Skip to main content
. 2020 Apr 15;6(16):eaay2631. doi: 10.1126/sciadv.aay2631

Table 4. Tested Feynman equations, part 1.

Abbreviations in the “Methods used” column: da, dimensional analysis; bf, brute force; pf, polyfit; ev, set two variables equal; sym, symmetry; sep, separability. Suffixes denote the type of symmetry or separability (sym–, translational symmetry; sep*, multiplicative separability; etc.) or the preprocessing before brute force (e.g., bf-inverse means inverting the mystery function before bf).

Feynman Eq. Equation Solution Time (s) Methods Used Data Needed Solved By Eureqa Solved W/o
da
Noise
Tolerance
I.6.20a f=eθ2/2/2π 16 bf 10 No Yes 10−2
I.6.20 f=eθ22σ2/2πσ2 2992 ev, bf-log 102 No Yes 10−4
I.6.20b f=e(θθ1)22σ2/2πσ2 4792 sym–, ev, bf-log 103 No Yes 10−4
I.8.14 d=(x2x1)2+(y2y1)2 544 da, pf-squared 102 No Yes 10−4
I.9.18 F=Gm1m2(x2x1)2+(y2y1)2+(z2z1)2 5975 da, sym–, sym–, sep∗, pf-inv 106 No Yes 10−5
I.10.7 m=m01v2c2 14 da, bf 10 No Yes 10−4
I.11.19 A = x1y1 + x2y2 + x3y3 184 da, pf 102 Yes Yes 10−3
I.12.1 F = μNn 12 da, bf 10 Yes Yes 10−3
I.12.2 F=q1q24πϵr2 17 da, bf 10 Yes Yes 10−2
I.12.4 Ef=q14πϵr2 12 da 10 Yes Yes 10−2
I.12.5 F = q2Ef 8 da 10 Yes Yes 10−2
I.12.11 F = q(Ef + Bv sin θ) 19 da, bf 10 Yes Yes 10−3
I.13.4 K=12m(v2+u2+w2) 22 da, bf 10 Yes Yes 10−4
I.13.12 U=Gm1m2(1r21r1) 20 da, bf 10 Yes Yes 10−4
I.14.3 U = mgz 12 da 10 Yes Yes 10−2
I.14.4 U=kspringx22 9 da 10 Yes Yes 10−2
I.15.3x x1=xut1u2/c2 22 da, bf 10 No No 10−3
I.15.3t t1=tux/c21u2/c2 20 da, bf 102 No No 10−4
I.15.10 p=m0v1v2/c2 13 da, bf 10 No Yes 10−4
I.16.6 v1=u+v1+uv/c2 18 da, bf 10 No Yes 10−3
I.18.4 r=m1r1+m2r2m1+m2 17 da, bf 10 Yes Yes 10−2
I.18.12 τ = rF sin θ 15 da, bf 10 Yes Yes 10−3
I.18.16 L = mrv sin θ 17 da, bf 10 Yes Yes 10−3
I.24.6 E=14m(ω2+ω02)x2 22 da, bf 10 Yes Yes 10−4
I.25.13 Ve=qC 10 da 10 Yes Yes 10−2
I.26.2 θ1 = arcsin (n sin θ2) 530 da, bf-sin 102 Yes Yes 10−2
I.27.6 ff=11d1+nd2 14 da, bf 10 Yes Yes 10−2
I.29.4 k=ωc 8 da 10 Yes Yes 10−2
I.29.16 x=x12+x222x1x2cos(θ1θ2) 2135 da, sym–, bf-squared 103 No No 10−4
I.30.3 I*=I*0sin2(nθ/2)sin2(θ/2) 118 da, bf 102 Yes Yes 10−3
I.30.5 θ=arcsin(λnd) 529 da, bf-sin 102 Yes Yes 10−3
I.32.5 P=q2a26πϵc3 13 da 10 Yes Yes 10−2
I.32.17 P=(12ϵcEf2)(8πr2/3)(ω4/(ω2ω02)2) 698 da, bf-sqrt 10 No Yes 10−4
I.34.8 ω=qvBp 13 da 10 Yes Yes 10−2
I.34.10 ω=ω01v/c 13 da, bf 10 No Yes 10−3
I.34.14 ω=1+v/c1v2/c2ω0 14 da, bf 10 No Yes 10−3
I.34.27 E = ℏω 8 da 10 Yes Yes 10−2
I.37.4 I*=I1+I2+2I1I2cosδ 7032 da, bf 102 Yes No 10−3
I.38.12 r=4πϵ2mq2 13 da 10 Yes Yes 10−2
I.39.10 E=32pFV 8 da 10 Yes Yes 10−2
I.39.11 E=1γ1pFV 13 da, bf 10 Yes Yes 10−3
I.39.22 PF=nkbTV 16 da, bf 10 Yes Yes 10−4
I.40.1 n=n0emgxkbT 20 da, bf 10 No Yes 10−2
I.41.16 Lrad=ω3π2c2(eωkbT1) 22 da, bf 10 No No 10−5
I.43.16 v=μdriftqVed 14 da 10 Yes Yes 10−2
I.43.31 D = μekbT 11 da 10 Yes Yes 10−2
I.43.43 κ=1γ1kbvA 16 da, bf 10 Yes Yes 10−3
I.44.4 E=nkbTln(V2V1) 18 da, bf 10 Yes Yes 10−3
I.47.23 c=γprρ 14 da, bf 10 Yes Yes 10−2
I.48.20 E=mc21v2/c2 108 da, bf 102 No No 10−5
I.50.26 x = x1[ cos (ωt) + α cos (ωt)2] 29 da bf 10 Yes Yes 10−2