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ABSTRACT 

Nuclear factor (NF)-κB is a transcription factor that 

plays significant role in immunity,  cellular survival 

and inhibition of apoptosis, through the induction of 

genetic networks. Depending on the stimulus and 

the cell type, the members of NF-κB related family 

(RelA, c-Rel, RelB, p50, and p52), forms different 

combinations of homo and hetero-dimers. The 

activated complexes (Es) translocate into the 

nucleus and bind to the 10bp κB site of promoter 

region of target genes in stimulus specific manner. 

In response to radiation, NF-κB is known to reduce 

cell death by promoting the expression of anti-

apoptotic proteins and activation of cellular 

antioxidant defense system. Constitutive activation 

of NF-κB associated genes in tumour cells are 

known to enhance radiation resistance, whereas 

deletion in mice results in hypersensitivity to IR-

induced GI damage. NF-κB is also known to 

regulate the production of a wide variety of 

cytokines and chemokines, which contribute in 

enhancing cell proliferation and tissue regeneration 

in various organs, such as the GI crypts stem cells, 

bone marrow etc., following exposure to IR. 

Several other cytokines are also known to exert 

potent pro-inflammatory effects that may contribute 

to the increase of tissue damage following exposure 

to ionizing radiation. Till date there are a series of 

molecules or group of compounds that have been 

evaluated for their radio-protective potential, and 

very few have reached clinical trials. The failure or 

less success of identified agents in humans could be 

due to their reduced radiation protection efficacy.  

In this review we have considered activation of NF-

κB as a potential marker in screening of radiation 

countermeasure agents (RCAs) and cellular 

radiation responses. Moreover, we have also 

focused on associated mechanisms of activation of 

NF-κB signaling and their specified family member 

activation with respect to stimuli. Furthermore, we 

have categorized their regulated gene expressions 

and their function in radiation response or 

modulation. In addition, we have discussed some 

recently developed radiation countermeasures in 

relation to NF-κB activation. 
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Transactivation Domain (TAD); B-cell lymphoma 3 

(BCL-3); Transcription activation domain 1 (TA1); 

Transcription activation domain 2 (TA2); Glycine rich 

hinge region (GGG); Radiation Countermeasures (RC); 

Ionizing Radiation (IR);  Inhibitor кB Kinase (IKK); 

Reactive Oxygen Species (ROS); Interleukin (IL); 

Tumour Necrosis Factor α (TNFα); Tumour Growth 

Factor β (TGFβ); Nuclear Export Signals (NES); NF-κB 

Inducing Kinase (NIK); Receptor activator of NF-κB 

(RANK); Clusters of Differentiation (CD); 

Lipopolysaccharide (LPS); Radiation countermeasure 

agents (RCA); Single stranded Ribonucleic acid 

(ssRNA); Double strand break (DSB); DNA-binding 

domain (DBD); C-terminal transactivation domain 

(TAD); Protein rich in amino acids E, L, K and S 

(ELKS); TNF receptor-associated factor (TRAF); 

Forkhead box transcription factor (FOXO); Interleukin-1 

(IL-1); B cell-activating factor (BAFF); B cell 

lymphoma-2 (Bcl-2); Lymphotoxin beta receptor 

(LTβR); Antioxidant Response Element (ARE); 
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1. Introduction 

Deleterious effects of ionizing radiation (IR) 

may lead to significant morbidity and a possible 

fatal illness that affects various organs of the 

organism in a dose and time dependent manner 
1
. 

Exposure of the organism to IR during therapy, or 

as a result of a radiological/ nuclear incident, or act 

of terrorism, may symbolize serious health issues. 

However, this problem remains largely impervious 

to medical management of IR exposure and 

therefore, there is a pressing need to develop safe 

and effective radiation countermeasures agents 

(RCA) to reduce or mitigate the harmful 

consequences of IR exposure at cellular, tissue and 

organism levels. Following exposure of the 

organism to ionizing radiation,  various signaling 

pathways, such as the mitogen-activated protein 

kinase (MAPK),  phosphoinositide 3-kinases  

(PI3K), and ataxia telangiectasia mutated (ATM) 

are activated and all these processes are tightly 

regulated in relation to changes in expression of 

various transcription factors (AP, NF-κB, p53, 

ARE, GADD153 etc) along with changes in the  

functional status of cell organelles 
2, 3, 4

. This may 

trigger alterations in expression of a large number 

of genes that are mostly related to cell cycle 

progression, cell survival, DNA repair and 

apoptosis 
4, 5

.  

NF-κB was first discovered by Baltimore & Sen 

as a B cell specific nuclear protein that binds to a 

site in the immunoglobulin kappa (Igκ) light chain 

gene enhancer 
6
. NF-κB is basically a highly 

conserved and inducible transcription factor, which 

regulates the expression of over 200 genes involved 

in a broad range of events, including the immune 

response
7
, inflammation 

8
, differentiation, 

proliferation, cell survival, apoptosis 
9, 10

. The role 

of NF-κB in protection of cells from the 

complement dependent cytotoxicity has been 

recently reported by Gancz et al 
11

. Although there 

are  few exceptions where NF-κB contributes to cell 

death 
12

, in most cases, the expression of NF-κB 

target genes promotes cellular survival. Normally, 

NF-κB transcription factor is bound to the 

Inhibitor(s) of kappa B (IκB) and is located in the 

cytoplasm. The NF-κB is activated by numerous 

stimuli through a variety of receptors or other 

intrinsic activation pathways. This recruits unique 

combinations of scaffolding and signaling proteins, 

that ultimately converge to the IκB kinase (IKK) 

complex. There are over 150 different stimuli that 

can activate NF-κB 
13

. Most of the disparate ligands 

act upon similar cell surface and intracellular 

receptors including the cytokines (TNF-α, IL-1α/β 

and TRAIL), 
14

 bacterial molecules (LPS, flagellin, 

and non-methylated dsDNA) 
15

, viral components 

(dsDNA, dsRNA and ssRNA), DNA damaging 

agents (ionizing radiation or oxidative stress and 

chemotherapeutic drugs) 
16, 17

. A majority of NF-κB 

activators are functionally related to either 

pathogenic cellular invasion or a cellular insult that 

initiates an immune response. Overall, NF-κB is 

activated in parallel with other mitogenic pathways, 

through induction of its genetic network (Figure 1). 

Abnormal activation of NF-κB subsidizes in 

many human diseases, such as in cancer and 
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Figure 1. Schematic picture of 

nuclear factor (NF)-κB signaling 

events that influence the cellular 

responses to IR 

 

inflammatory diseases. Hence, elucidating how NF-

κB signaling is regulated in different contexts is 

important for the identification and development of 

therapeutics for various ailments, such as 

atherosclerosis, asthma, arthritis and cancer 
18, 

19
.NF-κB is one of the major targets for the 

screening and identification of promising radiation 

countermeasure agents (RCAs). In this review, we 

have mainly focused on NF-kB modulation 

following IR exposure and associated target genes 

for NF-kB in relation to identification of RCAs. We 

have also discussed the current status of RCAs 

,specifically their role in NF-κB activation. 

 

2.  NF-κB/IκB family members & associated 

proteins 

The mammalian NF-κB/Rel family possesses five 

different related monomers (RelA (p65), c-Rel, 

RelB, NF-κB1 (p50; p105), and NF-κB2 (p52; 

p100)) that form homo- and hetero-dimers, and bind 

to 10-base pair kappa B site of promoter region of 

target genes 
20

. The N-terminus of these proteins 

contains the structurally conserved 300 amino acid 

sequence called the RHD region, which possesses 

the dimerization domain (DM), nuclear localization 

sequence (NLS), DNA-binding domain (DBD) and 

interaction site with IκBs 
21, 22

. Three of the family 

members, RelA, c-Rel, and RelB, have a C-terminal 

transactivation domain (TAD) that regulates 

expression of genes. RelA and RelB have two 

subdomains (TA1/2) of C-terminal transactivation 

domain 
23

. NF-κB1/p105 and NF-κB2/p100 are the 

inactive precursors of the p50 and p52 proteins, 

respectively (Figure 2) 
14

. All monomers of Rel 

family are capable to form 14 types of homo- or 

heterodimers and thereby determine the intrinsic 

NF-κB specificity and its regulation
24, 25, 26, 27

, with 

the exception of RelB, which can only form 

heterodimers (Figure 3).  

Different NF-κB dimeric complexes are formed 

as per cell type and stimulus; some of the 

physiological important dimers are RelA/p50, 

cRel/p50 and RelB/p52
22

. RelA and p50 exists in a 

wide variety of cell types 
28

; while c-Rel expression 

is limited to hematopoietic cells and lymphocytes. 

The RelB expression is highly specific, being found 

in the thymus, lymph nodes, and Peyer’s patches 
20

. 

Each NF-κB dimer has the ability to bind with 

varying affinities to κB sites bearing the consensus 

sequence GGGRNNYYCC (R, purine: Y, 

pyrimidine: N, any base) and exhibit their unique 

functions 
29

. However, NF-κB complexes composed 

only of the family members lacking TAD, such as 

the p50 homodimers, are known to impose 

transcriptional repression 
30

. For all diverse 

functions of NF-κB in general, the activity is 

controlled by a family of regulatory proteins, called 

inhibitors of NF-κB (IκBs; IκB-α, IκB-β, IκB-ε, 

IκB-ζ, Bcl-3 etc) 
14, 30

 (Figure 2).  

Three of “typical” IκBs (IκB-α, IκB-β, and IκB-

ε), bind to NF-κB proteins and mask their nuclear 

translocation and DNA binding activity. IκBs also 

regulates the export of NF-κB proteins from the 

nucleus, and are thus known for inhibitory 

processes in multiple ways 
31

.  Recent 

investigations suggest that p100, when located in a 
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Figure 2.  Schematic drawings of NF-

κB/Rel proteins. Structures of the 

mammalian NF-κB, IκB, and IKK 

proteins. 

The number of amino acids in each protein is 

indicated on the right. Presumed sites of 

cleavage for p105/NF-κB1 (amino acid 433) 

and p100/NF-κB2 (amino acid 447) are 

shown on the top of each protein. The 

positions of functional domains are indicated, 

including the Rel homology domain (RHD), 

DNA binding domain (DBD), dimerization 

domain (DM), nuclear localization signal 

(NLS), transactivation domains (TD). TA1 

and TA2 subdomain of TD presented in RelA 

and cRel, glycine-rich hinge region (GGG), 

ankyrin repeats (ANK), double serine 

phosphorylation sites (SS), leucine zipper 

(LZ), helix-loop-helix (HLH), NEMO-

binding domain (NBD), α-helix (H), coiled 

coil (CC), and zinc finger (Z).  

 

multimeric complex, may also mediate NF-κB 

inhibition in trans; this activity is termed as IκBδ 
32, 

33
. The complex of IκBs proteins and NF-κB dimers 

weas originally thought to be retain in the 

cytoplasm by the NF-κB super repressor IKK. IKK 

complex is formed by three different subunits: two 

catalytic subunits IKKα (IKK1 or CHUK), IKKβ 

(IKK2) and the regulatory subunit IKKγ. IKKγ is 

also known as NF-κB essential modulator (NEMO) 

protein (Figure 2). Although IKKα and IKKβ 

cooperate for IκBs phosphorylation, these proteins 

differ in the signals that they mediate.  

 

3.   NF-κB Activation Pathways 
There are four models that have been proposed to 

explain NF-κB activation 
34

. NF-κB is  activated by 

numerous pathological and physiological conditions 

in a very efficient manner. NF-κB also regulates 

expression of various genes by modulating 

promoter activity of targets genes 
35

. 

 

3.1. The IKKβ dependent (classical) pathway The 

IKKβ dependent NF-κB activation has been a well 

studied signaling event. It is also known as the 

classical or NEMO (IKK-γ)-dependent or canonical 

pathway (Figure 4). It is induced by several of 

innate and adaptive immunological agents, and can 

be turned on within minutes. It principally requires 

IKKβ components 
36, 37

. Phosphorylation of IKKβ at 

Ser177 and Ser181 may occur after stimulation by 

TNFR, IL-1R, TLR agonists, radiation exposure, 

TNF-α (tumour necrosis factor-α), PMA (phorbol 

12-myristate 13-acetate), interleukins and other 

factors, which regulate downstream 

phosphorylation of IκB-α at Ser32 and Ser36, or 

IκBβ at Ser19 and Ser23, through the function of 

ubiquitin-dependent protein kinases. 

Phosphorylated IκB proteins are then ubiquitinated 

at nearby lysine residues (lysines 21 and 22 of IκBα 

and lysine 9 of IκB-β), and thus triggers a rapid 

degradation of IκB proteins by 26S proteasome 
38, 

39
. The rapid degradation of IκB-α, IκB-β, and IκB-

ε occurs during classical NF-κB signaling pathway. 

Phosphorylated p65/p50 (phosphorylation of p65 at 

Ser536) complex quickly translocates into nucleus 

and binds to 10-bp kB site or interacts with other 

transcription factors and regulates expression of 

various target genes. IκBα is a well known 

regulatory protein (providing a feedback control) 

for this pathway. The newly synthesized IκBα 

enters into the nucleus and prevents NF-κB DNA 

binding activity and transports  NF-κB back into the 

cytoplasm.  
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Figure 3. Different stimuli induce specific formation of known homo and hetero NF-κB dimers. 

 

 

Figure 4. There are four proposed NF-κB signaling pathways in response to various stimuli.  

(1) The canonical pathway (2), the non-canonical pathway (3), atypical pathway and (4) oxidative stress-induced 

pathway. Downstream binding of the NF-κB proteins to DNA regulates downstream transcriptional of many potential 

antioxidant, pro-oxidant, cell cycle regulation and anti-apoptotic targets that have been shown in Supplementary Table 

1. 

3.2.  The IKKα dependent (alternative) pathway  
Alternative or NEMO-independent or non-

canonical pathway is mainly activated during 

secondary lymphoid organ development, 

homeostasis and adaptive immunity, and it turns on 

in few hours 
40

. Senftleben et al. first described 
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Figure 5. Phosphorylation and acetylation sites within NF-κB p65.  

Eight Serine three Threonine residues phosphorylation and seven acetylation sites have been identified in the NF-

κB p65 subunit. Abbreviations: Ac, acetylation; K, lysine; N, tyrosine nitration; P, phosphorylation; Pr, proline 

isomerization; S, serine; T, threonine; Ub, ubiquitination; Y, tyrosine. 

 

 

IKKα dependent pathway in which processing of 

p100 and activation of p52/RelB is defined as the 

alternative pathway (Figure 4) 
39

. In this pathway 

phosphorylation of IKKα homodimer at Ser176 and 

Ser180 occurs through the upstream kinase NIK, 

(NF-κB inducing kinase). This pathway is 

stimulated by specific TNF receptor family 

members, such as LTβR, CD40, CD27, CD30, 

BAFF-R, RANK  and others 
41

, that signal through 

the recruitment of TRAF2 and TRAF3. In the 

resting cells, continuous degradation of NIK 

prevents non-canonical NF-κB activation 
42

. 

 

3.3 Atypical pathway 

This pathway is essentially independent of IKK and 

it is mainly triggered in case of UV or chemical-

induced DNA damages 
43, 44

. Evidence suggests that 

CK2 (formally known as casein kinase II) is a 

stress-activated protein kinase involved in the 

transduction of survival signals (Figure 4) 
45, 46

. 

CK2-mediated IκBα phosphorylation has an 

important UV-protective function. Jung et al. 

demonstrated a correlation of ATM with NF-κB in 

cellular radiosensitivity 
47

 and suggested that the 

loss of ATM function promotes radiosensitivity by 

activation of NF-κB 
47

. Recently, Wu et al. 
48

 

demonstrated that the cytosolic activation of 

signaling and sensor complexes (ATM, NEMO, 

IKK catalytic subunits, and ELKS - an IKK 

regulatory subunit) are associated with nuclear 

DNA damage-induced NF-κB activation. This 

model was proposed on their findings that ATM 

interacts with NEMO and phosphorylates NEMO at 

Ser85 after DSBs.  

 

3.4. Oxidative stress-induced pathway 
Oxidative stress-induced activation of NF-κB 

signaling is achieved via IκB-α tyrosine 

phosphorylation without degradation of IκB-α by 

Syk protein tyrosine kinase (Figure 4) 
49, 50

. H2O2 is 

one of the central free radical, involved in different 

cellular processes, including NF-κB activation 
51

.The redox-sensitive pathways triggering this 

activation may vary with everh cell and cell-type 
50

. 

NF-κB is also sensitive to oxidative modifications 

of Cys62 in p50, which are essential for DNA 

binding 
52, 53

. Activation and translocation of NF-κB 

is stimulated by oxidative circumstances, while its 

DNA binding affinity is inhibited by the redox 

sensitive cysteine residue 
54, 55

. The tyrosine 

phosphorylation of IκBα by most agents does not 

lead to IκBα degradation. However, Pervanadate (it 

is a protein tyrosine phosphatase inhibitor)-induced 

activation of NF-κB signaling, tyrosine 

phosphorylation and degradation of IκB-α has been 

documented 
56

. Surprisingly, UV-C induced NF-κB 
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Table 1. The phosphorylation sites of p65, and responsible kinases 

 

Site Location Kinase Function Reference 

Ser 205* RHD unknown Transcriptional activity 
66

 

 

Ser 276 

 

RHD 

PKAc 

 

MSK1 

Transcriptional activity 

Captivator binding 

Transcriptional activity 

67, 68
 

Ser 281* RHD unknown Transcriptional activity 
66

 

Ser 311 RHD PKCζ Transcriptional activity 69
 

 

Ser 468 

 

TA2 

GSK3β 

IKKβ 

IKKα 

Transcriptional activity 

Transcriptional activity 

Transcriptional activity 

70, 71, 72
 

Ser 529 TA1 CK II Transcriptional activity 
73

 

Ser 535 TA1 CaMKIV Transcriptional activity 
74

 

 

 

 

Ser 536 

 

 

 

TA1 

IKKα 

 

IKKβ 

 

IKKε 

TBK1 

RSK1 

Transcriptional activity 

and stabilization 

Transcriptional activity 

and nuclear import 

Transcriptional activity 

Nuclear localization 

Affinity to IκBα 

75-81
 

Ser 547* unknown ATM-DSB Transcriptional inhibition of target 

genes by HDAC recruitment 
82

 

Thr 254* RHD unknown Stabilization and Nuclear localization 
83

 

Thr 435* TA2 unknown Transcriptional activity 
84

 

Thr 505 TA2 ATR 

ChK1 

Transcriptional activity 85, 86
 

Tyr 66 

Tyr 152 

RHD NO treatment p65 dissociation from p50 and 

association with IκBα  
87

 

 
Site Location Enzyme Function Reference 

Lys 122 RHD P300, PCAF Inhibition DNA binding 
88

 

Lys 123 RHD P300, PCAF Inhibition DNA binding 
88

 

Lys 218 RHD CBP/p300 Unknown 
89

 

Lys 221 RHD CBP/p300 Promoting DNA binding 

Inhibition IκBα binding 
89

 

Lys 310 RHD CBP/p300 Enhancing transactivation 
89

 

Lys 314 RHD P300 Transcriptional activity 
90

 

Lys 215 RHD P300 Transcriptional activity 
90

 

Acetylation sites of p65 and the corresponding enzymes 

* Recently discovered phosphorylation sites 

activation is mediated through the degradation of 

IκB-α, that involves neither phosphorylation of 

serine nor the tyrosine residue of IκB-α 
57

. 

 

4.  Post translational modifications of NF-κB 

proteins 
The mammalian transcription factor NF-κB is 

activated by over 150 diverse stimuli and thousands 

of potential NF-κB DNA binding sites have been 

marked across the genome 
13, 58

. After degradation 

of IκBs, activated NF-κB complex moves into 

nucleus and binds to 10bp defined sequence 

GGGRNWYYCC (N represents any base, R 

represents a purine; W represents an adenine or a 

thymine and Y represents a pyrimidine), which is 

present in the promoter and enhancer regions of 
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target genes 
59

. Moreover, activity and DNA 

binding affinity of NF-κB transcription factor are 

spatially and kinetically controlled, thereby 

regulating expression of its target genes 
60

. Within 

the nuclear compartments, various posttranslational 

modifications (PTMs) of NF-κB occurs, such as: 

ubiquitination, acetylation and phosphorylation 
61

. 

Among all NF-κB subunits, most of the post-

translational modifications take place in the p65 

subunit, which is known to be modified by 

phosphorylation, acetylation, prolylisomerization, 

nitrosylation and ubiquitination (Figure 5 and Table 

1) 
12

. Phosphorylation of p65 unit takes place either 

in the cytoplasm or in the nucleus, and is mediated 

by numerous protein kinases. These sites can be 

modified in a stimulus- and/or cell type-specific 

fashion by several kinases (Table 1) 
62-65

. 

PTMs of p65 can regulate the interaction 

with co-activators 
91

, co-repressors 
92

 promoter-

bound degradation 
93

 and interactions with the basal 

transcriptional machinery 
94

. According to the NF-

κB barcode hypothesis the differential 

modifications of the DNA-binding subunits 

generate distinct arrays that function through 

transcription in a highly target gene-specific manner 
95

. Other than p65 post-translation modifications, 

NIK and IKKα (IKK1)-mediated phosphorylation 

of p105 NF-κB occurs at multiple sites (Ser921, 

923, 927, and 932) on its carboxyl-terminus. 

SCF/β-TrCP-mediated processing of p105 NF-κB 

produces the 50 kDa active form product, p50 
96, 97

.  

NF-κB p50 serine 337 is phosphorylated in 

response to PKA, which regulates the binding 

affinity of NF-κB p50 and impacts the NF-κB 

transcriptional activity. In addition to post-

translational modifications, recent studies showed 

the ability of NF-κB to bind the DNA (NF-κB: 

DNA) is also regulated by other proteins. A recent 

report suggests that RPS3 (ribosomal protein 

subunit 3) interacts with RelA via its KH (K 

Homology) domain and specifically enhances p50: 

RelA binding affinity with DNA (p50:RelA:DNA) 
98

.   

 

5. NF-κB regulated proteins and their functions 

in oxidative stress  

Exposure of mammalian cells with low doses of 

ionizing radiation is known to have variable effects 

and may generate valuable effects within cells 
99, 100

. 

The correct cellular response to ROS following low 

doses of IR is consequently critical, in order to 

reduce further oxidative damage, and to maintain 

cell survival through initiation of cellular signaling, 

including NFkB pro-survival signaling. Therefore 

ROS-mediated NF-κB response and thereby 

regulation of NF-κB target genes may attenuate cell 

survival. One important way in which NF-κB 

activity influences ROS levels is by increasing 

expression of antioxidant and anti-apoptotic 

proteins. Since NF-κB is known to play a central 

role in inflammation, some enzymes that promotes 

the production of ROS are also controlled as well as 

its targets, particularly in cells of the immune 

system 
31

. A few known or possible NF-κB target 

genes that may contribute to the protection of cells 

from ROS-induced cellular damage are mentioned 

in Supplementary Table 1
101-191

.   

 

6. Radiation  Countermeasures in relation to NF-

κB activation 

The radioprotective agent can be described as the 

“molecule(s) or compound(s) that protects against 

radiation-induced cellular, tissue injury, when 

applied before, during, or after irradiation in a 

specified time period” 
192, 193

. A number of chemical 

compounds that are identified and evaluated for 

radio-protective efficacy may be classified as 

(Supplementary Table 2
198-258

 and Figure 6):  

� Prophylactic agents,  

� Mitigators and  

� Therapeutic agents  

To date, there are no safe and effective drugs for the 

protection against ionizing radiation damage. 

Therefore, a great need exists to identify and 

develop non-toxic agents that will be useful as 

radio-protectors or post-irradiation therapies under 

a variety of operational scenarios. Suppressing of 

IR-induced cell death or enhancing survival, 

proliferation, differentiation of cells are the major 

ways to obtain protection mechanisms against 

radiation, addressing the massive cell loss in 

radiosensitive tissues specifically hematopoietic 

system (HP) and gastrointestinal tract 
194, 195, 196

. 

Some of radio-protective agents that are currently in 

clinical trials are listed in Supplementary Table 2. 

NF-κB plays important roles in immunity and 

cellular survival in response to radiation exposure 

and oxidative stress. It is known to reduce 

programmed cell death or apoptosis by promoting 

the expression of anti-apoptotic proteins and 

antioxidant molecules associated with enhanced 

radio-resistance, whereas its deletion in mice results 
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in hypersensitivity to ionizing radiation-induced GI 

damage 
21, 197

. 

NF-κB also regulates the production of a wide 

variety of cytokines in a cell type specific manner. 

Some of these cytokines induce proliferation and 

survival of hematopoietic stem cells, thereby 

promoting bone marrow recovery and tissues 

regeneration following irradiation. Therefore, 

pharmacological activation of NF-κB may be 

considered as a possible approach for 

radioprotection / mitigation. In this review, we have 

discussed some radioprotectors/ mitigators, 

specifically in relation to their efficacy for 

activation of NF-κB. Great efforts have been 

directed towards recognizing the role of TLRs (Toll 

Like Receptor)-mediated responses to microbes 

(viruses, bacteria, fungi) for the development of 

novel therapies in autoimmune allergic diseases, 

malignancy and other infections 
259

. Investigations 

of TLR agonists are one of the global recent 

interests, for use in the preparation of immune-

modulators. TLR agonists include: small molecules, 

pathogen derived DNA, RNA, proteins, lipids, 

which target one or more of the toll-like receptors, 

including TLR 2-9. Bacterial flagellin, the natural 

ligand of TLR5, was found to have radioprotective 

effects in rodents and nonhuman primates 
260

. 

Recently, Cleveland Bio-Lab has developed the 

new pharmacological CBLB series, including 

CBLB502, for radiological emergencies. CBLB502 

is a rationally designed derivative of Salmonella 

flagellin. It is substantially less immunogenic than 

full length flagellin and possesses its TLR5-

dependent NF-κB–inducing activity and 

radioprotective ability 
208

.  Moreover, CBLB502 

protected mice from dermatitis and mucositis 

associated with local fraction irradiation of head 

and neck area modelling radiation treatment of 

patients with head and neck cancer and also was 

shown to be effective as a tissue protectant in 

mouse models of renal ischemia-reperfusion 

injury
261

. A single dose of CBLB502 (0.2mg/kg 

body weight) 30 min prior to 13 Gy of TBI to NIH-

Swiss mouse offered 87% protection. 

Administration of CBLB502 even up to 1 h post-

irradiation results in greater than 90% survival after 

9 Gy. CBLB502 also showed radio-protective 

efficacy in lethally irradiated rhesus monkeys 
208

. 

Burdelya et al, recently showed that liver was the 

primary responsive organ for CBLB502 and 

CBLB502-mediated radioprotection of the HP 

system. The radioprotection occurred by factors 

secreted by responsive liver hepatocytes. A strong 

suppression of growth of tumor cells in the liver, 

regardless of their TLR5 status, was also 

observed
209

. 

Recently, a lipopeptide of Mycoplasma arginini 

has been reported to act as a TLR 2/6 agonist. This 

novel radiation countermeasure, CBLB 613, has 

been observed as possible radio-mitigator for 

humans against radiation induced lethality 
262

. 

CBLB613 significantly protected mice against a 

lethal dose of γ-radiation with no observable 

toxicity at 1.79 mg/kg body weight and 1 mg/kg 

body weight for single and repeated doses, 

respectively. In irradiated CD2F1 mice it stimulates 

bone marrow cellularity, enhances production of 

cytokines, such as interleukin-1β (IL-1β), IL-6, IL-

10, IL-12, keratinocyte-derived chemokine, 

granulocyte colony-stimulating factor (G-CSF), 

granulocyte-macrophage colony-stimulating factor 

(GM-CSF), and tumour necrosis factor-1α (TNF- 

α), and reduces radiation-mediated cytopenia. 

CBLB613 exhibits substantial dose reduction factor 

of 1.25. 

The baicalein is a bioactive flavonoid, which 

has been shown to have antioxidant, anti-

inflammatory and anti-hepatotoxic properties in 

both in vitro and in vivo conditions 
263, 264

. 

Treatment with baicalein inhibits the inflammatory 

signaling pathways involving ERK (extracellular 

signal-regulated kinase), Akt and nuclear factor-κB 

(NF-κB) activities in vascular smooth muscle cells 
265

. A recent study showed that γ-irradiation with 

baicalein reduces lipid and protein oxidation in rat 

liver. Damaging effects of IR are generally 

mediated through the production of reactive species 

(RS), and a substantial increase in RS levels 

induces cellular damage and decrease in antioxidant 

enzymes, as well as activates intracellular signaling 

pathways that activate the expression of many 

inflammatory genes. The IR induced molecular 

responses may also be characterized as increased 

cyclooxygenase-2 (COX-2) level, inducible nitric 

oxide synthase (iNOS) and vascular adhesion 

molecule-1 (VCAM-1) expressions that also 

initiates the activation of the transcription factor 

NF-κB 
266

. The key role played by NF-κB activation 

in the process of inflammation has been reported to 

be closely associated with a redox-sensitive signal 

cascade that includes MAPKs (ERK, c-Jun N-

terminal kinase (JNK] and p38) and Akt 
266, 267

. 
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Figure 6. Schematic representation of chemical compounds that have been evaluated for radio-protective 

potential until today.  

 

However, activation of the Akt signaling pathway 

has been known to reduce forkhead box-O (FOXO) 

transcription activity 
268

,  and is involved in 

cytoprotective effects against oxidative stress 
269

. 

Irradiation of mice showed an enhancement of NF-

κB-mediated inflammatory factors due to the 

oxidative damage, and the inactivation of FOXO 

and its target genes, such as catalase and SOD. 

However, baicalein (5mg/kg bw/day) has the ability 

to suppress radiation-induced inflammatory 

consequences, by down regulating NF-κB and up-

regulating FOXO activation 
270

. Furthermore, 

baicalein inhibited radiation induced 

phosphorylation of MAPKs and Akt, which are 

upstream kinases of NF-κB and FOXOs. These 

observations also suggest that baicalein has a 

radioprotective effect against NF-κB mediated 

inflammatory response, through MAPKs and the 

Akt pathway, which is complemented by the 

protective effects on FOXO and its target genes, 

such as catalase and SOD. 

DNA double-strand breaks (DSBs) are the most 

deleterious form of DNA damage and numerous in 

vitro studies have analyzed the DSB repair system 

that is activated after exposure to ionizing radiation. 

DSBs rapidly trigger the activation of NF-κB 

pathway via NEMO 
48, 271

. The death-domain 

protein PIDD was originally identified as an early 

p53-inducible gene and is implicated in p53-

induced apoptosis 
48

. PIDD is a mediator of the 
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DNA-damage-activated stress response and is 

involved in genotoxic stress-induced NF-κB 

activation 
271, 272

. PIDD expression enhances 

genotoxic-stress-induced NF-κB activation through 

augmented sumoylation and ubiquitination of 

NEMO 
272

. Corilagin (ß-1-O-galloyl-3, 6-(R)-

hexahydroxydiphenoyl- D-glucose) is a member of 

the tannin family and has been isolated from 

medicinal plants, such as the Phyllanthus sps 
273

. 

Corilagin has antioxidative, atherogenic, and 

hypertensive effects in various models 
273-276

. A 

preliminary in vitro study suggested that corilagin 

has anti-inflammatory activity 
277

. The activation of 

microglia and release of pro-inflammatory 

cytokines post irradiation are regarded as the key 

effectors of RIBI. Recent, studies demonstrated that 

corilagin exhibited anti-inflammatory activity in 

irradiated B7-2 cells by suppressing the release of 

pro-inflammatory cytokines and mediators. 

Corilagin suppresses the transcription of pro-

inflammatory cytokine genes, through effects on the 

DSB-triggered NF-κB signaling pathway 
278

. 

Ex-RAD employs a novel mode of action, 

involving the enhancement of internal DNA repair 

pathways, which significantly reduces the levels of 

p53, p21, bax, c-abl and p73 proteins-key players in 

the DNA damage cascade induced upon exposure to 

8.0 Gy gamma irradiation 
207

. These mechanisms 

can cause a halt in cell death pathways and lead to 

increased recovery and survival of irradiated cells. 

These novel mechanisms of action attended by 

minimal side effects suggest that Ex-RAD could be 

useful both as a prophylactic and mitigative agent. 

Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone, 

sodium salt; or ON 01210.Na] is a synthetic small-

molecule radioprotective compound (from 

Onconova Therapeutics, Inc. (OTI)) that is active in 

male C3H mice 
207

 when administered 24 h and 15 

min (two injections) before total body irradiation 

(TBI). Although Ex-RAD had been shown to be an 

inhibitor of apoptosis in vitro, it is not recognized 

whether a parallel mechanism is occurring in vivo 
207

. In numerous cell-based and complete animal 

models, Ex-RAD has revealed to have potential for 

defense from radiation injury when administered 

either before or after radiation exposure. The drug 

is currently in Phase I clinical trials in humans. In 

decision, Ex-RAD usage mitigates potentially life-

threatening neutropenia and bone marrow 

overthrow and, in turn, stimulates bone marrow 

retrieval, decreases radiation induced 

phosphorylation of p53 signaling, and enhances 

survival of acutely irradiated mice 
279

. In addition to 

mitigating of hematopoietic damage, Ex-RAD also 

moderates intestinal injury. However, the molecular 

mechanisms elaborated in Ex-RAD’s promotion of 

recovery of hematopoietic and GI tissues warrant 

further study. 

 

7. Conclusion  

Radiation-induced injuries and lethality are well 

described at clinical level and understanding of 

mechanisms of tissue responses in the event of 

radiation exposure has gained much attention in 

recent years. The quest to search a potent radiation 

countermeasure which can ameliorate radiation 

syndrome and at the time exhibits no toxicity for 

human consumption is prevalent since past decades. 

However, even after the existence of a lot of 

literature available on radiation counter-measures 

only handful of identified drugs seem promising for 

human use. Based on prudent dissection of 

complicated series of signaling changes within 

multiple pathways, it might be possible to rationally 

combine inhibitors of these cascades, to repair 

damaged bio-molecules, activation of intracellular 

pathways, stress receptor activation, to achieve 

radiation protection. As a stress sensor, NF-κB is a 

crucial component of the cell’s protective response 

to radiation and therefore an attractive target in the 

new therapeutic lines to fight cancer or radiological 

emergencies. NF-κB is now documented as an 

important player in several critical steps for 

development of radiation countermeasures.  

Recently, focus of radiation protection has 

shifted to test the radioprotective potential of plant 

products and herbs in the hope that one day it will 

be possible to find a suitable pharmacological agent 

that could protect humans against the deleterious 

effects of ionizing radiation in clinical and other 

conditions as well as during nuclear terror attack. 

Majority of plants and herbs described in this 

review have medicinal properties and are being 

used in traditional Ayurvedic or Chinese systems of 

medicine to treat various ailments in humans. Our 

review provides a broad idea on the 

physicochemical role of ionizing radiation on 

cellular systems and highlights the importance of 

developing new natural radioprotectants. Medicinal 

plants like Aconitum heterophyllum, Bergenia 

stracheyi, Bunium persicum, Dactylorhiza hatgirea, 

Ephedra gerardiana, Pichorrhiza kurroa, etc., are 
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some of the plants that need elaborate 

investigations. Furthermore, some radioprotectants 

may boost their own efficacy in combination 

therapies  Fractionation guided evaluation may 

result in the development of ideal radioprotectors in 

the near future. 
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