testing on 10 WSIs

(20%). Annotated WSIs to construct the TDLU network were split into 9 sets of 10 or 11 WSIs

for cross validation. For each of the 9 folds, training was done on 7 sets (~78%), validation on

1 set (~ 11%), and testing on 1 set (~ 11%). For all three methods, the model results from the

first dataset split was used in all subsequent experiments (the models from the remaining folds

are only used to evaluate the performance of the individual methods). All CNN models are

described in the S1 Methods, and the acini detection network has been previously described

[29]. To assess whether the training sets were large enough to learn to detect acini and segment

TDLU ablation experiments were performed.
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The three individual networks were integrated into a single automated method. This

method can determine the three standardized quantitative measures by Figueroa et al. (i.e.,

TDLUs/mm2, median TDLU span (μm), and median acini/TDLU [4, 10, 13, 14]) as well as

two additional quantitative measures: number of acini per tissue area (acini/mm2) and median

Fig 1. Examples of annotations for acini (A; annotated by blue squares), terminal duct lobular units (B) and

adipose tissue (C).

https://doi.org/10.1371/journal.pone.0231653.g001
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TDLU area (mm2). Our method can also perform TDLU involution assessment using qualita-

tive categories as described by Russo et al. [2] (i.e., predominant lobule type 1, 2 or 3) and Baer

et al. [9] (i.e., no type 1 lobules, predominantly type 1 and no type 3, and mixed lobules (all

others)). Thus, in total, our automated method can capture five quantitative and two qualita-

tive measures of TDLU involution.

Validating the automated measures of TDLU involution

We validated our automated method by comparing automated results with manual assessment

on an independent set of 40 WSIs (Table 1). Sixty WSIs were initially chosen at random from

the NHS/NHSII BBD cases to contain 30 pre- and 30 post-menopausal women. Upon further

review, we excluded one woman who had type 4 lobules which suggests that she was pregnant

or lactating at time of BBD diagnosis. By excluding type 4 lobules, our method is generalizable

to non-pregnant/not lactating women.

For manual assessment (n = 59 WSIs), two observers assessed the three standardized quan-

titative measures. Each observer randomly selected a ROI of approximately 50 mm2 that con-

tained an adequate number of normal TDLUs [4]. Within the ROI, the observers estimated

the percentage of breast tissue (0 to 100%) and tissue containing adipose cells (<25%, 25–50%,

50–75%, or>75%), counted the total number of TDLUs, and randomly selected up to 10 nor-

mal TDLUs to measure span (μm) and count the number of spherical acini. TDLU boundary

was defined by non-specialized/extra-lobular stroma. TDLUs were not counted if >50% of

their acini were dilated by 2- to 3- fold, had metaplastic changes, or displayed ductal hyperpla-

sia. TDLUs with<50% dilated acini were included and the acini within these TDLUs were

counted (including dilated ones). Acini with elongated shape or no lumen were excluded.

Three observers performed qualitative assessments using predominant lobule type by Russo

et al. [2] and categories by Baer et al. [9]. For intra-observer evaluation, 10 out of 40 WSIs

were randomly chosen for re-assessment.

Preliminary analyses of the 59 WSIs showed that although the manual and automated

TDLU assessments were highly correlated, the values of the automated results for the number

of acini per TDLU were lower than manual results. Therefore, we randomly selected 19 WSIs

and linear regression to derive calibration weights based on the manual results to adjust our

automated results. This calibration produced more meaningful values for interpretation. We

applied the calibration weights to our automated results on the remaining 40 WSIs. The

Table 1. Demographic table of 40 participants used to validate the automated measures of TDLU involution.

Pre-Menopausal Post-Menopausal

n 20 20

Cohort, n (%)
Nurses’ Health Study 5 (25) 12 (60)

Nurses’ Health Study II 15 (75) 8 (40)

Year of benign breast disease diagnosis, n (%)
�1978 to <1988 3 (15) 4 (20)

�1988 to <1998 16 (80) 12 (60)

�1998 to 2000 1 (5) 4 (20)

Age at benign breast disease diagnosis, n (%)
30 to 39 8 (40) 1 (5)

40 to 49 10 (50) 6 (30)

50 to 59 2 (10) 6 (30)

�60 0 (0) 7 (35)

https://doi.org/10.1371/journal.pone.0231653.t001
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calibration coefficient to adjust the automated number of acini per TDLU measure to the man-

ual results was found to be 3.888. The intercept was not significantly different from zero. We

applied the calibration coefficient to our automated results on the remaining 40 WSIs by mul-

tiplying all median number of acini per TDLU outcomes by 3.888.

Tissue area was adjusted for the percentage of adipose tissue by multiplying the total tissue

area by the percentage of non-adipose tissue. Since manual observers only estimated adipose

tissue percentage in categories (<25%, 25–50%, 50–75%, or>75%), we used the center bin val-

ues for this multiplication.

Association of TDLU measures with age and menopausal status

We also assessed manual and automated TDLU involution measures with age and menopausal

status in the final 40 cases. This was to confirm that our measures were reflective of TDLU

involution, as older women were expected to have more involution.

Statistical analysis

The evaluation of the acini detection neural network model was done using the F1 score and

the evaluation of the TDLU and adipose tissue segmentation network models was done using

the Dice similarity coefficient. F1 score is the harmonic mean of precision (i.e., sensitivity) and

recall (i.e., positive predictive value), which assesses how accurate the automated detection

compares with ground truth (i.e., manual annotation). The calculation for the Dice similarity

coefficient is identical to F1 score, except it assesses the accuracy of the automated segmenta-

tion when compared to ground truth. The F1 score and Dice similarity coefficient are similar.

Traditionally, when used to evaluate the detection performance this score is referred to as the

F1 score and when used to evaluate the performance of a segmentation algorithm it is referred

to as the Dice similarity coefficient.

Inter- and intra-observer agreements for quantitative measures were summarized using

intraclass correlation coefficient (ICC). Two-way mixed effects, consistency, single rater (ICC

(3,1)) was used. ICC values of<0.5, between 0.5 and 0.75, between 0.75 and 0.9, and>0.9 are

indicative of poor, moderate, good, and excellent reliability, respectively [45]. Intra- and inter-

observer agreements for qualitative measures were determined by Fleiss’ Kappa. For compari-

son with automated results, the consensus of the three observers was used. The consensus was

determined by majority voting.

To determine the strength and direction of association of quantitative TDLU involution

measures with age, Spearman’s rank correlation coefficient was used. The Kruskal-Wallis test

was used to examine the differences between groups of qualitative measures and age. Mann-

Whitney U and Chi-squared tests were used to assess the independence of quantitative and

qualitative TDLU involution assessment with menopausal status. The scores for F1, Dice, and

Fleiss’ Kappa range from 0 to 1, with 1 indicating perfect correlation. Analyses were performed

using R and p< 0.05 was considered statistically significant. The ICC confidence intervals

were calculated using the ICC function in the irr R package.

Results

Performances of individual networks and establishing the automated

method

The F1 score of the acini detection method was 0.73±0.07 [29]. The TDLU and adipose tissue

segmentation methods obtained Dice similarity coefficients of 0.84±0.13 and 0.87±0.04,
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respectively. Ablation experiments showed that the methods converged with increasing num-

ber of training samples (S1 Fig).

Based on this quantitative evaluation, which indicates good agreement, and subsequent

qualitative assessment we determined that the performances of these three networks were ade-

quate to be integrated into one automated method (Figs 2 and 3; S2 Fig).

Fig 2. Results of the acini detection (A), terminal duct lobular unit (B), and adipose tissue (C) segmentation algorithms. The original images are in

the left column, the middle column shows ground truth as annotated by human observers, and the detections and segmentations performed by the

automated method are displayed in the right column.

https://doi.org/10.1371/journal.pone.0231653.g002
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The primary cause of discordance between manual assessment and the automated method

was the detection of acini and TDLU with proliferative or metaplastic changes which were

intentionally excluded from manual annotation. For example, in S2C Fig, our method incor-

rectly segments intraductal papillomas as TDLUs despite correctly identifying other TDLUs.

Quantitative measures: Intra- and inter-observer agreement

Overall, quantitative measures derived from automated and manual methods achieved mod-

erate to good inter-observer agreement (Table 2). The intra-observer agreement was good to

excellent (ICC scores >0.8, 95% CI [0.53, 0.99]) and the inter-observer agreement among

the two observers was moderate to good (ICC scores >0.7, 95% CI [0.51, 0.90]). The inter-

observer agreement between the observers and the automated method was also moderate to

good (ICC scores >0.5, 95% CI [0.19, 0.90]).

Qualitative measures: Intra- and inter-observer agreement

Qualitative measures between the three observers and the automated method achieved fair to

moderate agreement (Table 3). Among the three observers, the inter-observer Kappa scores

Fig 3. Results of the acini detection, terminal duct lobular unit, and adipose tissue segmentation algorithms (B) overlaid on the original image

(A).

https://doi.org/10.1371/journal.pone.0231653.g003

Table 2. Inter- and intra-observer intraclass correlation coefficient (ICC) scores and the 95% confidence interval (CI) for the quantitative terminal ductal lobular

unit involution measures obtained from two observers and the automated method.

Intra-observer ICC (95% CI)� Inter-observer ICC (95% CI)#

Observer 1 Observer 2 Observer 1 vs 2 mean(observers) vs automated

Number of TDLUs per tissue area (mm2) 0.96 (0.86, 0.99) 0.82 (0.78, 0.98) 0.71 (0.51, 0.83) 0.80 (0.63, 0.90)

Median TDLU span (μm) 0.91 (0.69, 0.98) 0.90 (0.67, 0.98) 0.81 (0.67, 0.90) 0.57 (0.19, 0.77)

Median number of acini per TDLU 0.91 (0.69, 0.98) 0.86 (0.53, 0.96) 0.73 (0.54, 0.85) 0.80 (0.62, 0.89)

�Intra-observer ICC was evaluated using 10 out of the 40 cases.
#Inter-observer ICC was evaluated using 40 cases.

https://doi.org/10.1371/journal.pone.0231653.t002
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were fair to moderate (κ> 0.35 (p<0.01)) while there was a large variation in their intra-

observer Kappa scores (κ from 0.048 (p = 0.880) to 1.000 (p<0.01)). The inter-observer agree-

ment between the observers and the automated method was moderate (κ> 0.5 (p<0.01)).

There was slightly more agreement in the evaluation of Russo et al. [2] predominant lobule type

compared to Baer et al. [9] categories.

TDLU involution with age and menopausal status

All quantitative and qualitative measures obtained by manual and automated methods were

significantly associated with age (p<0.05; Figs 4 and 5). Table 4 shows the relationships

between TDLU measures and menopausal status. All quantitative measures were significantly

different between pre- and post-menopausal women, except number of TDLUs per tissue area

evaluated by the automated method (p = 0.06). Likewise, qualitative measures (consensus vote

by observers and automated method) were significantly different between pre- and post-men-

opausal women, except lobular classification according to Baer et al. [2] assessed by the auto-

mated method (p = 0.07). No participant was classified as predominantly type 3 according to

Russo et al. [2]. Qualitative measures when assessed by individual observers were not associ-

ated with menopausal status (p>0.05; S1 Table).

Thus, older and post-menopausal women had significantly fewer TDLUs/mm2, smaller

TDLUs, reduced number of acini per TDLU, and fewer acini/mm2 compared to pre-meno-

pausal women. Type 1 lobules were predominantly observed in post-menopausal women

while the majority of pre-menopausal women had mixed lobules.

Discussion

Greater amounts of TDLU involution are inversely associated with breast cancer risk [5, 6, 9–

11] and aggressive breast cancer subtypes [13, 14]. It is important to better understand TDLU

involution as well as epidemiological factors that influence the involution process to obtain

deeper insights into breast carcinogenesis and identify new opportunities for breast cancer

prevention. A major bottleneck to studying TDLU involution and breast cancer risk in large

epidemiological cohorts is the need for manual qualitative and/or quantitative assessment by

pathologists. In this study, we developed and validated a computational pathology method that

can assess five quantitative and two qualitative measures of TDLU involution. Our automated

method was highly comparable to manual assessment, and we confirmed that our TDLU invo-

lution measures reflect age and menopausal status [4]. This technology will be a valuable

research tool to facilitate future breast cancer risk studies.

Table 3. Inter- and intra-observer Fleiss’ Kappa for qualitative terminal ductal lobular unit assessment among three observers using 40 and 10 cases, respectively.

Intra-observer� Inter-observer#

Observer 1 Observer 2 Observer 3 Observer 1,2 & 3 Consensus vote of

observers vs

automated

κ p-value κ p-value κ p-value κ p-value κ p-value

Predominant lobular type

by Russo et al. [2] 0.167 0.598 0.608 0.055 0.798 0.012 0.529 <0.01 0.536 <0.01

Lobular classification according to Baer et al. [9] 0.048 0.880 1.000 <0.01 0.798 0.012 0.370 <0.01 0.538 <0.01

�Intra-observer evaluation was done using 10 out of the 40 cases.
#Inter-observer evaluation was done using 40 cases.

https://doi.org/10.1371/journal.pone.0231653.t003
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Fig 4. Scatterplots of the association of quantitative terminal ductal lobular unit (TDLU) involution measures and age. TDLU count per tissue

area assessed using manual (A) and automated (B) method were significantly inversely correlated with age (p<0.01). Median TDLU span assessed

manually (C) and with the automated method (D) was significantly inversely correlated with age (p<0.01 and p = 0.01). Median acini count per TDLU

assessed using manual (E) and automated (F) assessment was also significantly inversely correlated with age (p<0.01). Acini count per tissue area

assessed by the automated method was significantly inversely correlated with age (G; p<0.01). Median TDLU area assessed by the automated method

was significantly inversely correlated with age (H; p<0.01).

https://doi.org/10.1371/journal.pone.0231653.g004
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Our automated method integrates three separate networks for acini detection, TDLU seg-

mentation, and adipose tissue segmentation. It was challenging to develop the TDLU segmen-

tation network compared to the other two networks because TDLUs have highly variable

appearances and BBD encompasses a wide range of morphology. As such, the TDLU segmen-

tation network required more training WSIs to achieve a Dice score similar to the adipose tis-

sue segmentation network. Since we are the first to develop networks for acini detection and

TDLU segmentation, we were unable to benchmark our networks. We identified three pri-

mary causes of discordance between manual assessment and the automated method which

affected our F1 and Dice scores: 1) acini with proliferative or metaplastic changes were fre-

quently detected by the network but were intentionally excluded from manual annotation; 2)

the network had difficulty predicting boundaries of TDLUs with complex clustering; and 3) in

some cases, the network interpreted large ducts as adipose tissue.

Despite researchers’ best efforts to create a perfect method, most automated methods

remain prone to segmentation errors. Solutions to address these issues and improve our

computational method include increasing the number of training samples with improved

annotation and applying hard negative mining. The inclusion of abnormal epithelium when

assessing TDLU involution may influence breast cancer risk assessment. Therefore, future

work will evaluate the inter-variability of TDLU measures between slides obtained from differ-

ent tissue blocks for each patient. In addition, summarizing the automated results using

median instead of mean, and evaluating at least two WSIs per case (averaging the median val-

ues), will improve the robustness and reliability of the data in future studies. This study focuses

Fig 5. Boxplots demonstrating the association of qualitative terminal ductal lobular unit involution measures and age. (A) Women with

predominantly type 1 lobules were significantly older than women with predominantly type 2 lobules (manual method: p<0.01; automated method:

p = 0.01). No woman presented with predominately type 3 lobules. (B) Women with “Predominantly type 1, no type 3” lobules were significantly older

than women with “Mixed lobules” (manual method p<0.01; automated method p<0.01). No woman was assessed as having “No type 1” lobules by the

automated method. The manual qualitative measures were obtained by consensus vote. The boxplots show the median value, interquartile range (IQR),

and 5th and 95th whiskers.

https://doi.org/10.1371/journal.pone.0231653.g005
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on assessing TDLU involution in non-malignant breast tissue only. If this method were to be

used to assess TDLU involution in tumor-adjacent normal breast tissues, it would need to be

re-trained to include malignant tissue.

To capture TDLU span, the automated method uses the length of the major axis of the

ellipse that is identical to the normalized second central moments for each TDLU. In contrast,

a pathologist has to select two opposite points along the boundary of a TDLU to obtain the lon-

gest span. Thus, the manual assessment of TDLU span inevitably contains some subjectivity

and explains the low inter-observer agreement score between manual and automated results.

Our automated method has the ability to capture two new measures: number of acini per tissue

area and median TDLU area. Future studies will evaluate and compare these newer measures

with the existing three standardized measures to determine which TDLU involution quantita-

tive measure is most associated with breast cancer risk.

TDLU involution is historically assessed using qualitative measures [2, 5, 9]. The large vari-

ation in intra- and inter-observer Kappa scores as observed in this study reiterated the high

Table 4. The association of terminal ductal lobular unit (TDLU) involution measures and menopausal status.

Pre-Menopausal Post-Menopausal p-value

N 20 20

Quantitative measures

Number of TDLU per tissue area (mm2), median n (IQR)
Evaluated by observers 0.74 (0.46,1.34) 0.65 (0.27,0.86) 0.04

Evaluated by the automated method 1.19 (1.05,1.84) 1.07 (0.92,1.26) 0.06

Median TDLU span in μm, median n (IQR)
Evaluated by observers 740.40 (502.35,810.02) 362.90 (317.01,519.75) <0.01

Evaluated by the automated method 536.64 (504.17,580.56) 448.35 (392.73,587.87) <0.05

Number of acini per TDLU, median n (IQR) 29.00 (16.81,48.00) 11.75 (8.50,20.06) <0.01

Evaluated by observers

Evaluated by the automated method 30.13 (26.24,40.34) 19.44 (13.12,24.30) <0.01

Number of acini per tissue area (mm2), median n (IQR) 14.18 (6.30,20.09) 5.75 (3.43,8.90) <0.01

Evaluated by the automated method

Median TDLU area (mm2), median n (IQR)
Evaluated by the automated method 0.10 (0.08,0.12) 0.06 (0.06,0.10) <0.01

Qualitative assessment

Predominant lobular type by observers (consensus vote), n (%) 0.01

Type 1 4 (20.0) 13 (65.0)

Type 2 16 (80.0) 7 (35.0)

Type 3 0 (0.0) 0 (0.0)

Predominant lobular type by the automated method, n (%) 0.02

Type 1 4 (20.0) 12 (60.0)

Type 2 16 (80.0) 8 (40.0)

Type 3 0 (0.0) 0 (0.0)

Lobular classification according to Baer et al. [2] by observers (consensus vote), n (%) 0.04

No type 1 2 (10.0) 1 (5.0)

Mixed lobules 14 (70.0) 7 (35.0)

Predominantly type 1, no type 3 4 (20.0) 12 (60.0)

Lobular classification according to Baer et al. [2] by the automated method, n (%) 0.07

No type 1 0 (0.0) 0 (0.0)

Mixed lobules 18 (90.0) 12 (60.0)

Predominantly type 1, no type 3 2 (10.0) 8 (4 0.0)

https://doi.org/10.1371/journal.pone.0231653.t004
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subjectivity of qualitative measures, thus spurring researchers to develop standardized quanti-

tative measures to assess TDLU involution [4, 10, 13, 14]. Our study showed higher intra- and

inter-observer agreement for quantitative measures compared to qualitative measures, again

highlighting the reproducibility of quantitative measures. Despite assessing different tissue

areas for manual assessment (observers selected 50 mm2 tissue area) and automated method

(entire tissue area on WSI), the good agreement between the observers and automated results

provided additional assurance that our automated method is comparable to manual

assessment.

Conclusion

We developed and validated an automated method to measure TDLU involution as a first step

towards automated prediction of breast cancer risk. Qualitative assessment of TDLU involu-

tion is a subjective process. Quantitative assessment produces more reproducible results but is

labor-intensive for pathologists. Our method can eliminate the labor-intensiveness and subjec-

tivity of manual TDLU involution assessment. Our technology can be applied on a larger scale

to assess breast cancer risk in epidemiological studies. Future work will determine the best

quantitative TDLU involution measure to predict breast cancer risk, and evaluate the impact

of incorporating these measures into clinical breast cancer risk assessment models to improve

patient management.
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