Skip to main content
. 2020 Apr 15;6(16):eaay2631. doi: 10.1126/sciadv.aay2631

Table 6. Tested bonus equations.

Goldstein 8.56 is for the special case where the vectors p and A are parallel.

Source Equation Solved Solved by Eureqa Methods used
Rutherford scattering A=(Z1Z2αc4Esin2(θ2))2 Yes No da, bf-sqrt
Friedman equation H=8πG3ρkfc2af2 Yes No da, bf-squared
Compton scattering U=E1+Emc2(1cos θ) Yes No da, bf
Radiated gravitational wave power P=325G4c5(m1m2)2(m1+m2)r5 No No
Relativistic aberration θ1=arccos(cos θ2vc1vccos θ2) Yes No da, bf-cos
N-slit diffraction I=I0[sin(α/2)α/2sin(Nδ/2)sin(δ/2)]2 Yes No da, sm, bf
Goldstein 3.16 v=2m(EUL22mr2) Yes No da, bf-squared
Goldstein 3.55 k=mkGL2(1+1+2EL2mkG2cos(θ1θ2)) Yes No da, sym–, bf
Goldstein 3.64 (ellipse) r=d(1α2)1+αcos(θ1θ2) Yes No da, sym–, bf
Goldstein 3.74 (Kepler) t=2πd3/2G(m1+m2) Yes No da, bf
Goldstein 3.99 α=1+2ϵ2EL2m(Z1Z2q2)2 Yes No da, sym*, bf
Goldstein 8.56 E=(pqAvec)2c2+m2c4+qVe Yes No da, sep+, bf-squared
Goldstein 12.80 E=12m[p2+m2ω2x2(1+αxy)] Yes Yes da, bf
Jackson 2.11 F=q4πϵy2[4πϵVedqdy3(y2d2)2] No No
Jackson 3.45 Ve=q(r2+d22drcos α)12 Yes No da, bf-inv
Jackson 4.60 Ve=Efcos θ(α1α+2d3r2r) Yes No da, sep*, bf
Jackson 11.38 (Doppler) ω0=1v2c21+vccos θω Yes No da, cos-input, bf
Weinberg 15.2.1 ρ=38πG(c2kfaf2+H2) Yes Yes da, bf
Weinberg 15.2.2 pf=18πG[c4kfaf2+c2H2(12α)] Yes Yes da, bf
Schwarz 13.132 (Klein-Nishina) A=πα22m2c2(ω0ω)2[ω0ω+ωω0sin2θ] Yes No da, sym/, sep*, sin-input, bf