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Abstract

The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a 
wide array of species and is critically involved in the maintenance of cardiac homeostasis. 
This process enables an organism to adapt to changes in systemic demand and occurs 
due to a plethora of responses, depending on the type of signal or stimuli received. The 
growth of cardiac muscle cells in response to environmental conditions depends on the 
type, strength and duration of stimuli, and results in adaptive physiological responses or 
non-adaptive pathological responses. Thyroid hormones (TH) have a direct effect on the 
heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. 
In this review, we summarize the literature on TH function in the heart by presenting 
results from experimental studies. We discuss the mechanistic aspects of TH associated 
with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical 
remodeling, as well as the associated signaling pathways. In addition to classical crosstalk 
with the sympathetic nervous system (SNS), emerging work pointing to the new endocrine 
interaction between TH and the renin-angiotensin system (RAS) is also explored. Given the 
inflammatory potential of the angiotensin II peptide, this new interaction may open the 
door for new therapeutic approaches which target the key mechanisms responsible for 
TH-induced cardiac hypertrophy.

Introduction

Thyroid hormones (TH) have a significant impact on the 
entire organism. However, it has been well documented 
that the heart is the main and the most important target 
of TH actions. Thus, variations in TH circulating levels 
are associated with the development and progression of 
cardiovascular diseases (1, 2, 3, 4). Cardiac hypertrophy, 
broadly defined as an enlargement of the heart, occurs as 
a consequence of high levels of TH and may predispose 
individuals to heart failure (5, 6, 7, 8). Cardiac hypertrophy, 
driven by TH, is triggered by both direct action on cardiac 
cells and indirect mechanisms through interaction with 
other endocrine systems, such as the sympathetic nervous 
system (SNS) and the renin-angiotensin system (RAS) (9, 
10) amongst others.

Accordingly, the importance of exploring the 
mechanistic aspects of TH action which lead to cardiac 

hypertrophy and its consequences for cardiac function, 
highlighting the molecular pathways involved in this 
process, in order to identify possible novel therapeutic 
targets, is clear. In this context, this review will describe the 
basic aspects of TH action, focusing on the molecular and 
cellular mechanisms associated with cardiac hypertrophy, 
and the contribution of the RAS as an important mediator 
of these effects.

Thyroid hormones

Triiodothyronine (T3) and thyroxine (T4) are the major 
TH produced by follicular cells of the thyroid gland, and 
they are bound to thyroglobulin protein until their release 
into the circulation. The synthesis of TH depends on the 
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oxidation of dietary iodine, followed by iodination of 
tyrosine molecules and their coupling, forming T3 and T4. 
The main secreted hormone is T4, which is converted by 
deiodinases to T3 and other metabolites to act on virtually 
every cell of the organism, regulating basal metabolism 
and other important functions. Thyroid gland function 
is regulated by a classical negative feedback mechanism 
along the hypothalamus-pituitary-thyroid axis, where the 
hypothalamus produces thyrotropin-releasing hormone 
(TRH), which acts on the pituitary gland to promote 
thyroid stimulating hormone (TSH) release (11, 12, 13). 
TSH, in turn, binds to receptors on thyroid follicular cells 
promoting the production and release of T4/T3 in the 
circulation. These hormones, when in their free form, act 
on receptors in the hypothalamus and the pituitary gland, 
balancing the production of TRH and TSH, and reducing 
the release of more TH (14, 15).

Although the thyroid gland is under strict regulatory 
control in the production and secretion of its hormones, 
there are conditions that can induce an imbalance of 
circulating TH levels. Graves’ disease, TSH-secreting 
adenomas and toxic multinodular goiter are some  
examples of disorders that can lead to hyperthyroidism 
(16). In this context, overt hyperthyroidism is  
characterized by high levels of T3 and T4, and decreased  
TSH levels. However, the most usual type of hyper
thyroidism observed in medical practice is the subclinical 
condition, characterized by decreased TSH associated 
with T3 and T4 levels within the reference values (17, 18). 
While overt hypothyroidism is characterized by elevated 
TSH levels and low circulating TH levels, subclinical 
hypothyroidism is diagnosed when TSH levels are elevated 
above the reference range but TH levels are normal. The 
etiology of both forms of hypothyroidism is most often 
caused by chronic autoimmune thyroiditis, therapies that 
destroy thyroid tissue and drugs that damage thyroid 
function (19).

From a mechanistic point of view, circulating TH 
reach their target tissues and cross the plasma membranes 
of cells through multiple tissue-specific transporters 
(20), such as monocarboxylate transporter 8 (MCT8) 
and 10 (MCT10), and proteins from the organic anion 
transporting polypeptide (OATP) family (21, 22, 23, 24). 
T4 is converted to T3, diiodothyronine (T2) or reverse T3 
(rT3) by tissue deiodinases (D1, D2 or D3). D1 and D2 
are responsible for the production of more than 70% of 
circulating T3 from T4 (25). D2 is located in the endoplasmic 
reticulum and is very active in the placenta, cardiac 
muscle and pituitary gland, where it helps to mediate 
the TSH production negative feedback loop (26, 27).  

D1 is found in the plasma membrane of various cells and 
also catalyzes the formation of rT3 and T2 (25, 26). D3, 
in turn, is an enzyme normally expressed in the central 
nervous system (CNS) and placenta, and is found in the 
cellular plasma membrane; however, in ischemic situations 
D3 migrates to the nuclear membrane, where it inactivates 
T4 and T3, thereby reducing cellular metabolism (28, 29, 
30). Polymorphisms in these enzymes, or other diseases, 
may increase or reduce their activities, altering TH levels, 
and lead to systemic disorders (31, 32, 33).

There are multiple mechanisms by which TH play 
their role on cells, some mechanisms cause effects within 
seconds or minutes, while other mechanisms which 
depend on gene transcription take longer (minutes to 
hours) (34, 35, 36, 37). Direct binding of TH to receptors 
located on mitochondria or in the cellular plasma 
membrane (e.g. integrin αVβ3) triggers the activation of 
intracellular signaling cascades and rapidly modulates the 
activity of ionic channels, although later effects on gene 
expression may result from the activation of these cascades 
(38, 39, 40, 41, 42). Some of the effects of TH depend on 
binding to specific receptors for thyroid hormones (the 
thyroid hormone receptors (TR)), which can be located 
both in the cell cytoplasm and in the nucleus. When 
activated in the cytoplasm, the TH-TR complex interacts 
with kinases and phosphatases, and modulates their 
pathways, such as the PI3K pathway, without the need for 
DNA binding (43, 44).

Many of the actions triggered by TH occur in the cell 
nucleus and result from the binding of TH to TR, and 
the interaction of this complex with DNA to promote 
the expression of target genes. The canonical mechanism 
is T3 binding to TR: T3 is considered the predominant 
active form of TH because of its higher affinity for TR 
(ten-fold higher than T4) (34, 35, 36). There are two 
known TR isoforms (TR-α and TR-β), which usually 
dimerize with steroid hormone receptors (such as retinoic 
acid receptor (RXR), forming the TR-RXR complex), or, 
to a lesser extent, as a homodimer (45, 46, 47). These 
complexes have high affinity for specific DNA sequences 
called thyroid responsive elements (TRE) and remain 
attached to them, generally suppressing the expression 
of their target genes, whereas binding of T3 to this 
complex stimulates transcription (48, 49). However, the 
TH-TR complex may not require direct DNA connection 
to exert its effects; this complex can interact with 
transcription factors or other proteins associated with 
chromatin which, in turn, will promote the modulation 
of gene expression independent of direct TH-TR complex  
DNA binding.
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It is important to note that regardless of the 
mechanism of action, the combination of all the effects 
triggered by TH may activate several cellular pathways 
and determine different manifestations associated with 
cardiac dysfunction, for example, in the development of 
cardiac hypertrophy which precedes heart failure.

Hyperthyroidism and the heart

The main target of T3 is the heart, in which it promotes 
increased contractility and heart rate, leading to increased 
cardiac output. Thus, although hyperthyroidism induces 
a decrease in peripheral vascular resistance, its effect in 
raising cardiac output leads to the arterial hypertension 
frequently observed clinically. Such alterations contribute 
to a process of growth (cardiac hypertrophy), initially 
considered physiological or adaptive, which is critically 
involved in the maintenance of cardiac homeostasis 
and occurs as a result of increased cardiac demand. 
In this case, the cardiac hypertrophy observed in 
hyperthyroidism is characterized by: (1) ventricular wall 
thickening (concentric hypertrophy), due to the addition 
of sarcomeres in parallel within the cardiomyocyte; (2) 
increased contraction force, as a result of the modulation 
of pathways that tend to increase calcium uptake; and (3) 
increased relaxation velocity, due to increased calcium 
uptake by the sarcoplasmic reticulum during diastole. 
However, the long-term effects of T3 may result in cardiac 
hypertrophy as a consequence of dysfunction, also 
classified as pathological hypertrophy, which leads to 
cardiac remodeling and heart failure.

Although an increase in left ventricular mass has 
been observed in patients with hyperthyroidism, even 
with antithyroid treatment (50), a more recent study 
demonstrated that cardiovascular dysfunction associated 
with hyperthyroidism can be attenuated by treatment 
with antithyroid drugs and can be reversible after total 
thyroidectomy (51). In addition, the combination of 
antithyroid therapy and beta blockers, to control heart 
rate, prevents hemodynamic overload and cardiac 
remodeling leading to complete recovery from heart 
failure (52).

Supporting clinical findings, experimental data also 
demonstrated that antithyroid treatment significantly 
prevented the cardiac dysfunction induced by T4 in mice. 
In addition, the reversibility of cardiac pathology was also 
observed after 2 weeks of discontinuation of treatment 
with T4, including cardiac hypertrophy (53).

TH in cardiac cells

In cardiac tissue, TH exert their effects in cardiomyocytes, 
and other cardiac non-myocyte cells such as fibroblasts, 
endothelial cells, vascular smooth muscle cells and 
hematopoietic-derived cells. Cardiomyocytes correspond 
to two-thirds of the heart volume and express ten-
fold more TRs than fibroblasts (44), which make them 
more responsive to TH action and a protagonist of  
cardiac hypertrophy.

In cardiac fibroblasts, although TH increase the 
expression of TGF-β1, a pro-fibrotic marker, TH also 
promote a decrease in type 1 collagen gene expression, 
the major fibrillar collagen in the heart (54, 55, 56). In 
fact, different studies in the literature have shown that TH 
induce cardiac hypertrophy without increasing collagen 
deposition (57, 58, 59). This antifibrotic role of TH is 
already well known, and the potential of these hormones 
as a alternative treatment for fibrosis in the heart has 
recently been studied (55, 60).

In the vasculature, TH act on both endothelial cells 
and smooth muscle cells, promoting an increase in the 
production of nitric oxide, a decrease in the proliferation 
of vascular smooth muscle cells and an improvement in 
angiogenesis (43, 61, 62, 63, 64). In this way, TH modulate 
vascular remodeling and contribute to the maintenance 
of endothelial function.

It is important to note that, in the human and 
murine heart, approximately 5% of non-myocytes are 
hematopoietic-derived cells (65). Additionally, resident and 
recruited immune cells respond earlier to cardiac injury, 
and coordinate cardiomyocyte and non-cardiomyocyte 
responses during hypertrophy and remodeling (66). 
However, although some studies have investigated the 
effects of TH on various types of immune cells (67, 68, 69), 
the impact of immune cells on the cardiac actions of TH 
remains to be clarified.

Regarding the role of TH at the cellular level in 
the context of cardiomyocyte hypertrophy, different 
mechanisms have been described in the literature. In 
general, these processes are triggered by the action of TH, 
which lead to an increase in the expression of sarcoplasmic 
reticulum Ca2+-ATPase (SERCA2) and ryanodine receptors 
associated with a decrease in phospholamban, which 
results in faster systole and diastole (positive inotropism 
and lusotropism, respectively) (8, 70, 71, 72, 73). Alpha 
myosin heavy chain (α-MHC) is upregulated by TH while 
beta myosin heavy chain (β-MHC) is downregulated, 
which significantly enhances the contractile function of 
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cardiac papillary muscle (8, 74, 75, 76). Additionally, actin 
and troponin I levels are also increased by TH in the heart 
(77) (Fig. 1). Interestingly, some of those TH-responsive 
genes are modulated by microRNAs (miR). Part of the 
decrease in β-MHC levels observed in hyperthyroidism 
is due to overexpression of miR-208a (78, 79, 80) and  
miR-27a (81), while increased SERCA2 levels are regulated 
by miR-133 (82). In addition, TH increase the expression 
and activity of Na+/K+-ATPase channels and beta-
adrenergic receptors in cardiomyocytes, which leads to 
greater sensitivity of the heart to sympathetic stimulation, 
contributing to the positive inotropic effect (77, 83, 84, 
85, 86, 87, 88). These alterations may contribute to the 
tachycardia events and atrial fibrillation that are often 
associated with hyperthyroidism (89).

Moreover, diverse intracellular signaling 
pathways are rapidly activated by T3 and mediate 
cardiomyocyte growth, as occurs in the phosphoinositide  

3-kinase/protein kinase B/mammalian target of 
rapamycin (PI3K/Akt/mTOR) signaling pathway (59, 
90). These actions may also be triggered by membrane 
integrin αVβ3 (38), which has two TH binding sites: S1, 
which recognizes T3 and activates the PI3K pathway; 
and S2, which binds to both TH (despite having much 
higher affinity for T4) and activates the mitogen activated 
protein kinase (MAPK) pathway (40, 41, 42). Another 
important signaling pathway involved with TH-induced 
cardiomyocyte hypertrophy is adenosine mono 
phosphate-activated protein kinase (AMPK) signaling. 
AMPK is a sensor of intracellular adenosine nucleotide 
levels that is activated when ATP synthesis decreases and 
AMP or ADP levels increase. In response, AMPK activates 
catabolic pathways to generate more ATP and inhibits 
anabolic pathways, such as those involved in protein 
synthesis. In T3-treated cardiomyocytes, AMPK silencing 
induces increased hypertrophy, while AMPK stimulation 

Figure 1
Some examples of thyroid hormones action on cardiomyocytes, which are upregulated in hyperthyroidism. Thyroid hormones (TH) might interact with 
cell surface receptors, such as integrin aVb3, to trigger the fast activation of cytoplasmic kinases, or it may enter the cell with the help of transporters 
such as MCT8. In the cytosol, much of T4 (tyroxine) is converted to T3 (triiodothyronine) by the action of the enzyme D2 (type 2 deiodinase). T3 then 
interacts with mitochondrial or cytoplasmatic receptors, affecting the activity of ion channels and the production of reactive oxygen species (ROS). This 
hormone also migrates to the nucleus and binds to thyroid hormone receptors (TR), forming a complex with high affinity for DNA-coupled thyroid 
response elements (TRE), although the T3-TR complex may interact with other DNA-bound proteins without the need to directly bind to chromatin to play 
its role. Thus, the transcription of several target genes is modulated, followed by protein synthesis, which ultimately results in cell hypertrophy.
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attenuates this process (91), indicating its important 
cardioprotective role in hyperthyroid hearts.

Additionally, pathways involved in inflammation 
have also been related to the development of TH-induced 
cardiac hypertrophy. In this context, our group recently 
demonstrated that acute T3 treatment increased the 
expression of S100A8 (also known as calgranulin A), 
a calcium binding protein that when secreted to the 
extracellular space binds to toll-like 4 membrane 
receptors (TLR4), resulting in the recruitment of myeloid 
differentiation protein 88 (Myd88) and activation of 
nuclear factor-κB (NFkB). Inhibition of Myd88 and 
NFkB are able to attenuate cardiomyocyte hypertrophy, 
highlighting the involvement of this pathway in 
T3-induced hypertrophy (92).

The activation of inflammatory pathways is closely 
associated with cellular redox state. Regarding the 
heart, there is evidence which demonstrates increased 
free radical production and decreased mitochondrial 
antioxidant capacity in hyperthyroidism, resulting in 
cardiac oxidative stress (93, 94). The accumulation of 
reactive oxygen species (ROS) in the hyperthyroid heart 
seems to be crucial to the development of T3-induced 
cardiac hypertrophy, as antioxidant treatment with 
vitamin E attenuated cardiomyocyte growth (95).

While the activation of several pathways related 
to protein synthesis has been associated with the 
hypertrophic effects of TH, proteolysis related pathways 
also appear to play an important role in this process. 
Recently, we have demonstrated increased expression 
of the proteasome in the hearts of hyperthyroid rats 
(96). Both catalytic (20SPT) and regulatory subunits 
(19SPT) of the constitutive proteasome, together with 
immunoproteasome subunits, were upregulated in 
rats treated with T3. Furthermore, ATP-dependent 
chymotrypsin-like activity (26SPT) was increased in 
cardiac tissue from hyperthyroid rats and in isolated 
cardiomyocytes treated with T3, which may be involved 
in the maintenance of protein quality control and the 
regulation of T3-induced cardiac hypertrophy (96).

Interaction of TH with other 
endocrine systems

Besides the direct actions of TH in the cardiomyocyte, 
cardiac hypertrophy induced by T3 is also a result 
of indirect effects of this hormone. An important 
contribution of the SNS has long been demonstrated 
in the development of tachycardia, increased force and 

velocity of cardiac contraction, and cardiac hypertrophy 
initiation in hyperthyroidism. Thus, it has been 
demonstrated that treatment with the beta-adrenergic 
blocker propranolol inhibited T3-induced cardiac 
hypertrophy and increased heart rate (10). Plasma 
and urine levels of catecholamines are not altered in 
hyperthyroidism, which indicate that some T3 effects are 
mediated by an increased responsiveness and sensitivity 
of cardiac tissue to sympathomimetic stimuli (97). This 
increased sympathetic sensitivity is due to an increase in 
the number of adrenergic receptors in the hyperthyroid 
heart (98). Thus, the administration of a beta-adrenergic 
receptor antagonist to patients with hyperthyroidism is 
often used by clinicians to attenuate heart rate, systolic 
blood pressure and other cardiovascular manifestations 
(18, 99). However, in some cases the use of beta-adrenergic 
antagonists is contraindicated, which demonstrates the 
need for new therapeutic targets.

In addition to the increased cardiac beta-adrenergic 
sensitivity observed in hyperthyroidism, the RAS has been 
recognized in the last two decades as a significant mediator 
of the cardiovascular actions of TH, and our studies have 
contributed to the understanding of the crosstalk between 
TH and the RAS. The RAS is an important endocrine 
regulator of cardiovascular homeostasis, classically acting 
in the control of blood pressure and extracellular fluid 
volume (100). Alterations in the levels of peptides that 
constitute the RAS are closely related to cardiovascular 
function impairment, and for this reason several members 
of the RAS have been used as a target for the development 
of therapeutic drugs.

In the classical RAS, renin (an aspartyl protease 
produced in juxtaglomerular cells) forms angiotensin I 
(Ang I) by cleavage of the N-terminal portion of hepatic 
angiotensinogen (AGT). Ang I is converted into angiotensin 
II (Ang II) by the action of ACE (Ang I converting enzyme), 
an endothelial peptidase which removes two C-terminal 
amino acids (101, 102). Ang II is an octapeptide which 
binds to two specific G-protein-coupled receptors, AT1R 
and AT2R, to perform its biological activity, as illustrated 
in Fig. 2.

Although the RAS has been considered as an 
endocrine system dependent on renal renin, over the years 
accumulating evidence suggests that different tissues are 
able to locally synthesize some of the RAS components, 
including Ang II (103). In fact, it has been demonstrated 
that AGT, ACE, AT1R and AT2R are expressed in the heart, 
enabling the local synthesis and action of Ang II in this 
organ (104, 105, 106). In addition, it is important to 
emphasize that most cardiac Ang I and Ang II peptides 
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are produced locally rather than derived from the 
blood, indicating that this endocrine system is clinically  
relevant (107).

TH regulate the activity of the RAS in different tissues, 
and therefore several studies have been conducted to 
understand the crosstalk between these two endocrine 
systems, especially in thyroid gland disorders (9, 108). In 
this context, experimental hyperthyroidism is associated 
with increased levels of renin, Ang II, AT1R and AT2R 
in the heart (109, 110, 111, 112). Additionally, it has 
been shown that a critical RAS contribution to cardiac 
hypertrophy is observed in hyperthyroidism, as the 
inhibition of Ang II activity by AT1R/AT2R blockers or 
ACE inhibition totally prevents the development of 
cardiac hypertrophy in vivo and in vitro (10, 51, 110, 113, 
114, 115, 116, 117). AT1R silencing using a siRNA or AT1R 
blockade with a pharmacological antagonist (losartan) 
completely abolished TH-induced activation of the  
miR-208a/α-MHC, Akt/GSK3β/mTOR and NFkB signaling 
pathways, together with the downregulation of miR-133. 
These mechanisms have been shown to play a key role 
in the development of T3-induced cardiac hypertrophy 
(78, 82, 59, 92, 116). Concerning AT2R, Carneiro-Ramos 

and collaborators demonstrated that blockage of this 
receptor also prevents TH-mediated cardiac hypertrophy 
in vivo and in vitro, by preventing Akt activation (117) 
(Fig. 2). Furthermore, TH increase transforming growth 
factor beta (TGF-β) expression in cardiac tissue by AT2R 
stimulation, which may be involved in TH-mediated 
cardiac hypertrophy (58) (Fig. 2).

In addition to the peptides previously described, in the 
late 1980s the classical view of the RAS was expanded after 
discovering a new heptapeptide, angiotensin-(1–7) (Ang-
(1–7)), which activates the G-protein-coupled receptor 
MAS (118, 119). Ang-(1–7) is formed from Ang II by the 
enzymatic action of the carboxypeptidase ACE2 (Ang II 
converting enzyme) or from Ang I by an ACE-independent 
pathway (120, 121, 122) (Fig. 2). In the hyperthyroid state, 
an upregulation of Ang-(1–7), ACE2 activity and the MAS 
receptor in the heart was demonstrated, with no changes 
in the plasma levels of Ang-(1–7) (123). Contributing to 
these data, recently it was shown that elevated circulating 
levels of Ang-(1–7) prevented T3-induced cardiac 
hypertrophy by attenuating the glycogen synthase kinase 
3 beta/nuclear factor of activated T-cells (GSK3β/NFATc3) 
signaling pathway (124) (Fig. 2).

Figure 2
Involvement of the RAS in cardiac hypertrophy 
induced by TH. AT1R activation triggers 
TH-mediated cardiac hypertrophy by activating 
the miR-208a/α-MHC, Akt/GSK3β/mTOR and NFkB 
pathways, and by downregulating miR-133. 
Additionally, AT2R contributes to cardiac growth 
in hyperthyroid rats by participating in Akt and 
TGF-β activation.Increased levels of Ang-(1–7) 
prevents the development of T3-induced cardiac 
hypertrophy by blocking GSK3β/NFATc3 activation 
via the MAS receptor. AGT, angiotensinogen;  
Ang I, angiotensin I; Ang II, angiotensin II; 
Ang-(1–9), angiotensin-(1–9); Ang-(1–7), 
angiotensin-(1–7); ACE, angiotensin I converting 
enzyme; ACE2, angiotensin II converting enzyme; 
AT1R, angiotensin II receptor type 1; AT2R, 
angiotensin II receptor type 2.
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Considering that cardiac hypertrophy may represent an 
important risk factor for the progression of cardiovascular 
disease, understanding the crosstalk between the RAS and 
TH is clearly clinically important; new pharmacological 
tools to reduce the cardiac complications observed in 
hyperthyroidism are required, especially in patients in 
whom beta-adrenergic antagonists are contraindicated.

Conclusion and future perspectives

Several key mediators of TH-induced cardiac hypertrophy 
have been identified from animal studies. However, despite 
significant progress in understanding the molecular 
mechanisms that accompany TH-induced cardiac 
hypertrophy, further studies are required in order to 
understand the complex level of communication between 
TH and other systems. In this context, the influence of 
hypoxia in the microenvironment of TH-induced cardiac 
hypertrophy and the crosstalk between TH, hypoxia and 
inflammation signaling remain to be clarified, as does the 
potential role of TH in the early and long-term cardiac 
angiogenesis process.
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