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Abstract

This study recreated and reevaluated the performances of twenty-nine satellite derived 

chlorophyll-a algorithms for temperate inland lakes to serve as a proxy for algal bloom detection. 

The performances of these algorithms were compared over two study areas, Harsha Lake in 

Southwest Ohio and Taylorsville Lake in central Kentucky. The datasets utilized for an estimation 

of chlorophyll-a concentrations were the airborne derived CASI-1500 hyperspectral imagery, and 

the spatially resampled and spectrally binned synthetic datasets designed to mimic the 

configurations of WorldView-2/3, Sentinel-2, Landsat-8, MODIS, and MERIS. This study 

demonstrates promising results for the use of CASI and Sentinel-2, and to a lesser degree 

WorldView-2 and Landsat-8 for the identification of algal blooms with r2 values 0.678, 0.707, 

0.499, and 0.317, respectively for correlations tested with coincident lake surface chlorophyll 

measurements in Taylorsville Lake, Kentucky. The results confirm the portability and efficacy of 

utilizing a suite of algorithms across multiple sensors in order to detect potential hotspots for algal 

blooms through the use of chlorophyll-a as a proxy. Furthermore, the strong performance of the 
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Sentinel-2 algorithms is exceptionally promising, due to the recent launch of the second satellite in 

the constellation, which will provide higher temporal resolution for temperate inland water bodies 

susceptible to algal blooms. In addition, much of the data processing has been automated using the 

open-source statistical software R, resulting in reduced processing time, and allowing for the 

integration of numerous algorithms across multiple sensors for the near real-time monitoring 

required for detecting algal blooms and mitigating their adverse impacts.
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1. Introduction:

Over the last several decades, there has been a noticeable increase in the frequency and 

extent of freshwater harmful and nuisance algal blooms (HNABs) in the United States (Reif, 

2011; USEPA, 2012). Exact environmental mechanisms have yet to be determined (Graham, 

2006; Linkov, Satterstrom, Loney, & Steevans, 2009), although, high nutrient concentrations 

and algae available insolation appear to be significant contributing factors (Dokulil and 

Teubner, 2000; Ohio EPA, 2012). Freshwater HNABs have become a global concern 

affecting forty-five countries worldwide and have resulted in animal deaths in at least 

twenty-seven US states (Graham, 2006, USEPA, 2012; WHO, 2003). What makes these 

blooms “harmful” is that the algae comprising the bloom can produce toxic compounds 

including, dermatoxins, hepatoxins, and neurotoxins to humans and animals (USEPA, 2012). 

Although the World Health Organization and state agencies such as, The Ohio Department 

of Health, have set safety standards for the consumption and contact of these toxins (ODH 

2017), their monitoring in every small body of water is difficult, time intensive, and costly 

(Backer, 2002; Pitois et., 2000). Remote sensing using satellite imagers of HNABs is 

possible because of photo reactive pigments produced by algae allowing for photosynthesis. 

The pigments have reflective properties that can be ‘sensed’ by analyzing the images. The 

toxins produced by algae are not directly detectable by the imagery, but toxin concentration 

is often correlated with algal biomass density, which in turn, is directly related to the 

concentration of photopigments (Gitelson et al., 1986; Gitelson et al., 2003; Kudela et al., 

2015; Morel and Prieur, 1997; Stumpf et al., 2012; Stumpf et al. 2016; Vos et al., 1986; 

Wynne et al., 2012). One of the most abundant photopigments produced by all types of algae 

is chlorophyll-a. Using satellite imagery to estimate the concentrations of chlorophyll-a in 

inland surface waters, therefore, can serve as an indicator of the presence of an algal bloom. 

Subsequent water sampling for toxin analysis has to be conducted to evaluate the nature of 

the high chlorophyll-a concentration; determining if the bloom is harmful or not.

To reduce costs and increase coverage of algal bloom monitoring the use of remote sensing, 

especially from satellite platforms, are currently being utilized to address the risk 

management challenges associated with HNABs including, the monitoring of smaller fresh 

water lakes, rivers, and reservoirs, long-term studies of individual bodies of water, and the 

development of techniques for early detection (Shen, Xu, & Guo, 2012). The most effective 

way to accomplish these goals are through the continual use of high temporal resolution 
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satellites with spatial resolutions significantly less than the size of the water body being 

observed (Beck et al. 2016). Temporal resolution is of the utmost importance, especially in 

temperate regions, where the highest probability of freshwater HNABs occurring is during 

the summer, corresponding to the most frequent chances of heavy cloud cover, which 

influences the effectiveness of the satellite imagers. Therefore, the ability to maximize the 

number of satellites to image algal blooms in inland water bodies is especially important 

(Veryla, 1995). Remote imaging systems allow for quicker turnaround time for officials to 

notify the public about potential HNAB occurrence (Blondeau-Patissier, Gower, Dekker, 

Phinn, & Brando, 2014; Klemas, 2012; Stumpf & Tomlinson, 2005).

There has been some success in the global monitoring of algal blooms using satellites 

systems with high return times and swath widths of sensors such as the Moderate Resolution 

Imaging Spectroradiometer (MODIS), Ocean and Land Colour Instrument (OLCI) or the 

Medium Resolution Imaging Spectrometer (MERIS) (Augusto-Silva et al., 2014; Blondeau-

Patissier et al., 2014; Klemas, 2012; Stumpf et al., 2012). Since MERIS is no longer 

operational, the similarly configured sensor, OLCI on the ESA’s Sentinel-3, will essentially 

take MERIS’s place for data sets after the launch date of February 16th, 2016 (ESA, 2018). 

Unfortunately, these are less useful for the monitoring of inland lakes that typically have 

widths of less than a few kilometers, and the satellites that have high enough spatial 

resolution have too low temporal resolution to offer a less than or equal to weekly 

monitoring frequency of HNABs, that is needed to account for algal growth dynamics in 

surface waters. Beck et al. (2016) suggest the use of a suite of sensors in order to optimize 

the successful acquisition of a cloud-free scene and provide effective monitoring of small 

freshwater lakes for minimal cost. This study recreates and reevaluates the efficacy and 

transferability of the synthetic satellite reflectance algorithms studied by Beck et al. (2016) 

for quantification of chlorophyll-a in two temperate reservoirs. It extends the work of 

Augusto-Silva et al. (2014) and Beck et al. (2016) using airborne hyperspectral imagery and 

dense coincident in-situ observations.

The increase in frequency and extent of algal blooms, especially the rise of harmful algal 

blooms (HABs), has pushed for the further development of effective and accurate satellite-

based algorithms to estimate chlorophyll-a. This is mainly due to the fact that chlorophyll-a 

is a spectrally active compound in phytoplankton that is commonly used as a proxy for 

phytoplankton biomass (Morel & Prieur, 1977; Vos, Donze, & Bueteveld, 1986; Gitelson, 

Nikanorov, Sabo, & Szilagyi, 1986; Gitelson, Gritz, & Merzlyak, 2003; Wynne, Stumpf, 

Tomlinson, & Dyble, 2012; Stumpf, Wynne, Baker, & Fahnenstiel, 2012; Kudela et al., 

2015) and is a reliable proxy for water quality (Verdin, 1985; Ekstrand, 1992; Reif, 2011; 

Mishra & Mishra, 2012). Augusto-Silva et al. (2014) provide a review of the satellite 

reflectance algorithms, including two-band-algorithm (2BDA) (Dall’Olmo & Gitelson, 

2005), three band-algorithm (3BDA) (Gitelson et al., 2003), and the Normalized Difference 

Chlorophyll Index (NDCI) algorithm (Mishra & Mishra, 2012), while Beck et al. (2016) 

added the Fluorescence Line Height algorithms (FLH) for the approximation of chlorophyll-

a concentrations in inland lakes. The findings of these studies demonstrate the accuracy of 

sensor-based chlorophyll-a estimates (Sauer, Roesler, Werdell, & Barnard, 2012).
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Due to differing band spacing and sensor configurations, it is important to note that not all 

algorithms can be applied to all sensors, and direct measurements of chlorophyll-a and 

phytoplankton communities in surface waters are highly variable due to nutrient, wind, and 

temperature fluxes, as well as a host of other bio-physical factors (Hunter, Tyler, Willby, & 

Gilvear, 2008; Sawaya et al., 2003; Stumpf et al., 2016; Wang, Xia, Fu, & Sheng, 2004). 

Another issue conflating the direct detection of HABs over other algal blooms, is that most 

current sensors lack the narrow band at 620nm corresponding to the phycocyanin absorption 

feature. Phycocyanin is more directly related to gauging harmful algal risk because it is a 

pigment produced by the cyanobacteria algal taxa types most frequently responsible for 

toxin production in fresh waters. Here the focus is solely on chlorophyll-a algorithms as 

proxies for any algal bloom as a method of early detection. The comparison of multiple 

sensors is again complicated by the varying atmospheric and surface conditions that result 

from differing overpass schedules (Thonfeld, Feilhauer, & Menz, 2012). These issues are 

addressed by upscaling and spectral binning one hyperspectral image in order to mitigate the 

effects of differing acquisition times. This resulted in the need for the collection of only one 

set of dense coincident surface observations.

This research recreated the twenty-nine algorithms used to derive and estimate chlorophyll-a 

content for each of the following sensors: Compact Airborne Spectrographic Imager (CASI), 

WorldView-2, Sentinel-2, Landsat-8, MODIS, and MERIS. Each of these algorithms were 

evaluated against in-situ water samples collected during a multi-agency/investigator field 

campaign that included the United States Army Corp of Engineers (USACE), U.S. 

Environmental Protection Agency (USEPA), Kentucky Division of Water, and the University 

of Cincinnati. The CASI hyperspectral imager (HSI) data was used to upscale and resample 

the images to develop synthetic images for the sensors listed above. Following the 

methodology of Beck et al. (2016), this study evaluated the 1-meter airborne CASI-HSI 

imagery, and the resampled 1.8-, 20-, 30-, 250- and 300-meter multispectral imagery 

designed to mimic current and future operational satellite imagers. The interest in on 

expanding the use of remote sensing satellite systems as an accurate and cost-effective way 

to monitor and quantify the water quality of inland water bodies. To this end, an automated 

approach using the R open source software was applied (R Core Team, 2017). Beck et al. 

(2016) demonstrated a high statistical correlation between NOAA CI, FLH, NDCI, 2BDA 

and 3BDA chlorophyll-a algorithms and the in-situ observations, but was limited to only one 

lake in Southwest Ohio. Given the findings of Beck et al (2016), it is hypothesized that the 

algorithm performances of this study would result in the same order: MERIS, WorldView-2, 

Sentinel-2, MODIS, and Landsat-8. It should be noted, that Landsat-8 performed rather 

poorly with the previously developed algorithms, but performs moderately well with the 

advent of the fluorescence line height (FLH) algorithms.

This research provides a technique that attempts to evaluate the portability of these 

algorithms by reproducing the methods of Beck et al. 2016 in order to examine how site-

specific variations, such as geography, atmospheric conditions, and lake bio-chemistry will 

impact the performances of each sensor-algorithm pair. This research also aimed at 

confirming the use of these moderate resolution satellite imagers as a “red flag” detection 

system to identify potential problem areas that can be then verified by in situ measurements. 

This study defines a red flag event at 25μg/L, which is derived from the reference data on 
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ambient water quality for ecoregion VI level III ecoregion 55 (EPA, 2000). The use of red 

flag event is flexible and dependent on the water use and environmental health standards. 

These standards vary by state, but generally follow the threshold guidelines outlined by the 

World Health Organization (WHO, 1999). Since toxicity levels cannot be detected directly 

via current remote sensing instruments, this approach is designed to be an early detection of 

high concentrations of chlorophyll-a, which in turn would alert local officials or managers to 

test for toxicity level with traditional in situ techniques, such as ELISA kits.

2. Methods

2.1. Study area

The study focuses on Taylorsville Lake in Central Kentucky, roughly 150 kilometers 

southwest of Harsha Lake (aka East Fork Lake), Ohio, which was the focal water body in 

Beck et al. (2016). Taylorsville Lake has an approximate water surface area of 11.88km2, 

while Harsha’s is 7.99km2 (Fig. 1). These lakes were chosen because they are both sites of 

recent and reoccurring algal blooms (including HABs), they share similar geography, and 

are subject to routine monitoring by the USEPA and USACE. In addition to being a source 

of drinking water, these lakes are recreation areas containing beaches, host open water 

swimming, and are used for recreational fishing. Both lakes are reservoirs that were created 

in the late 1970’s by the USACE for flood control.

2.2. Datasets

The datasets used in this research were the following: 1) Compact Airborne Spectrographic 

Imager (CASI) hyperspectral imagery (HSI), 2) coincident surface spectral observations 

collected using an ASD brand spectroradiometer, and 3) in situ measurements made using 

in-vivo water sensors and analyzing surface water grab samples using laboratory and 

microscopy methods. These same datasets were used in Beck et al. (2016) for Harsha lake 

only. Data was acquired for Taylorsville on 6/18/2014, while the Harsha flyover and 

sampling event occurred on 6/27/2014. The USACE Joint Airborne Lidar Bathymetry 

Technical Center of Expertise (JALBTCX) supported the CASI-1500 airborne surveys while 

the USACE, USEPA, Kentucky Division of Water, and the University of Cincinnati all 

helped to acquire water quality and phytoplankton community measurements within one 

hour of the image acquisition time.

2.3. Hyperspectral Imagery Acquisition

The acquisition of the CASI-1500 VNIR airborne HSI and radiometer collected coincident 

surface observations for Taylorsville lake took place on the morning of June 18, 2014. The 

system was flown at an altitude of approximately 2000 meters where it collected a 48-band 

hyperspectral image with 1,466-meters wide at 1-meter spatial and 14-nanometer Full Width 

Half Maximum (FWHM) spectral resolution over a wavelength range of 371 to 1042 

nanometers (Fig. 2). The detailed description of the hyperspectral image acquisition and pre-

processing are available in Beck et al. (2016) section 2.4. Tests with extracted water pixel 

FLAASH reflectance spectra after atmospheric correction are similar to water field spectral 

measurements and display a strong peak at 714 nm associated with chlorophyll-a (Fig. 2).
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2.4. Coincident surface observation procedures

An in-depth literature review reveals a consensus that accepts chlorophyll-a approximations 

as a reasonable proxy for algal blooms (Alawadi, 2010; Allee and Johnson, 1999; Brivio et 

al., 2001; Cannizzaro and Carder, 2006; Choubey, 1994; Dekker and Peters, 1993; 

Dall’Olmo et al., 2003; Fraser, 1998; Frohn and Autrey, 2009; Gitelson, 1992; Gower et al., 

2008; Han et al., 1994; Klemas, 2012; Kneubuhler et al., 2007; Matthews et al., 2001; 

Quibell, 1992; Rundquist et al., 1996; Schalles et al., 1997; Stumpf et al., 2012; Thiemann 

and Kaufmann, 2002: Vos et al., 1986; Wynne et al., 2012; Zhao et al. 2010). The 

Taylorsville surface water sampling campaign included the use of four research boats to 

acquired seventy coincident surface observations on a 400-meter grid point spacing with YSI 

water quality sondes cross-calibrated following manufacturer guidelines. Surface 

observation collection was coordinated with the imaging aircraft via an air-to-ground radio. 

Each boat’s crew collected the following:

1. Surface water grab samples from each sample point for subsequent laboratory 

measurements of general water quality constituents, algal pigments, and a subset 

of samples were processed for algae identification and enumeration.

2. ASD brand spectroradiometer spectral signature to evaluate atmospheric 

correction of CASI imagery.

3. In situ sensor measurements using YSI brand chlorophyll, phycocyanin, 

turbidity, specific conductance, pH, water temperature, and dissolved oxygen 

sensor suite of a YSI 6600 data sonde (YSI Instruments, Yellow Springs, Ohio).

4. Secchi depth measurements.

5. GPS location- and date/time-referenced photos of surface water conditions at 

each sample point. All data were referenced to the WGS84 map datum and 

converted to the Universal Transverse Mercator (UTM) Zone 16 North map 

projection (Fig. 3).

Note, only the algal pigment and I&E information obtained from the grab samples are 

pertinent to this manuscript.

Grab samples were measured for chlorophyll-a by extraction and spectrophotometric 

detection according to Standard Method 10200H2.b (APHA et al., 2012). The summed 

values for pheophytin corrected chlorophyll-a and pheophytin (i.e., a so-called measure of 

uncorrected chlorophyll-a) and abbreviated this variable as SUMReCHL (μg/L)). This 

measure of total chlorophyll pigment more likely aligns with the reflectance of the in vivo 

chlorophyll pigments measured by the imagers.

2.5. Synthetic satellite imagery

The original CASI Hyperspectral bands were spectrally averaged with equal weight using 

band math in the raster package (Hijmans, 2016) for R to produce synthetic satellite image 

bands for Landsat-8, Sentinel-2, MERIS/OLCI, MODIS, and WorldView-2/3, according to 

published specifications (DigitalGlobe, 2009, 2014; ESA, 2012, 2013; USGS, 2015; Lindsey 

and Herring, 2001). Since the results from the spectral binning process are generated from 
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the same original reflectance data set as well as the same series of dense coincident surface 

observations this approach eliminates the errors that arise from co-registration, atmospheric 

conditions, and surface fluxes that complicate the comparison of real imagery acquired at 

different times (Beck et al., 2016; Thonfeld et al., 2012). After spectral resampling, these 

data were then spatially resampled to the appropriate resolution of each sensor (Table 1). 

This approach is not without uncertainty, the linear spectral resampling can introduce error 

of up 1–3% RMS and up to 6–8% relative error, and similarly the spatial resampling process 

may produce 10–32% (Schlapfer et al. 1999; Schlapfer et al. 2002). Given the trade-offs 

associated with signal to noise ratio (SNR), sampling interval, and band configuration this 

research followed the recommendation set forth by Broge and Mortensen (2002) to 

spectrally and spatially resample hyperspectral imagery to mimic coarser sensors. This 

approach has been successfully applied to OLCI by Augusto-Silva et al. (2014), MERIS by 

Koponen et al. (2002), and expanded to include additional sensor configurations in Beck et 

al. (2016).

Sensor spatial resolution and lake geometry must be considered because the acquisition of 

water only pixels is critical for evaluating the algorithm performance via regression analysis. 

A minimum of three pure water pixels are required to perform a linear regression, but at 

least ten points are recommended for a more robust analysis. For a full description of this 

methodology see Beck et al. (2016) section 2.6. A deviation from the original study is the 

transition from Environment for Visualizing Images (ENVI) to R, which allows for the 

easier automation of all aspects of this research. This is also a step toward operational 

systems, and for complete R script details see Johansen (2017). To ensure there were no 

differences between the methods, pixel values from both studies were evaluated at multiple 

randomly chosen points for each of the chlorophyll-a algorithms. All of the pixels evaluated 

displayed the same values regardless of which software was chosen to do the computation, 

so no further modifications were needed to transfer the methods from the original ENVI 

formats to the R scripts used in this study (data not shown). Table 1 displays the band 

combinations of the original sensors as well as modified synthetic configurations. The 

objective was to recreate the original sensors using the CASI band configurations to keep the 

synthetic band widths and centers a close as possible.

2.6. Image analysis

The theme of reproducibility is continued by following the methodology set forth by Beck et 

al. (2016) who further extended the work of Augusto-Silva et al. (2014) in which airborne 

hyperspectral imagery was used in the place of surface measurements collected via 

spectroradiometer (Mittenzwey, Ulrich, Gitelson, & Kondratiev, 1992; Kallio, 2000; 

Koponen et al., 2002). The advantage of the synthetic version approach is that all 

configurations or synthetic sensors are compared to one set of surface observations as 

detailed by Reif (2011). This research applied all of the algorithms used in Augusto-Silva et 

al. (2014) and the more recent set of hybrid algorithms developed my Beck et al. (2016), 

which include the following: Cyanobacterial Index (CI), Maximum Chlorophyll Index 

(MCI), series of Fluorescence Line Height (FLH/FLH Blue/FLH Violet), and Surface Algal 

Bloom Index (SABI) algorithms, two band-algorithms (2BDA), three band-algorithm 

(3BDA), and 3BDA-like (KIVU) (Alawadi, 2010; Beck et al., 2016; Binding et al., 2013; 
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Brivio et al., 2001; Chipman, Olmanson, & Gitelson, 2009; Dall’Olmo & Gitelson, 2005; 

Gitelson et al., 2003; Mishra & Mishra, 2012; Wynne et al., 2012; Zhao et al., 2010;). Table 

2 contains the full list of chlorophyll-a algorithms, their abbreviations, and the band math for 

each algorithm used for this study.

The standard Type-1 regression test (Pinero, Perelman, Guerschman, & Paruleo, 2008; 

Kudela et al., 2015; Beck et al., 2016) was used for the 70 laboratory observations of 

chlorophyll-a (SumReChl (μg/L)) that corresponded to seventy pixels for each of the 

following sensors: CASI, synthetic WorldView-2, synthetic Sentinel-2, synthetic Landsat-8, 

synthetic MODIS, and synthetic MERIS. Each pair of pixels and surface observations were 

compared and evaluated using the Pearson’s r correlation and are shown in Table 3 with their 

corresponding Pearson’s r2 value, p-value, slope, and intercept. A standard Type-1 

regression was applied to test the chlorophyll-a algorithms against measured chlorophyll-a 

(i.e. SUMReCHL) values in order to normalize all of the values and create a fair comparison 

of the performance of each of the indices. For this study, a critical p-value of 0.001 was used 

for all Pearson’s r Type-1 regression tests in Tables 3 and 4. In order to accommodate that 

certain researchers prefer the use of the Type-2 geometric mean method which is designed to 

test correlations in natural systems (Peltzer, 2015) was applied to the chlorophyll-a 

estimations at Taylorsville Lake (Table 6) and then normalized to calculated chlorophyll-a 

values for all of the algorithms from the Type-1 regression tests (Beck et al., 2016; Kudela et 

al., 2015) (Table 7). The detailed combined error budget for this analysis is stipulated in 

section 2.8 of Beck et al. (2016).

3. Results

Each image derived chlorophyll-a index had a single-band output calculated (Table 2) that 

was compared with the seventy coincident surface observations of chlorophyll-a at 

Taylorsville Lake. To evaluate the performance of each algorithm standard Type-1 regression 

test (Pearson’s r), of the chlorophyll-a algorithms derived from the atmospherically 

corrected imagery following Pinero et al. (2008) and Kudela et al. (2015) with a p-value 

threshold of 0.001 was undertaken, the result of which are in Table 3. Pixels that were not 

pure water pixels were excluded in order to mitigate the algorithm from conflating land 

vegetation with aquatic vegetation or algae. The summary of algorithm performances for 

both Harsha Lake and Taylorsville Lake are displayed in Table 5.

3.1 Real Aircraft and Synthetic Satellite Imagery Results

CASI Imagery (Real): Six algorithms (CI, MCI, FLH, NDCI, 2BDA and 3BDA) were 

evaluated using the atmospherically corrected CASI-1500 hyperspectral imagery. All six 

algorithms performed strongly and are ranked in order of highest to lowest Pearson’s r2 

value, CASI CI, CASI FLH, CASI 2BDA, CASI 3BDA, CASI NDCI, and CASI MCI (Fig. 

4). These high r2 values are expected given the band configurations of the CASI HSI and the 

well-placed bands of 700 nm and 714 nm that highly correlate with spectral signatures of 

chlorophyll-a (Gitelson, 1992; Zhao et al., 2010). Although there is a change in the ranking 

order for these algorithms from Harsha Lake (Beck et al 2016), the Pearson’s r2 values are 
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all very high with a range of 0.588–0.729 and 0.481–0.678 at Harsha Lake and Taylorsville 

Lake, respectively.

WorldView-2 (Synthetic): Four algorithms (NDCI, FLH Violet, 2BDA and 3BDA) were 

evaluated using the synthetically created WorldView-2 image. There was a noticeable 

decline in their performance, especially with the WV2 FLH Violet algorithm. The remaining 

WV2 NDCI, WV2 2BDA, and WV2 3BDA algorithms had r2 values of 0.442–0.499, and 

were significantly lower compared to the r2 results obtained from the Harsha Lake study 

(Table 5). A t-test indicated that these correlation values show a significant difference 

between the performance of WorldView-2 algorithms across the two lakes.

Sentinel-2 (Synthetic): Four algorithms (NDCI, FLH Violet, 2BDA and 3BDA) were 

evaluated using the synthetically created Sentinel-2 image. The results showed high 

portability across study areas. Only a single pixel/sample location pair was excluded (T38), 

because of land/water mixing. Three of the Sentinel-2 algorithms performed very well with 

r2 values ranging from 0.5875–0.707, again slightly lower than the original study of Harsha 

Lake where the r2 values ranged from 0.6922–0.799 (Beck et al., 2016). The FLH Violet 

algorithms performed well below the other three algorithms with r2 values of 0.2281 at 

Taylorsville and 0.3576 at Harsha Lake, indicating this algorithm should not be used for 

water bodies similar to those studied in this paper.

Landsat-8 (Synthetic): Seven algorithms (NDCI, SABI, FLH Blue, FLH Violet, 2BDA, 

KIVU, and 3BDA) were evaluated using the synthetically created Landsat-8 image, and 

produced relatively poor results with the noted exception of the FLH algorithms. A single 

pixel and sample location pair was excluded (T38) because of land/water mixing. As stated 

by Beck et al. (2016), the band configuration of Landsat-8 affects its ability to detect the 

peak wavelength of chlorophyll-a, and subsequently diminishes the applicability and 

transferability of these algorithms. The newly developed FLH Blue and Violet algorithms 

were able to capture some of the visible green peak and overcome these limitations with low 

to moderate success. Again, the Taylorsville Lake algorithms consistently exhibited lower r2 

values than Harsha for both the FLH Blue and FLH Violet algorithm, with Taylorsville r2 of 

0.317 and 0.308 and Harsha r2 values of 0.3807 and 0.5476, respectively. Given the 

relatively low accuracy of the Landsat-8 algorithms, it is proposed that the FLH algorithms 

should be used solely as qualitative or “red flag” indicator of potential areas of concern and 

not as a quantitative indicator of concentration.

MODIS (Synthetic)—Two algorithms (NDCI and 2BDA) were evaluated using the 

synthetically created MODIS imagery, but were only able to use ten pixel/sample site 

locations due to the 250-meter pixel spatial resolution (T05, T12, T14, T16, T30, T40, T44, 

T47, T51B, and T70B). The large spatial resolution of MODIS coupled with Taylorsville 

Lake’s thin width, roughly 300–500 meters across, makes the acquisition of a pure water 

pixel difficult. The two algorithms evaluated, performed very poorly with r2 values only 

0.090 and 0.112, respectively. MODIS might be an appropriate choice for some larger inland 

water bodies, but due to the band spacing and spatial resolution it is not a good candidate for 

Taylorsville Lake.
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MERIS (Synthetic)—Six algorithms (CI, MCI, FLH, NDCI, 2BDA and 3BDA) were 

evaluated using the synthetically created MERIS imagery. Due to MERIS’s coarse spatial 

resolution of 300 meters, only three pixels (T32, T54, and T59) were considered “pure”, 

which was deemed insufficient to accurately measure any statistical correlation.

4. Discussion

This research utilized atmospherically corrected CASI-1500 VNIR hyperspectral imagery to 

develop synthetic WorldView-2, Sentinel-2, Landsat-8, MODIS, and MERIS imagery 

coupled with dense coincident water surface observations in order to reevaluate and assess 

the transferability of the chlorophyll-a algorithms for temperate inland water bodies as 

proposed by Beck et al. (2016) and Augusto-Silva et al. (2014). The results demonstrate a 

high-level of confidence in the portability of certain algorithm-sensor pairs proposed in this 

study. A special focus should be placed on three highly performing Sentinel-2 algorithms 

(S2NDCI, S22BDA, and S23BDA), because of the availability of Sentinel-2 products 

through the European Space Agency’s (ESA) data hub, the band configurations, and a revisit 

time of 5–10 days (ESA, 2017). Although the CASI algorithms performed well, it is not 

expected that these algorithms would be implemented in routine monitoring due to the high 

cost and intensive labor required for aircraft acquisition. Instead the CASI dataset was 

utilized as a baseline to study the portability of these algorithms under varying conditions.

The Taylorsville Lake results confirm the findings of Beck et al. (2016) for Harsha Lake and 

support the use of NDCI, 2BDA, and 3BDA algorithms as the highest performing of all 

sensors (Table 5). Due to the unique configuration of band spacings on the Landsat-8 sensor, 

the only algorithms to perform moderately well for Landsat-8 were the newly developed 

FLH Blue/Violet algorithms with r2 values greater than 0.3. Another important finding is the 

poor performance of both MODIS and MERIS sensors. The larger pixel sizes of MODIS 

and MERIS imagers were acknowledged, but were still evaluated because the potential 

acquisition of enough water-only pixels was a possibility. Unfortunately, the image resulted 

in only three water-only points for MERIS, making it statistically unusable. These results 

suggest that these sensors require a lake width of over a kilometer across in order to offer 

any assistance in the monitoring of the water quality of inland lakes and reservoirs. Given 

the success of MERIS in previous studies (Augusto-Silva et al., 2014; Beck et al., 2016; 

Gower et al., 2008; Koponen et al., 2002), the authors of this paper still feel confident that 

these algorithms will perform strongly and greatly improve the ability to monitor algal 

blooms as a “red flag” in water bodies with widths large enough for the acquisition of pure 

water pixels.

The normalized chlorophyll-a indices for the highest performing algorithm-imager 

combinations allow for similar prediction of chlorophyll-a values across algorithms and 

sensors (Table 4). For example, any of the normalized indices with a value of 10 would 

correspond to an estimated chlorophyll-a concentration to 10μg/L. Although it is expected 

that there will be some variation in the slopes and intercepts of the real imagers, these would 

be easily corrected with the acquisition of the real satellite imagery. This research offers a 

step forward in the operational use of a multi-sensor approach. This will increase the chance 
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of successful (i.e. cloud-free) image acquisition, which subsequently will increase the 

monitoring of dynamic algal bloom conditions.

The highest performing sensors, CASI and Sentinel-2, demonstrate a high level of 

portability for the atmospherically corrected original (non-synthesized) CASI imagery, 

which had high levels of correlation for both lakes. All CASI-based algorithms performed at 

least moderately well with r2 values over 0.5 and p-values well below the threshold of 0.001. 

Most operational satellites were designed for terrestrial applications and it is acknowledged 

that the signal to noise ratios may be reduced for aquatic studies. This issue has been 

discussed at length in the literature and there is general consensus that the application of 

these terrestrial satellites for inland water studies are still appropriate (Kallio, 2000; Kudela 

et al., 2015; Mishra and Mishra, 2012; Reif, 2011; Stumpf et al 2012; Stumpf et al., 

2016).Stumpf et al. (2016) further addressed the many challenges of using remote sensing 

for mapping cyanotoxins, including biological, environmental, and even pigment detection 

method. This paper follows that approach, by offering options in terms of sensor-algorithm 

pairs to better assist local decision makers. Given those variables, the high correlations 

observed for both lakes give us confidence that these algorithms suggest a degree of 

portability, with focus on the CASI CI, CASI FLH, CASI 2BDA, S2 NDCI, and S2 2BDA 

algorithms for the detection of chlorophyll-a in inland water bodies.

Counter to the results for Harsha Lake where the WorldView-2 algorithms performed the 

same amongst themselves and had slightly higher r2 values than CASI, the performance of 

WorldView-2 algorithms were significantly lower at Taylorsville Lake (Table 5). This is 

clearly shown in 2BDA and 3BDA algorithms, where Harsha Lake had r2 values of 0.711 

and 0.741 respectively and Taylorsville had r2 values of 0.499 and 0.442, respectively. It is 

expected that this is due in part at least to the spectral binning process, where slightly 

different band configurations where applied to mimic the original WorldView-2 band centers 

as close as possible. For exact band configurations see Table 1 of Beck et al. (2016) and 

Table 1 of this paper. The exact mechanism that resulted in a ~30% difference in 

performance is not yet known. Although more investigation is needed to determine the cause 

of the performance difference, the four algorithms were able to estimate the chlorophyll-a 

content at a moderate level in turbid waters with differing algal content (table 8) supporting 

the idea of portability and serving as a “red flag” indicator for algal blooms in under varying 

conditions, and it is suggested that MODIS could still be useful for the monitoring of inland 

water bodies subject to blooms.

The results for Sentinel-2 and its algorithms are the most promising for inland algal bloom 

monitoring purposes because not only are the r2 values very high, but the performances of 

each algorithm are nearly identical between the lakes studied, which indicate a high degree 

of portability across water bodies., There was a slight decline in the performance for all 

Sentinel-2 algorithms applied to Taylorsville as compared to Harsha lake (Table 5). The 

exception was the S2 FLH Violet algorithm, which performed well below the other three 

algorithms in both studies, which signifies it is unlikely to play a major role for the detection 

of chlorophyll-a in turbid inland water bodies. At the time the Harsha Lake data was being 

processed and interpreted the authors were unaware of the exact band configuration of 

Sentiniel-2 because the satellite was not yet launched. This might explain some of the 
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differences in performance as noted in Table 1 of each study and the results shown in Table 

5. To reiterate the fact that inland water body are highly variable and spectrally altered due 

to local variations in the algal content, turbidity, and atmospheric conditions, it is expected 

that algorithm performances and ranking order for each algorithm with change to some 

degree. In order to overcome this issue, this study automated much of the procedures using 

scripts in R to provide a suite of algorithms so individual water managers may decide which 

works best for their specific scenario (Johansen, 2017).

The performance of the NDCI and 2BDA algorithms with Sentinel-2 in both studies appear 

as the most promising for inland algal bloom monitoring. The significance of these highly 

consistent findings is that unlike CASI or WorldView-2, Sentinel-2 has the spatial resolution 

of 10–20 meters for the bands required for these chlorophyll-a algorithms. Given 

Sentinel-2’s lower spatial resolution than CASI and WorldView-2 it is assumed the results 

will be more accurate as a “red flag” detection system because the areas detected will be less 

susceptible to pixel value noise at the meter level. Another advantage of using Sentinel-2 for 

evaluating water quality is that the data are open source, making it highly accessible to any 

researcher or resource manager. Sentinel-2 with a swath width of 290km is ideal for small to 

mid-sized water bodies but poses challenges to the study of large water bodies such as the 

Great Lakes or Gulf of Mexico. For large area studies, it would be recommended to utilize 

the MERIS/OLCI-like sensors, with swaths of 1270km. Another issue continues to be 

satellite revisit time, which for sentinel-2 is on the order of 10–20 days (currently), but as 

this paper is being written, the ESA has announced the launch of Sentinel-2B, which will 

reduce the revisit time to as little as 5- days. Although this is still not ideal, because algal 

blooms can appear very rapidly, it is a significant step forward in the ability to real-time 

monitor many lakes, rivers, and reservoirs cost-effectively and in significantly less time.

The results of this portability study are promising because of their ability to help address the 

three research needs suggested by Graham (2006); 1) create quantitative tools for evaluating 

for monitoring algal blooms in general in temperate reservoirs; 2) contributing directly to the 

long-term study HAB formation in individual water bodies and; 3) assist in the development 

of methods for early algal bloom detection (“red flags”) and to allow more time for resource 

managers to respond to potentially harmful algal blooms.

The results shown here support the view of Beck et al. (2016) in suggesting that future 

satellite imaging systems for inland water quality monitoring of water bodies smaller than a 

few kilometers will require spatial resolutions of 30 m or finer to capture the spatial 

heterogeneity observed during this experiment and spectral resolutions equal to or better 

than Sentinel-2 if they are to leverage the shape metric algorithms for the chlorophyll-a peak 

near 710 nm. Another area of great potential for the advancement of algal bloom monitoring 

with future satellite systems is the launching of constellations of systems, such Sentinel-2 

A&B. The recent launch of S2B will increase the number of annual overpasses by two-fold 

which will allow for twice as many opportunities for cloud-free acquisition, which are 

necessary for operational water quality monitoring systems due to frequent cloud cover in 

mid-latitude temperate climates. Finally, the adaption of sensors with a band configuration 

that takes advantage of the phycocyanin absorption feature near 620 nm would allow for the 
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delineation between general algal blooms and blooms dominated by cyanobacteria, which 

tend to be the algal division most responsible for toxin production in inland waters.
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Fig 1. 
Map of the locations of the two studies, Harsha Lake near Cincinnati, Ohio and Taylorsville 

Lake in Central Kentucky.
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Fig. 2. 
Spectral profile of water at sample location T66B (Fig. 3) of Taylorsville Lake, KY, 

exhibiting a strong chlorophyll-a reflectance peak at 714 nanometers from atmospherically 

corrected CASI HSI data (left) and the same location measured at the water surface with a 

spectroradiometer in the field within one hour of the overflight (right). Y-axis is reflectance 

relative to calibration standards and the X-axis is scaled from 400 nm to 900 nm in both 

graphs.
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Fig. 3. 
Sampling scheme implemented on June 18th, 2014 for Taylorsville Lake in order to acquire 

water quality information from seventy sites within 1 h of image acquisition. (Source: 

United States Army Corps of Engineers).
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Fig. 4. 
A Results of the best performing CASI algorithm, CASI_Wy08CI, as the algorithm index 

values as applied to original CASI HSI imagery (shoreline in Blue) with brighter pixels 

indicating higher chlorophyll-a concentrations. Pearson’s r2 = 0.678, p-value <0.001, N = 

70. B Estimated cholorphyll-a content (μg/L) by applying the slope and intercept from table 

3 (0.642x + 21.667) to the raw CASI_Wy08CI algorithm values.
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Fig. 5. 
A Results of the best performing Sentinel-2 algorithm, S2_SI052BDA, as algorithm index 

values as applied to synthetic Sentinel-2 imagery (shoreline in Blue) with brighter pixels in 

the indicating higher chlorophyll-a concentrations. Pearson’s r2 = 0.707, p-value <0.001, N 

= 69 (to avoid shoreline). B Estimated chlorophyll-a content (μg/L) by applying the slope 

and intercept from table 3 (239.526x – 230.765) to the raw S2_SI052BDA algorithm values.
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Table 1

Original CASI and synthetic sensor band configurations

IMAGER ORIGINAL 
RANGE (NM)

CENTER 
(NM)

BANDWIDTH 
(NM)

SYNTHETIC 
RANGE (NM)

SYNTHETIC 
CENTER (NM)

BAND 
WIDTH 
(NM)

WORLDVIEW-2/3 Resampled to 1.8 m

B1 400–450 425 50 400.3–444.4 428.9 44

B2 450–510 480 60 457.8–515.1 486.5 57

B3 510–580 545 70 515.1–586.5 550.8 71

B4 585–625 605 40 586.5–629.3 607.9 43

B5 630–690 660 60 629.3–686.2 657.75 57

B6 705–745 725 40 700.4–743.1 721.75 43

B7 770–895 832.5 125 771.5–899.7 835.6 128

B8 860–1040 950 180 856.9–1042.7 949.8 186

SENTINEL-2 Resampled to 20 m

B1 433–453 443 20 429.0–457.8 443.4 29

B2 458–523 490.5 65 457.8–529.4 493.4 72

B3 543–578 560.5 35 543.7–572.2 557.9 29

B4 650–680 665 30 643.5–686.2 664.8 43

B5 698–713 705.5 15 700.4–714.6 707.5 14

B6 733–748 740.5 15 728.9–757.3 743.1 28

B7 773–793 783 20 771.5–800.0 785.7 29

B8 785–900 842.5 115 785.8–899.7 842.7 114

B8B 855–875 865 20 856.9–885.4 864.0 26

B9 935–955 945 20 928.2–956.8 942.5 29

LANDSAT-8 Resampled to 30 m

B1 430–450 440 20 429.0–457.8 443.4 28

B2 450–510 480 60 457.8–500.8 479.3 43

B3 530–590 560 60 529.4–586.5 557.9 57

B4 640–670 655 30 643.5–672.0 657.7 29

B5 850–880 865 30 842.7–885.4 864.0 43

MERIS/OLCI Resampled to 300 m

B1 402–412 407 10 400.3–414.7 407.5 14

B2 438–448 443 10 429.0–457.8 443.4 29

B3 485–495 490 10 486.5–500.8 493.6 14

B4 505–515 510 10 500.8–515.1 507.9 14

B5 555–565 560 10 558.0–572.2 565.1 14

B6 615–625 620 10 615.0–629.3 622.1 14

B7 660–670 665 10 657.7–672.0 664.8 14

B8 678–685 681.5 7 672.0–686.2 679.1 14

B9 704–714 709 10 700.4–714.6 707.5 14
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IMAGER ORIGINAL 
RANGE (NM)

CENTER 
(NM)

BANDWIDTH 
(NM)

SYNTHETIC 
RANGE (NM)

SYNTHETIC 
CENTER (NM)

BAND 
WIDTH 
(NM)

B10 750–757 753.5 7 743.1–757.3 750.2 14

B11 757–762 759.5 5 757.3–771.5 764.4 14

B12 772–787 779.5 15 771.5–785.8 778.5 14

B13 855–875 865 20 856.9–871.2 864.0 14

B14 880–890 885 10 871.2–899.7 885.4 29

B15 895–905 900 10 885.4–913.9 899.6 29

MODIS Resampled to 250 m

B1 620–670 645 50 615.0–672.0 643.5 57

B2 841–876 858.5 35 842.7–871.2 856.9 29
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Table 2

Band math and wavelengths in nm for each algorithm used for chlorophyll-a estimation at Harsha Lake. Float 

refers to floating point values.

Chlorophyll-a index algorithms by satellite/
sensor

Spatial res. (m) Band math/wavelengths (nm)

CASI CI 1 −1*((CASI[[23]])−(CASI[[22]]−(CASI[[25]]−CASI[[22]])))

CASI CI 1 −1*(((float(686))−(float(672))−((float(714))−(float(672)))))

CASI MCI 1 ((CASI[[23]])−(CASI[[22]]−(CASI[[25]]-CASI[[22]])))

CASI MCI 1 (((float(686))−(float(672))−((float(714))−(float(672)))))

CASI FLH 1 (CASI[[25]]−(CASI[[27]]+(CASI[[23]]−CASI[[27]])))

CASI FLH 1 (float(714))−[float(743) + (float(686)−float(743))]

CASI NDCI 1 (CASI[[25]]−CASI[[23]])/(CASI[[25]]+CASI[[23]])

CASI NDCI 1 (float(714)−float(686))/(float(714) + float(686))

CASI 2BDA 1 (CASI[[25]])/(CASI[[22]])

CASI 2BDA 1 (float(714))/(float(672))

CASI 3BDA 1 ((1/CASI[[22]])−(1/CASI[[25]]))*(CASI[[28]])

CASI 3BDA 1 ((1/float(672))−(1/float(714)))*(float(757))

WorldView-2 and −3 NDCI 1.8 (WV2[[6]]−WV2[[5]])/(WV2[[6]]+WV2[[5]])

WorldView-2 and −3 NDCI 1.8 (float(722)−float(658))/(float(722) + float(658))

WorldView-2 and −3 FLH violet 1.8 (WV2[[3]])−(WV2[[5]]+(WV2[[1]]−WV2[[5]]))

WorldView-2 and −3 FLH violet 1.8 ((float(551))−[float(658) + (float(429)−float(658))])

WorldView-2 2BDA 1.8 (WV2[[6]])/(WV2[[5]])

WorldView-2 2BDA 1.8 (float(722))/(float(658))

WorldView-2 3BDA 1.8 ((1/WV2[[5]])−(1/WV2[[6]]))*(WV2[[7]])

WorldView-2 3BDA 1.8 ((1/float(658))−(1/float(722)))*(float(836))

Sentinel-2 NDCI 20 (S2[[5]]−S2[[4]])/(S2[[5]]+S2[[4]])

Sentinel-2 NDCI 20 (float(708)−float(665))/(float(708) + float(665))

Sentinel-2 FLH violet 20 (S2[[3]])−(S2[[4]]+(S2[[2]]−S2[[4]]))

Sentinel-2 FLH violet 20 ((float(558))−[float(665) + (float(493)−float(665))])

Sentinel-2 2BDA 20 (S2[[5]])/(S2[[4]])

Sentinel-2 2BDA 20 (float(708))/(float(665))

Sentinel-2 3BDA 20 ((1/S2[[4]])−(1/S2[[5]]))*(S2[[9]])

Sentinel-2 3BDA 20 ((1/float(665))−(1/float(708)))*(float(864))

*Landsat-8 NIR band is far from chlorophyll-a peak
Landsat-8 NDCI 30 (L8[[5]]−L8[[4]])/(L8[[5]]+L8[[4]])

Landsat-8 NDCI 30 (float(864)−float(658))/(float(864) + float(658))

Landsat-8 SABI 30 (L8[[5]]−L8[[4]])/(L8[[2]]+L8[[3]])

Landsat-8 SABI 30 (float(864)−float(658))/(float(479) + float(558))

Landsat-8 FLH blue 30 (L8[[3]])−(L8[[4]]+(L8[[2]]−L8[[4]]))

Landsat-8 FLH blue 30 (float(558))−[float(657) + (float(480)−float(658))]

Landsat-8 FLH violet 30 (L8[[3]])−(L8[[4]]+(L8[[1]]−L8[[4]]))
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Chlorophyll-a index algorithms by satellite/
sensor

Spatial res. (m) Band math/wavelengths (nm)

Landsat-8 FLH violet 30 (float(558))−[float(658) + (float(443)−float(658))]

Landsat-8 2BDA 30 (L8[[5]])/(L8[[4]])

Landsat-8 2BDA 30 (float(864))/(float(658))

Landsat-8 KIVU (3BDA-like) 30 (L8[[2]]−L8[[4]])/(L8[[3]])

Landsat-8 KIVU (3BDA-like) 30 (float(479)−float(658))/(float(558))

Landsat-8 3BDA 30 ((1/L8[[2]])−(1/L8[[4]]))*(L8[[3]])

Landsat-8 3BDA 30 ((1/float(479))−(1/float(658)))*(float(558))

MODIS NDCI 250 (MODIS[[2]]−MODIS[[1]])/(MODIS[[2]]+MODIS[[1]])

MODIS NDCI 250 (float(857)−float(644))/(float(857) + float(644))

MODIS 2BDA 250 (MODIS[[2]])/(MODIS[[1]])

MODIS 2BDA 250 (float(857))/(float(644))

MERIS CI 300 (−1*((MERIS[[8]])−(MERIS[[7]])−((MERIS[[9]])−(MERIS[[7]]))))

MERIS CI 300 −1*(((float(679))−(float(665))−((float(708))−(float(665)))))

MERIS MCI 300 ((MERIS[[9]])−(MERIS[[8]])−((MERIS[[10]])−(MERIS[[8]])))

MERIS MCI 300 (((float(708))−(float(679))−((float(750))−(float(679)))))

MERIS FLH 300 (MERIS[[9]])−(MERIS[[10]]+(MERIS[[8]]−MERIS[[10]]))

MERIS FLH 300 (float(708))−[float(750) + (float(679)−float(750))]

MERIS NDCI 300 (MERIS[[9]]−MERIS[[7]])/(MERIS[[9]]+MERIS[[7]])

MERIS NDCI 300 (float(708)−float(665))/(float(708) + float(665))

MERIS 2BDA 300 (MERIS[[9]])/(MERIS[[7]])

MERIS 2BDA 300 (float(708))/(float(665))

MERIS 3BDA 300 ((1/MERIS[[7]])−(1/MERIS[[9]]))*(MERIS[[11]])

MERIS 3BDA 300 ((1/float(665))−(1/float(708)))*(float(764))
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Table 3

Performance of algorithms for chlorophyll-a estimation at Taylorsville Lake using chlorophyll-a indices 

according to Pearson’s r test (Type-1) linear regressions.

ALGORITHMS NO. OF POINTS PEARSON’S R PEARSON’S R2 P_VALUE SLOPE INTERCEPT

CASI CI 70 0.823 0.678 <0.001 0.642 21.677

CASI MCI 70 0.693 0.481 <0.001 0.539 21.745

CASI FLH 70 0.823 0.678 <0.001 0.642 21.677

CASI NDCI 70 0.758 0.575 <0.001 401.211 21.34

CASI 2BDA 70 0.811 0.658 <0.001 146.489 −131.003

CASI 3BDA 70 0.777 0.604 <0.001 169.812 15.953

WV2 NDCI 70 0.699 0.488 <0.001 504.827 32.776

WV2 FLHVIOLET 70 0.434 0.188 <0.001 0.558 −86.486

WV2 2BDA 70 0.706 0.499 <0.001 244.43 −212.303

WV2 3BDA 70 0.665 0.442 <0.001 225.43 32.479

S2 NDCI 69 0.836 0.698 <0.001 554.162 7.204

S2 FLH VIOLET 69 0.478 0.228 <0.001 1.489 30.850

S2 2BDA 69 0.841 0.707 <0.001 239.526 −230.765

S2 3BDA 69 0.767 0.588 <0.001 256.550 9.001

L8 NDCI 69 0.108 0.012 0.375 −53.498 39.285

L8 SABI 69 0.130 0.017 0.288 −44.960 39.789

L8 FLH BLUE 69 0.563 0.317 <0.001 0.972 −23.625

L8 FLH VIOLET 69 0.555 0.308 <0.001 0.696 −51.341

L8 2BDA 69 0.095 0.009 0.437 −21.212 60.267

L8 KIVU 69 0.315 0.099 0.008 80.752 71.521

L8 3BDA 69 0.345 0.119 0.004 −74.272 78.442

MODIS NDCI 10 0.089 0.008 0.804 −34.494 28.393

MODIS 2BDA 10 0.109 0.012 0.758 −20.866 49.409

MERIS* 3 N/A N/A N/A N/A N/A

*
The MERIS configuration only produced three usable water only pixels, which did not meet the minimal requirements to derive Pearson’s r 

statistical correlations.
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Table 4

Normalized performance of algorithms for chlorophyll-a estimation at Taylorsville Lake using chlorophyll-a 

indices according to Pearson’s r test (Type-1) linear regressions. This test is used to normalize the slope and 

intercepts to facilitate a direct comparison between algorithms following the method of Kuedela et al. (2015).

ALGORITHMS NO. OF POINTS PEARSON’S R PEARSON’S R2 P_VALUE SLOPE INTERCEPT

CASI CI_CHLA 70 0.823 0.678 <0.001 1.000 0.004

CASI MCI_CHLA 70 0.694 0.481 <0.001 1.001 −0.017

CASI FLH_CHLA 70 0.823 0.678 <0.001 1.000 0.004

CASI NDCI_CHLA 70 0.759 0.575 <0.001 1.000 0.000

CASI 2BDA_CHLA 70 0.811 0.658 <0.001 1.000 0.000

CASI 3BDA_CHLA 70 0.777 0.604 <0.001 1.000 0.000

WV2 NDCI_CHLA 70 0.699 0.488 <0.001 1.000 0.000

WV2 FLH VIOLET_CHLA 70 0.434 0.188 <0.001 1.000 0.009

WV2 2BDA_CHLA 70 0.706 0.499 <0.001 1.000 0.001

WV2 3BDA_CHLA 70 0.665 0.442 <0.001 1.000 0.000

S2 NDCI_CHLA 69 0.836 0.698 <0.001 1.000 0.000

S2 FLH VIOLET_CHLA 69 0.478 0.228 <0.001 1.000 0.009

S2 2BDA_CHLA 69 0.841 0.707 <0.001 1.000 0.001

S2 3BDA_CHLA 69 0.767 0.588 <0.001 1.000 0.000

L8 2NDCI_CHLA 69 0.108 0.012 0.375 1.000 0.000

L8 SABI_CHLA 69 0.130 0.017 0.288 1.000 0.000

L8 FLH BLUE_CHLA 69 0.563 0.317 <0.001 1.000 −0.009

L8 FLH VIOLET_CHLA 69 0.555 0.308 <0.001 1.000 0.012

L8 2BDA_CHLA 69 0.095 0.009 0.437 1.000 −0.001

L8 KIVU_CHLA 69 0.315 0.099 0.008 1.000 −0.001

L8 3BDA_CHLA 69 0.345 0.119 0.004 1.000 0.000

MODIS NDCI_CHLA 10 0.090 0.008 0.804 1.000 0.000

MODIS 2BDA_CHLA 10 0.112 0.013 0.758 1.000 −0.002

MERIS_CHLA* 3 N/A N/A N/A N/A N/A

*
The MERIS configuration only produced three usable water only pixels, which did not meet the minimal requirements to derive an accurate 

Pearson’s r statistical correlations.
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Table 5

Algorithm performance comparison, shown as Pearson’s r2 values, for Harsha Lake in Cincinnati, Ohio (Beck 

et al. 2016) and Taylorsville Lake in Central Kentucky.

Algorithms HARSHA TAYLORSVILLE

CASI

CASI CI 0.668 0.678

CASI MCI 0.588 0.481

CASI FLH 0.668 0.678

CASI NDCI 0.687 0.575

CASI 2BDA 0.717 0.658

CASI 3BDA 0.729 0.604

World-View 2

WV2 NDCI 0.724 0.488

WV2 FLH Violet 0.530 0.188

WV2 2BDA 0.711 0.499

WV2 3BDA 0.741 0.442

Sentinel-2

S2 NDCI 0.794 0.698

S2 FLH Violet 0.358 0.228

S2 2BDA 0.799 0.707

S2 3BDA 0.692 0.588

Landsat-8

L8 NDCI 0.125 0.012

L8 SABI 0.123 0.017

L8 FLH Blue 0.381 0.317

L8 FLH Violet 0.548 0.308

L8 2BDA 0.156 0.009

L8 KIVU 0.098 0.100

L8 3BDA 0.158 0.119

MODIS

MODIS NDCI 0.301 0.008

MODIS 2BDA 0.256 0.013

MERIS

MERIS CI 0.841 *

MERIS MCI 0.158 *

MERIS FLH 0.841 *

MERIS NDCI 0.845 *

MERIS 2BDA 0.845 *

MERIS 3BDA 0.832 *
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*
The MERIS (Taylorville Lake) configuration only produced three usable water only pixels, which did not meet the minimal requirements to derive 

an accurate Pearson’s r statistical correlations.
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Table 6

Performance of algorithms for chlorophyll-a estimation at Taylorsville Lake using chlorophyll-a indices 

according to Peltzer (2015) Type 2 Geometric Mean Tests. Included for completeness because type-2 

Geometric Mean Test is designed to evaluate the correlations values in natural systems, which some 

researchers prefer over the Type-1 method above.

ALGORITHMS PEARSON’S R PEARSON’S R2 SLOPE INTERCEPT STD_SLOPE STD_INTERCEPT

CASIWY08CI 0.823 0.678 0.779 18.439 0.056 2.381

CASIMCI 0.694 0.481 0.778 15.105 0.074 3.323

CASIFLH 0.823 0.678 0.779 18.439 0.056 2.381

CASIMM12NDCI 0.759 0.575 528.902 16.426 44.569 2.882

CASIDA052BDA 0.811 0.658 180.594 −170.065 13.459 15.551

CASIGI033BDA 0.777 0.604 218.475 9.985 17.683 3.107

WV2MM12NDCI 0.699 0.488 722.538 31.049 68.019 2.643

WV2BE16FLHVIOLET 0.434 0.188 1.286 −247.371 0.166 36.840

WV2MI092BDA 0.706 0.499 346.165 −315.974 32.184 32.896

WV23BDA 0.665 0.442 339.094 30.311 33.669 2.804

S2MM12NDCI 0.836 0.698 663.210 1.328 46.464 3.163

S2BE16FLHVIOLET 0.478 0.228 3.116 24.055 0.389 3.808

S2SI052BDA 0.841 0.707 284.769 −281.353 19.611 22.010

S2BE163BDA 0.767 0.588 334.700 0.452 27.943 3.827

L8MM12NDCI 0.108 0.012 −493.140 57.535 80.447 5.604

L8AL10SABI 0.130 0.017 −346.854 58.084 55.909 5.590

L8BE16FLHBLUE 0.563 0.317 1.725 −70.685 0.197 12.700

L8BE16FLHVIOLET 0.555 0.308 1.254 −122.189 0.145 18.625

L8DA032BDA 0.095 0.009 −223.199 281.200 36.685 40.381

L8KN07KIVU 0.315 0.099 256.065 146.324 36.607 16.110

L8GI033BDA 0.345 0.119 −215.088 156.891 30.068 17.189

MODISMMNDCI12 0.090 0.008 −381.906 31.128 182.126 8.444

MODISSY002BDA 0.112 0.013 −186.502 218.386 87.880 90.029

MERIS* N/A N/A N/A N/A N/A N/A

*
The MERIS configuration only produced three usable water only pixels, which did not meet the minimal requirements to derive an accurate 

Pearson’s r statistical correlations.
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Table 7

Normalized performance of algorithms for chlorophyll-a estimation at Taylorsville Lake using chlorophyll-a 

indices according to Peltzer (2015) Type 2 Geometric Mean Tests.

ALGORITHMS PEARSONS R PEARSONS R2 SLOPE INTERCEPT STD SLOPE STD INTERCEPT

CASIWY08CI_CHLA 0.823 0.678 1.214 −7.880 0.087 3.779

CASIMCI_CHLA 0.694 0.481 1.443 −16.268 0.137 5.671

CASIFLH_CHLA 0.823 0.678 1.214 −7.880 0.087 3.779

CASIMM12NDCI_CHLA 0.759 0.575 1.318 −11.705 0.111 4.697

CASIDA052BDA_CHLA 0.811 0.658 1.233 −8.563 0.092 3.952

CASIGI033BDA_CHLA 0.777 0.604 1.287 −10.540 0.104 4.429

WV2MM12NDCI_CHLA 0.699 0.488 1.431 −15.862 0.135 5.591

WV2BE16FLHVIOLET_CHLA 0.434 0.188 2.305 −47.983 0.298 11.499

WV2MI092BDA_CHLA 0.706 0.499 1.416 −15.307 0.132 5.476

WV2BE163BDA_CHLA 0.665 0.442 1.504 −18.544 0.149 6.134

S2MM12NDCI_CHLA 0.836 0.698 1.197 −7.294 0.084 3.660

S2BE16FLHVIOLET_CHLA 0.478 0.228 2.093 −40.511 0.261 10.281

S2SI052BDA_CHLA 0.841 0.707 1.189 −7.000 0.082 3.580

S2BE163BDA_CHLA 0.767 0.588 1.305 −11.291 0.109 4.648

L8MM12NDCI_CHLA 0.108 0.012 9.218 −304.591 1.504 55.917

L8AL10SABI_CHLA 0.130 0.017 7.715 −248.877 1.244 46.304

L8BE16FLHBLUE_CHLA 0.563 0.317 1.775 −28.757 0.203 8.149

L8BE16FLHVIOLET_CHLA 0.555 0.308 1.802 −29.682 0.208 8.323

L8DA032BDA_CHLA 0.095 0.009 10.522 −352.947 1.729 64.262

L8KN07KIVU_CHLA 0.315 0.099 3.171 −80.469 0.453 17.259

L8GI033BDA_CHLA 0.345 0.119 2.896 −70.273 0.405 15.493

MODISMMNDCI12_CHLA 0.090 0.008 11.072 −283.231 5.280 148.712

MODISSY002BDA_CHLA 0.112 0.013 8.938 −223.237 4.212 118.725

MERISMCI_CHLA* N/A N/A N/A N/A N/A N/A

*
The MERIS configuration only produced three usable water only pixels, which did not meet the minimal requirements to derive an accurate 

Pearson’s r statistical correlations.
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Table 8

A comparison of the algae taxonomy differences between Harsha Lake and Taylorsville Lake as described by 

algae divisions.

ALGAE DIVISION TAYLORSVILLE HARSHA

Average Relative Abundance (%)

BACILLARIOPHYTA 2.695 0.077

CHLOROPHYTA 15.429 1.059

CHRYSOPHYTA 0.030 0.000

CRYPTOPHYTA 7.366 1.527

CYANOBACTERIA 72.443 97.320

EUGLENOPHYTA 0.068 0.000

PYRROPHYTA 0.294 0.018

TOTAL 98.325 100.000
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