Skip to main content
. 2020 Apr 15;6(16):eaay2631. doi: 10.1126/sciadv.aay2631

Table 5. Tested Feynman equations, part 2 (same notation as in Table 4).

Feynman Eq. Equation Solution Time
(s)
Methods Used Data Needed Solved By
Eureqa
Solved W/o da Noise
Tolerance
II.2.42 P=κ(T2T1)Ad 54 da, bf 10 Yes Yes 10−3
II.3.24 FE=P4πr2 8 da 10 Yes Yes 10−2
II.4.23 Ve=q4πϵr 10 da 10 Yes Yes 10−2
II.6.11 Ve=14πϵpdcos θr2 18 da, bf 10 Yes Yes 10−3
II.6.15a Ef=34πϵpdzr5x2+y2 2801 da, sm, bf 104 No Yes 10−3
II.6.15b Ef=34πϵpdr3cos θsin θ 23 da, bf 10 Yes Yes 10−2
II.8.7 E=35q24πϵd 10 da 10 Yes Yes 10−2
II.8.31 Eden=ϵEf22 8 da 10 Yes Yes 10−2
II.10.9 Ef=σdenϵ11+χ 13 da, bf 10 Yes Yes 10−2
II.11.3 x=qEfm(ω02ω2) 25 da, bf 10 Yes Yes 10−3
II.11.17 n=n0(1+pdEfcos θkbT) 28 da, bf 10 Yes Yes 10−2
II.11.20 P*=nρpd2Ef3kbT 18 da, bf 10 Yes Yes 10−3
II.11.27 P*=nα1nα/3ϵEf 337 da bf-inverse 102 No Yes 10−3
II.11.28 θ=1+nα1(nα/3) 1708 da, sym*, bf 102 No Yes 10−4
II.13.17 B=14πϵc22Ir 13 da 10 Yes Yes 10−2
II.13.23 ρc=ρc01v2/c2 13 da, bf 102 No Yes 10−4
II.13.34 j=ρc0v1v2/c2 14 da, bf 10 No Yes 10−4
II.15.4 E = − μMB cos θ 14 da, bf 10 Yes Yes 10−3
II.15.5 E = − pdEf cos θ 14 da, bf 10 Yes Yes 10−3
II.21.32 Ve=q4πϵr(1v/c) 21 da, bf 10 Yes Yes 10−3
II.24.17 k=ω2c2π2d2 62 da bf 10 No Yes 10−5
II.27.16 FE=ϵcEf2 13 da 10 Yes Yes 10−2
II.27.18 Eden=ϵEf2 9 da 10 Yes Yes 10−2
II.34.2a I=qv2πr 11 da 10 Yes Yes 10−2
II.34.2 μM=qvr2 11 da 10 Yes Yes 10−2
II.34.11 ω=g_qB2m 16 da, bf 10 Yes Yes 10−4
II.34.29a μM=qh4πm 12 da 10 Yes Yes 10−2
II.34.29b E=g_μMBJz 18 da, bf 10 Yes Yes 10−4
II.35.18 n=n0exp(μmB/(kbT))+exp(μmB/(kbT)) 30 da, bf 10 No Yes 10−2
II.35.21 M=nρμMtanh(μMBkbT) 1597 da, halve-input, bf 10 Yes No 10−4
II.36.38 f=μmBkbT+μmαMϵc2kbT 77 da bf 10 Yes Yes 10−2
II.37.1 E = μM(1 + χ)B 15 da, bf 10 Yes Yes 10−3
II.38.3 F=YAxd 47 da, bf 10 Yes Yes 10−3
II.38.14 μS=Y2(1+σ) 13 da, bf 10 Yes Yes 10−3
III.4.32 n=1eωkbT1 20 da, bf 10 No Yes 10−3
III.4.33 E=ωeωkbT1 19 da, bf 10 No Yes 10−3
III.7.38 ω=2μMB 13 da 10 Yes Yes 10−2
III.8.54 pγ=sin(Et)2 39 da, bf 10 No Yes 10−3
III.9.52 pγ=pdEftsin((ωω0)t/2)2((ωω0)t/2)2 3162 da, sym–, sm, bf 103 No Yes 10−3
III.10.19 E=μMBx2+By2+Bz2 410 da, bf-squared 102 Yes Yes 10−4
III.12.43 L = nℏ 11 da, bf 10 Yes Yes 10−3
III.13.18 v=2Ed2k 16 da, bf 10 Yes Yes 10−4
III.14.14 I=I0(eqVekbT1) 18 da, bf 10 No Yes 10−3
III.15.12 E = 2U(1 − cos (kd)) 14 da, bf 10 Yes Yes 10−4
III.15.14 m=22Ed2 10 da 10 Yes Yes 10−2
III.15.27 k=2παnd 14 da, bf 10 Yes Yes 10−3
III.17.37 f = β(1 + αcos θ) 27 bf 10 Yes Yes 10−3
III.19.51 E=mq42(4πϵ)221n2 18 da, bf 10 Yes Yes 10−5
III.21.20 j=ρc0qAvecm 13 da 10 Yes Yes 10−2