Table 4. Tested Feynman equations, part 1.
Abbreviations in the “Methods used” column: da, dimensional analysis; bf, brute force; pf, polyfit; ev, set two variables equal; sym, symmetry; sep, separability. Suffixes denote the type of symmetry or separability (sym–, translational symmetry; sep*, multiplicative separability; etc.) or the preprocessing before brute force (e.g., bf-inverse means inverting the mystery function before bf).
Feynman Eq. | Equation | Solution Time (s) | Methods Used | Data Needed | Solved By Eureqa |
Solved W/o da |
Noise Tolerance |
I.6.20a | 16 | bf | 10 | No | Yes | 10−2 | |
I.6.20 | 2992 | ev, bf-log | 102 | No | Yes | 10−4 | |
I.6.20b | 4792 | sym–, ev, bf-log | 103 | No | Yes | 10−4 | |
I.8.14 | 544 | da, pf-squared | 102 | No | Yes | 10−4 | |
I.9.18 | 5975 | da, sym–, sym–, sep∗, pf-inv | 106 | No | Yes | 10−5 | |
I.10.7 | 14 | da, bf | 10 | No | Yes | 10−4 | |
I.11.19 | A = x1y1 + x2y2 + x3y3 | 184 | da, pf | 102 | Yes | Yes | 10−3 |
I.12.1 | F = μNn | 12 | da, bf | 10 | Yes | Yes | 10−3 |
I.12.2 | 17 | da, bf | 10 | Yes | Yes | 10−2 | |
I.12.4 | 12 | da | 10 | Yes | Yes | 10−2 | |
I.12.5 | F = q2Ef | 8 | da | 10 | Yes | Yes | 10−2 |
I.12.11 | F = q(Ef + Bv sin θ) | 19 | da, bf | 10 | Yes | Yes | 10−3 |
I.13.4 | 22 | da, bf | 10 | Yes | Yes | 10−4 | |
I.13.12 | 20 | da, bf | 10 | Yes | Yes | 10−4 | |
I.14.3 | U = mgz | 12 | da | 10 | Yes | Yes | 10−2 |
I.14.4 | 9 | da | 10 | Yes | Yes | 10−2 | |
I.15.3x | 22 | da, bf | 10 | No | No | 10−3 | |
I.15.3t | 20 | da, bf | 102 | No | No | 10−4 | |
I.15.10 | 13 | da, bf | 10 | No | Yes | 10−4 | |
I.16.6 | 18 | da, bf | 10 | No | Yes | 10−3 | |
I.18.4 | 17 | da, bf | 10 | Yes | Yes | 10−2 | |
I.18.12 | τ = rF sin θ | 15 | da, bf | 10 | Yes | Yes | 10−3 |
I.18.16 | L = mrv sin θ | 17 | da, bf | 10 | Yes | Yes | 10−3 |
I.24.6 | 22 | da, bf | 10 | Yes | Yes | 10−4 | |
I.25.13 | 10 | da | 10 | Yes | Yes | 10−2 | |
I.26.2 | θ1 = arcsin (n sin θ2) | 530 | da, bf-sin | 102 | Yes | Yes | 10−2 |
I.27.6 | 14 | da, bf | 10 | Yes | Yes | 10−2 | |
I.29.4 | 8 | da | 10 | Yes | Yes | 10−2 | |
I.29.16 | 2135 | da, sym–, bf-squared | 103 | No | No | 10−4 | |
I.30.3 | 118 | da, bf | 102 | Yes | Yes | 10−3 | |
I.30.5 | 529 | da, bf-sin | 102 | Yes | Yes | 10−3 | |
I.32.5 | 13 | da | 10 | Yes | Yes | 10−2 | |
I.32.17 | 698 | da, bf-sqrt | 10 | No | Yes | 10−4 | |
I.34.8 | 13 | da | 10 | Yes | Yes | 10−2 | |
I.34.10 | 13 | da, bf | 10 | No | Yes | 10−3 | |
I.34.14 | 14 | da, bf | 10 | No | Yes | 10−3 | |
I.34.27 | E = ℏω | 8 | da | 10 | Yes | Yes | 10−2 |
I.37.4 | 7032 | da, bf | 102 | Yes | No | 10−3 | |
I.38.12 | 13 | da | 10 | Yes | Yes | 10−2 | |
I.39.10 | 8 | da | 10 | Yes | Yes | 10−2 | |
I.39.11 | 13 | da, bf | 10 | Yes | Yes | 10−3 | |
I.39.22 | 16 | da, bf | 10 | Yes | Yes | 10−4 | |
I.40.1 | 20 | da, bf | 10 | No | Yes | 10−2 | |
I.41.16 | 22 | da, bf | 10 | No | No | 10−5 | |
I.43.16 | 14 | da | 10 | Yes | Yes | 10−2 | |
I.43.31 | D = μekbT | 11 | da | 10 | Yes | Yes | 10−2 |
I.43.43 | 16 | da, bf | 10 | Yes | Yes | 10−3 | |
I.44.4 | 18 | da, bf | 10 | Yes | Yes | 10−3 | |
I.47.23 | 14 | da, bf | 10 | Yes | Yes | 10−2 | |
I.48.20 | 108 | da, bf | 102 | No | No | 10−5 | |
I.50.26 | x = x1[ cos (ωt) + α cos (ωt)2] | 29 | da bf | 10 | Yes | Yes | 10−2 |