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Abstract

Background: Pre-existing factors such as age and cognitive performance can influence the 

electroencephalogram (EEG) during general anesthesia. Specifically, spectral EEG power is lower 

in the elderly as compared to younger subjects. Here we investigate age-related changes in EEG 

architecture in patients undergoing general anesthesia through a detailed examination of spectral 

and entropic measures.

Methods: We retrospectively studied 180 frontal EEG recordings from patients undergoing 

general anesthesia, induced with propofol/fentanyl and maintained by sevoflurane at the Waikato 

Hospital in Hamilton, New Zealand. We calculated power spectral density and normalized power 

spectral density, the entropic measures approximate and permutation entropy, as well as the beta 

ratio and spectral entropy as exemplary parameters used in current monitoring systems from 

segments of EEG obtained prior to the onset of surgery; i.e. with no noxious stimulation.

Results: The oldest quartile of patients had significantly lower 1/f characteristics (p<0.001; 

AUC= 0.84 [0.76 0.92]), indicative of a more uniform distribution of spectral power. Analysis of 

the normalized power spectral density revealed no significant impact of age on relative alpha 

(p=0.693; AUC=0.52 [0.41 0.63]) and a significant but weak effect on relative beta power 

(p=0.041; AUC= 0.62 [0.52 0.73]). Using entropic parameters, we found a significant age-related 

change towards a more irregular and unpredictable EEG (permutation entropy: p<0.001, 

AUC=0.81 [0.71 0.90]; approximate entropy: p<0.001, AUC=0.76 [0.66 0.85]). With approximate 
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entropy, we could also detect an age-induced change in alpha-band activity (p=0.002, AUC=0.69 

[0.60 78]).

Conclusions: Like the sleep literature, spectral and entropic EEG features under general 

anesthesia change with age revealing a shift towards a faster, more irregular, oscillatory 

composition of the EEG in older patients. Age-related changes in neurophysiological activity may 

underlie these findings however the contribution of age-related changes in filtering properties or 

the signal to noise ratio must also be considered. Regardless, most current EEG technology used to 

guide anesthetic management focus on spectral features, and improvements to these devices might 

involve integration of entropic features of the raw EEG.

Keywords

Age; Anesthesia; General; Electroencephalography

Introduction

We are experiencing a strong shift in population demographics towards an aging society.1 

This shift is going to result in an increased number of surgeries in geriatric patients.2 Older 

patients are at higher risk of developing adverse outcomes like delirious episodes after 

surgery with general anesthesia.3,4 Electroencephalographic (EEG) monitoring devices may 

help to estimate the patients’ level of neurophysiologic activity and to prevent episodes of 

excessively high administered doses of anesthesia as characterized by EEG burst 

suppression. The presence of these episodes seem to represent an independent risk factor for 

cognitive impairments after anesthesia,5,6 however some controversy exists regarding 

strategies designed to reduce the duration of burst suppression.3,7

Despite these possible advantages, the current generation of monitoring devices does not 

account for age-related changes in EEG characteristics. In general, EEG characteristics 

during general anesthesia vary greatly among patients of different age and cognitive 

performance.8–10 Older patients exhibit lower EEG amplitudes (and consequently, lower 

power) during wakefulness,11 sleep,12 and general anesthesia.8,9 Previous publications have 

described age-related changes in power spectral density under general anesthesia to some 

degree,8,9 but a detailed description of age-related differences in other aspects of quantitative 

EEG analysis is still missing. We investigated age-related changes in the EEG recorded from 

patients from 18 to 90 years under general anesthesia with the goal to (i) characterize the 

EEG of older patients in more detail to further understand the neurophysiological changes 

that occur with advanced age and to (ii) estimate the influence of these changes on current 

EEG -based monitoring systems. We analyzed power spectral density, normalized power 

spectral density, the 1/f characteristics of the power spectrum, as well as the entropic 

measures permutation entropy13 and approximate entropy14 to investigate age-related 

changes in the EEG activity. The 1/f characteristic and information extracted from power 

spectral density and normalized power spectral density analysis help to get a good (more 

broad-band) overview of age-related changes. The entropic measures can help to identify 

subtler changes in the EEG. These analytical parameters were originally developed to 

characterize the complexity of a time-series signal and are reported as good measures to 

estimate the anesthetic level of a patient.15–17 We also used two parameters beta-ratio18 and 
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spectral entropy,19 that are incorporated in current monitoring systems to estimate possible 

impact of age on the index these systems generate to reflect the (hypnotic) level of 

anesthesia.

Methods

We used frontal EEG records from 180 patients during general anesthesia, collected at the 

Waikato District Health Board Hospital in Hamilton, New Zealand. These patients gave 

written informed consent, and had contributed to an earlier observational study.20 The 

ethical approval was specifically for the establishment of an anonymous EEG database that 

could be used for various post-hoc analyses. We selected those patients who had received 

propofol for induction, and sevoflurane for maintenance of anesthesia. For each patient, we 

selected ten seconds of artifact-free, non-burst-suppression EEG, recorded five to two 

minutes prior to the onset of surgery, which represent a clinical level of general anesthesia 

without any surgical stimulation. We recorded the EEG with either the BIS (Medtronic, 

Dublin, Ireland) or the Entropy Module (GE Healthcare, Helsinki, Finland) monitors at 128 

and 100 Hz respectively. Raw EEG from the BIS was then resampled to 100 Hz for ease of 

comparison.

We estimated effect-site concentrations of sevoflurane, opioid, and propofol using standard 

pharmacokinetic models. We calculated the effect-site sevoflurane concentration (in 

minimum alveolar concentration (MAC), CeMAC) using a simple end-tidal to brain delay 

model with a diffusion half-time constant (Keo) of 144 seconds.21 Based on these values, we 

calculated age-adjusted MAC values (referenced to 1 MAC in a 40 year old, i.e. MAC40) as 

described by Mapleson.22 Opioid concentration (in fentanyl-equivalents; 1 ng/ml of fentanyl 

equals 20 ng/ml of morphine) was calculated using the two-compartment model parameters 

in Mazoit, Butscher et al. 200723 for morphine, and in Shafer and Varve24 for fentanyl. We 

estimated effect-site propofol concentrations according to the model and parameters 

described by Wiczling et al.25

EEG analysis

Spectral analysis—We calculated the power spectral density using Thompson’s 

multitaper power spectral density estimate. We used the MATLAB R2015a (The MathWorks 

Inc., Natick, MA) pmtm function (default settings and NFFT=256). Based on power spectral 

density, we calculated the power in the 0.5–30 Hz range, the alpha-band power (7.8–12.5 

Hz), and the beta-band power (12.5–25 Hz) as well as the lower frequency delta-band (0.4–

3.9 Hz) and theta-band (3.9–7.8 Hz). We also computed a normalized power spectral density 

by dividing the power spectral density by the sum from 0.4 to 30.5 Hz. We used the Python 

based fitting oscillations & one over f toolbox using the provided MATLAB-wrapper26 to 

identify periodic activity as well as the aperiodic component of the EEG. The fitting 
oscillations & one over f algorithm decomposes the power spectral density into periodic 

components as well as an aperiodic component that reflects 1/f like characteristics. The 

aperiodic component is fitted according to L=b-log(Fa) with b being the (broadband) offset, 

F being the frequency vector, and a being the slope. We did not consider a “knee” parameter 

and hence used the “fixed model” as described in the original publication.26 We defined the 
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range to detect possible oscillatory components from 1 to 30 Hz and focused on the 

detection of these peaks in the alpha range.

Furthermore, we obtained the relative alpha- and beta-band power by dividing the sum of 

power spectral density in the 8–12 Hz (alpha) or 12–25 Hz range (beta) by the sum of power 

spectral density in the 0.4–30 Hz range.

Entropy analysis—Entropic measures constitute a straightforward, time-domain approach 

to evaluate EEG features. We individually calculated approximate entropy and permutation 

entropy for the EEG 0.5–30 Hz range, the EEG alpha-band, and the EEG beta-band. We 

applied an adaptive filtering routine (Butterworth filter, order 3–5) using the MATLAB 

filtfilt functions that preserves the phase of the signal. So as not to include edge effects 

caused by filtering, we applied the filter to a 30 s EEG segment and used the central 10 s to 

calculate the entropies for the different frequency ranges.

For approximate entropy we used a custom routine, for permutation entropy, we adapted the 

my_permutation_entropy function from MATLAB Central. We chose an embedding 

dimension m=3 and a time delay τ=1 for permutation entropy15 and m=2 / τ=1 together with 

tolerance r=0.2SD for approximate entropy.27 These parameter settings are commonly used 

for EEG analyses.15,16,27,28 A detailed description of how to calculate the parameters can be 

found in the papers initially presenting the methods by Steven M Pincus for approximate 

entropy14 and Bandt and Pompe for permutation entropy.13 Approximate entropy searches 

for similar amplitude patterns (of length m) in the EEG and calculates the probability of the 

patterns remaining similar if it is extended to a length of m+1. Similar in this context means 

that the amplitude values between the patterns do not differ by more than the defined 

tolerance r. permutation entropy as an ordinal measure codes small segments of length m 

according to their ranks, with the highest amplitude in the segment having the highest rank. 

permutation entropy presents the Shannon entropy29 of the probability distribution of the 

possible patterns (here 6, if m=3). A graphical explanation for approximate entropy and 

permutation entropy can be found here30.

Phase-randomized surrogate analysis—In order to clearly delineate the specific 

contribution of extracting information from the entropic measures vs the spectral measures 

of a signal we used phase-randomized surrogate data. We calculated 200 phase-randomized 

surrogates for each of the 180 EEG episodes and compared the entropic measures to the 

spectral EEG band powers. For surrogate generation we used a modified version of the 

surrogate function for phase randomization of the PhysioNet Toolkit31. We modified this 

function, so that no amplitude transformation, but only a phase randomization was 

performed. We then calculated the approximate entropy and permutation entropy for the 

alpha and beta range as well as the relative alpha- ad beta band power for the surrogates.

Parameters for comparison to available monitors—In order to estimate the 

influence of age on available monitoring systems like the BIS and Entropy module we 

calculated the beta ratio=log(sum(power spectral density30–47Hz)/sum(power spectral 
density11–20Hz)) as proxy for the sub-parameter BetaRatio of the BIS.32 We further 

calculated the spectral entropy of the normalized power spectral density for settings 
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mimicking the state entropy (to 32 Hz) and response entropy (47 Hz) for different lower 

band limits of 0.8 and 1.1 Hz.19 For 168 of the 180 patients we also had BIS indices 

available. In order to evaluate the influence of age on BIS, we used the last index value 

displayed within the 10 s analysis window we used for spectral and entropic analysis.

Statistical analysis

Because of the retrospective nature of our investigation, no statistical power calculation was 

conducted prior to the study and the sample size was based on the available number of 

patient EEG. Our spectral analyses (except the spectral entropy with the 1.1 Hz lower limit 

were a priori and the entropic analyses (approximate entropy, permutation entropy) were 

post hoc analyses after evaluating different parameter settings.

Regression analyses—We generated models using the least squares method for linear 

regression analysis for each dependent variable with respect to age. For each linear model, 

we generated the regression curve and performed a one-sample t-test comparing the slope 

coefficient against a slope of zero. Additionally, we determined the strength of the 

correlation, or rather the fit of the model as an R2 value.

Evaluation of interaction between sevoflurane concentration and EEG 
parameters—In order to evaluate if the EEG parameters (i.e., permutation entropy and 

approximate entropy, differ significantly based on an interaction between age and age-

adjusted MAC at a 5% significance level, we calculated the linear model interaction terms 

using the MATLAB fitlm function.

Comparison of the youngest versus the oldest quartiles—For each parameter, we 

compared the youngest 25% (n=46, 1st quartile, Y25) and the oldest 25% (n=46, 4th quartile, 

O25) of patients using a Mann-Whitney U test at a confidence level of 95% together with the 

area under the receiver operator characteristics curve (AUC) and 10000-fold bootstrapped 

95% confidence intervals (CI) as effect size. We used the MATLAB-based MES toolbox for 

AUC and 95% CI calculation.33 By including all subjects of a certain age our youngest and 

oldest quartiles each contained 46 subjects (not 45). Our excluded middle age range (44 to 

72 years old) contained 88 instead of the expected 90 subjects. According to the traditional 

academic point system, AUC values can be interpreted as excellent: 1≥AUC≥0.9; good: 

0.9>AUC≥0.8; fair: 0.8>AUC≥0.7; poor: 0.7>AUC≥0.6; or fail: AUC<0.6. For the 

(normalized) power spectral density comparison, we only defined significant results if at 

least two neighboring frequencies showed significant differences between the young and old 

group. This procedure has been applied for similar studies , by other groups.34

All tests applied were two-tailed tests and we considered p<0.05 being significant.

Results

Of 234 patients undergoing surgical intervention with propofol induction and sevoflurane 

maintenance, 54 patients were excluded from analysis due to missing EEG or incomplete 

volatile anesthetic concentrations data in the period prior to surgery onset, resulting in 180 

patients being included in the final analysis. The subject ages ranged from 18 to 90 years 

Kreuzer et al. Page 5

Anesthesiology. Author manuscript; available in PMC 2021 May 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



(mean (SD) = 56.7(18.4) years). The age range for the youngest 25% (Y25) was from 18 to 

43 years and for the oldest 25% (O25) from 73 to 90 years. Figure 1 presents a flow chart of 

patient and group selection. The results of all linear regressions as well as all the 

comparisons between the youngest 25% and the oldest 25% are presented in Table 1.

Medications

Despite the lack of any prescribed anesthetic protocol, the delivered sevoflurane 

concentration was lower in the older patients. We could eliminate this trend by age-adjusting 

the MAC according to Mapleson.22 Similarly, the estimated propofol concentration 

decreased with age. By contrast, our data did not reveal any age-related difference in the 

opioid concentrations, measured in fentanyl equivalents. Supplemental Figure S1 presents 

the details and corresponding plots for describing the drug dose to age relationships. While 

the relationships for propofol and sevoflurane and age were statistically significant, the R2-

values were rather low (R2≤0.06), indicating substantial contribution by other unmeasured 

factors. These results may reflect that the providers in our study consider age in their 

titration of dosages of propofol and sevoflurane but other nuanced factors go into decisions 

on opioid administration (e.g., surgery type, hemodynamic changes).

Older patients exhibit a more uniform distribution of relative spectral power

We obtained very similar age to power spectral density relationships as presented in a 

previous study9 and provide the results and the corresponding plots as supplemental data in 

Figure S2 and Figure S3. The normalized power spectral density showed significant 

differences only in the low (0.5–5 Hz) and high (>21 Hz) frequency ranges when comparing 

the youngest 25% versus the oldest 25% patients (Figure 2A). Figure 2B presents exemplary 

traces from the youngest 25% and the oldest 25% group.

We did not find significant differences between the youngest 25% and the oldest 25% in 

normalized power spectral density in the EEG alpha range (p=0.693; AUC=0.52 [0.42 0.63]) 

(Figure 3A) but a “poor” and significant effect (p=0.041; AUC= 0.62 [0.52 0.73]) in the 

EEG beta range (Figure 3B) as we did not observe a linear relationship of age with relative 

alpha and beta power and the difference in relative beta power. We take these results as 

evidence that age induces a change in the EEG, but that these changes may not be reliably 

detected by using the power in the classical frequency ranges. The evaluation of the relative 

power in the lower frequency delta and theta band did not show any age induced effects as 

well (Figure S4).

The fitting oscillations & one over f analysis revealed that in 174/180 patients (97%) at least 

one oscillatory component in the 8–12 Hz alpha range could be observed. Because the six 

patients without such a periodic component were distributed over the age range, we decided 

to keep these patients included. The parameters of the aperiodic component of the 

normalized power spectral density changed with age (Figure 3C). For the comparison 

between the youngest 25% and the oldest 25% the exponent was affected significantly and 

strongly (p<0.001, AUC= 0.84 [0.76 0.92]) by age as was the offset (p<0.001, AUC=0.81 

[0.71 0.89]. Figure 2C shows the more uniform distribution of the aperiodic 1/f component 

of the power spectral density in the old patients.
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Age related changes can be observed using entropy-based analyses

permutation entropy increased with age in the 0.5–30 Hz range as well as in the EEG beta 

range, but not in the EEG alpha range EEG (Figure 4A–C). Comparing the youngest 25% 

and the oldest 25%, we found a strong and significant (p<0.001, AUC=0.81 [0.71 0.90]) 

effect of age on the (0.5–30 Hz) filtered EEG and a fair and significant (p=0.0006, 

AUC=0.71 [0.61 0.81]) effect on the beta band EEG. We found no significant difference for 

the alpha band EEG (AUC=0.55 [0.43 0.67], p=0.384). These results signify that 

permutation entropy tracks the shift towards higher-frequency EEG activity with age.

approximate entropy of all three frequency ranges increased with age (Figure 5A–C). The 

comparisons of approximate entropy for the youngest 25% and the oldest 25% patients 

revealed a significant and moderate to strong effect of age in the 0.5–30 Hz range (p<0.001, 

AUC=0.76 [0.66 0.85]), in the EEG alpha range (p=0.002, AUC=0.69 [0.60 0.78]), as well 

as in the EEG beta range (p=0.007, AUC=0.66 [0.55 0.77]). The fact that approximate 

entropy, in contrast to permutation entropy, revealed an effect on the alpha-band possibly 

indicates a higher sensitivity of approximate entropy to lower frequencies.

The entropic parameters did not undergo an age-related change in the slower dynamics, i.e., 

when applied to the EEG filtered to the delta and theta range. We present the detailed 

statistical parameters in Table 1 and the corresponding regression and box plots in the 

supplemental Figure S5.

Surrogates

The surrogate analysis revealed a lower regression line for approximate entropy in the alpha 

and beta band as well as for permutation entropy in the beta band for the original signals. 

The phase randomization had no influence on the relative alpha- and beta band power. The 

supplemental Figure S6 shows the corresponding plots.

Monitoring parameters show age-related changes

We used the beta ratio and spectral entropy to estimate a possible influence of age on 

neurophysiological measures as implemented in commonly used monitoring systems. The 

BIS revealed a strong dependence on age as did the spectral entropy for the 1.1 to 32 Hz and 

1.1 to 47 Hz range (Table 1 and Figure S7). The comparison of the youngest 25% and the 

oldest 25% revealed significant and fair effects of age on beta ratio (p<0.001, AUC=0.73 

[0.63 0.82]) and spectral entropy (1.1–32 Hz: p<0.001, AUC=0.79 [0.70 0.87]; 1.1–47 Hz: 

p<0.001, AUC=0.80 [0.71 0.88]. For the 0–8 to 32 Hz (p=0.202; AUC=0.58 [0.47 0.68]) or 

47 Hz (p=0.161; AUC=0.58 [0.47 0.69]), we could not observe a significant difference with 

age. These results indicate an influence of age on the (sub-) parameters that are used to track 

neurophysiological changes in EEG-based monitoring systems which seems strongly 

dependent on the frequency range. For the sample of 168 patients we could observe an 

increase of the recorded BIS with age (linear regression: p>0.001, t-statistic: 3.84; youngest 

25% vs. the oldest 25%: P=0.026, AUC=0.65 [0.52 0.76])
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Discussion

Our results show that age-dependent changes in EEG characteristics during general 

anesthesia extend beyond a mere decrease in EEG amplitude. Our demonstrable changes in 

power spectral density of the EEG recorded under general anesthesia have been reported by 

other groups.8,9 The absolute power decreases with age in every frequency range. After 

normalization, we found that delta oscillations contributed less to total power with age, 

while (high) beta oscillations contributed more. The change in the 1/f characteristics as 

revealed by the fitting oscillations & one over f analysis confirm this finding. We did not 

observe a significant change in the relative power in the specific bands, but the additional 

usage of entropic parameters revealed that these parameters are capable of tracking subtler 

changes in the oscillatory composition of the EEG that are not detected by power spectral 

density based approaches, also in the alpha- and beta band. The entropic parameters seem to 

analyze additional content in the signal as shown by surrogate analysis. The higher entropies 

in the surrogates point towards a loss in deterministic signal properties, as has been also 

reported earlier.35 The monitoring parameters BIS, BetaRatio, and spectral entropy were 

also affected by age, a finding highlighting that age adjustments should be considered for 

monitoring.

Influence of age on EEG amplitude and power spectral density

Reductions in grey matter, including cortical thinning,36–40 or a decrease in skull 

conductance41 with age cause a decrease in EEG amplitude, and hence lower power spectral 

density. Furthermore, the EEG amplitude also depends somewhat on neuronal synchrony, 

but it is unknown at present to what extent this is altered by aging.42

Age influences EEG spectral power

Our power spectral density analyses are in line with previously published findings, i.e., 

power spectral density decreases with age9. The body of knowledge we can add to these 

results is the more uniformly distributed normalized power spectral density that is reflected 

by a flatter (aperiodic) 1/f slope. Schultz et al.8 reported changes in relative band power for 

propofol anesthesia and other groups for non-rapid eye movement sleep.12,43 Age-related 

cortical activation during non-rapid eye movement sleep seems to increase relative beta 

power,12 a scenario that sounds plausible for our findings under general anesthesia as well. 

Further, aged women had lower relative EEG delta-band and higher beta-band power during 

wakefulness and rapid eye movement sleep compared to a middle-aged group.44 In general, 

there may be a number of potential explanations that cause the observed shift in the relative 

power spectrum. An increase of neural noise may be one of them. Older test subjects had a 

flatter 1/f slope during visual tasks, due to increased neural noise.42,45 This increase does not 

have to represent a more aroused brain state since recent research found increased higher 

beta-frequencies to be associated with poorer memory test outcome in geriatric women.46 

Volunteers with eyes closed exhibited higher beta-coherence with age, indicative of higher 

synchrony in this frequency range.47 But, besides a possible increase in neural noise, the 

changes in spatiotemporal filtering properties may be due to a change of age-related, 

physiological changes affecting the cortex40 for instance the extracellular space, which can 

act as 1/f filter.48 Further, age, and the decline in EEG power also reduces the signal to noise 

Kreuzer et al. Page 8

Anesthesiology. Author manuscript; available in PMC 2021 May 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



ratio, as e.g. shown in experiments with event-related potentials.49 Our findings may either 

reflect increased cortical neural noise, i.e., spiking not correlated to oscillatory activity in the 

elderly brain, the age-induced change of physiological 1/f filtering properties, or changes in 

the signal to noise ratio of the EEG with age, or a combination of these factors. Our 

observational study was not designed to closely investigate the cause for the flatter slope. 

The results further showed that the relative alpha and beta-band power was not affected by 

age. This information could become important for the design of future monitoring devices 

but does also question the use of this approach to investigate age-related changes. Entropic 

measures in the time domain, like approximate entropy and permutation entropy, provide 

information separate from spectral features.15–17,27 An understanding of both spectral and 

entropic features may broaden our clinical model of estimations regarding consciousness in 

patients under general anesthesia

Older patients express higher signal entropy

Our findings showed increasing approximate entropy and permutation entropy (except in the 

alpha-band) values with age. The results of approximate entropy and permutation entropy 

differ to some degree, because both parameters may target different EEG characteristics.50 

permutation entropy is regarded as superior to approximate entropy in distinguishing 

conscious from unconscious EEG,16,17,51 while approximate entropy performs better than 

permutation entropy in tracking different levels of anesthesia.17 These differences are in 

accordance with the strong effect of age on permutation entropy in the high frequencies 

(beta-band), as well as the ability of approximate entropy to identify differences in the alpha 

band – where permutation entropy showed no contrast. The age-related increase in entropic 

measures seem to apply to other vigilance states and encephalographic modalities as well: in 

a magnetoencephalography study, permutation entropy increased with age in volunteers that 

were awake with their eyes closed.52 In general, the increase of entropic measures with age 

probably reflects the effect on the 1/f slope by indicating a more uniform distribution of 

ordinal EEG patterns (permutation entropy), and a decreased signal predictability 

(approximate entropy) in the elderly. In this regard, an association between permutation 

entropy (for m=3) and the spectral centroid of the (weighted) power spectral density was 

recently described.53 This proposition may eventually add a general link between spectral 

analytical approaches and permutation entropy, such that ordinal irregularity may become 

usable as a proxy for changes in the oscillatory EEG composition. Admittedly, this link is 

still missing for approximate entropy, though. But these measures seem to track 

deterministic properties in the signal, in contrast to power spectral density measures. 

Although other settings of permutation entropy could have tracked age-related changes with 

higher precision, we do not know the underlying cause for that and hence we refrained from 

presenting the results in this manuscript. Since using lags of τ>1 could lead to unintended 

distortions in the signal,53 we chose to apply permutation entropy with τ=1 to EEG filtered 

to the different frequency bands. In any case, our analyses demonstrate the sensitivity of 

entropic measures to subtle changes in the EEG.

Reasons for altered EEG characteristics

There is evidence that the aged brain reacts to general (sevoflurane) anesthesia differently 

than the young brain. In young brains, usually, a peak in the EEG alpha range develops 
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under general anesthesia34 as a marker of adequate anesthesia. This peak in the EEG alpha-

band, as well as strong interhemispheric EEG alpha-band coherence34 most probably is 

associated with thalamocortical pacemaker cells and their activity spreading to the cortex.54 

Older and cognitively impaired patients express lower alpha power and alpha coherence 

during general anesthesia.9,10,55 We did not observe an influence of age using the relative 

alpha-band power, a finding that is in line with Schultz et al., who found age related 

differences in relative alpha power only at very profound levels of propofol anesthesia.8

Hence, the described decrease in alpha power may be due to the general decrease in EEG 

amplitude with age.

Although we did not see an influence of age in relative alpha-band power in our results, 

approximate entropy of the alpha-band revealed a significant change. Because strong and 

synchronous (i.e., low approximate entropy) alpha oscillations may correlate with good 

cognitive function and better outcomes after general anesthesia,10,56,57 this parameter may 

be useful to identify patients with a ‘frail’ brain using EEG recordings during general 

anesthesia in the future. For both entropic parameters we observed changes in the EEG beta 

range. This frequency range seems associated with an activated cortex and intracortical as 

well as corticocortical information processing.54,58 Hence our findings of a flatter 1/f slope 

may reflect a state of higher cortical activation in the elderly, or a higher influence of noise. 

During visual tasks the flatter 1/f slope may represent a decoupling of (cortical) population 

spiking activity from an oscillatory regimen.42 Furthermore, findings from sleep research 

indicate that the EEG of older subjects during sleep may be closer to the wake state than in 

middle-aged to young subjects.44 At the same time, age seems to affect thalamocortical 

regulatory mechanisms during sleep as expressed by lower sleep spindle density, duration, 

and amplitude.59 In general, the EEG of older patients may have a smaller dynamic range. 

During the awake state, the EEG is slower in the older population8 and it shows increased 

relative beta power during general anesthesia. Hence, the aged brain may not be capable of 

expressing activated or synchronized activity to the same degree that the young adult brain is 

capable of. In conclusion, a difference between chronologic vs. functional brain age should 

be considered to reveal functional-age-related differences in the EEG in more detail. Young 

patients with potential for having a frail brain can express EEG activity typical for an old 

patient.55 Furthermore, (mild) cognitive impairments like early-stage Alzheimer’s seem to 

change the EEG architecture in a similar fashion as aging.60

Implications for titration of anesthesia

We utilized BIS, beta ratio and spectral entropy to estimate the presumed behavior of 

existing monitoring systems. In general, these parameters exhibited an increase with age. 

Consequently, our results hint at a possible influence of age on the indices of commonly 

used EEG monitors (BIS and GE Entropy) towards a lower dose. But the presented BIS 

values may not correlate with our analyzed EEG segments because of a considerable time 

delay of up to 60 s.61,62 Still, recent findings from Ni et al. show higher BIS in older adults, 

hence emphasizing our results.63 At least some of the commercially available monitors were 

developed using data from rather young adult subjects.64 A study found that at the propofol-

induced loss of consciousness, older patients expressed higher BIS and state entropy values, 
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projecting a “more awake” EEG by means of the indices.65 These and our own findings 

imply that future EEG -based “depth of anesthesia” monitoring systems should account for 

patient age, or use parameters not affected by age. In our data limited to EEG during 

unstimulated unconsciousness, relative alpha and beta power did not change with age but 

showed considerable variability. Hence, a possible use for monitoring purposes has to be 

investigated more thoroughly.

Limitations

General anesthesia was not conducted by any strict protocol but navigated by best clinical 

practice. For sevoflurane, we could overcome a possible limitation of age and drug 

requirement by using age-adjusted MAC estimates.22 While we did find a decrease in 

residual propofol concentration with age, lower propofol requirements with age have been 

reported previously.66 Some patients also received opioids, but these concentrations did not 

show any age-related trend. We did not evaluate the EEG characteristics during general 

anesthesia with surgical stimulation. We also cannot make a statement regarding age-related 

EEG changes for other anesthetic drugs triggering different EEG patterns and having 

different receptor targets – like ketamine or dexmedetomidine. Although, we did not observe 

any consistent age-related differences in the sevoflurane MAC and the opioid concentration, 

we cannot completely exclude a complex confounding relationship between age and 

anesthetics or opioids. To tease out these relationships would require some, specific, tightly 

controlled, prospective interventional studies. Another limitation is that we only recorded 

single channel EEG. We could thus not evaluate the influence of age on multivariate 

parameters, and cannot add information to reported changes in spectral coherence with age.9 

And ultimately, the EEG is a signal originating from a large number of (mainly) cortical 

neurons and transmitted through layers of cerebrospinal fluid, bone, skin, and hair.67 Hence, 

we refrain from drawing mechanistic conclusions on the receptor level. Still, an age-related 

influence on inhibitory network activity is highly likely.

In conclusion, we could show that the EEG under general anesthesia changes with age 

towards activity patterns of higher frequencies that cause a flatter 1/f slope of power spectral 

density as well as an increase of entropic measures. These changes may be due to changes in 

neurophysiological filtering properties or the signal to noise ratio. But in general, patient age 

should be taken into account when using the EEG. Current, EEG -based monitoring 

approaches do not seem to correct for it.
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Figure 1: 
Flow chart of the excluded patients and groups defined for analysis
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Figure 2: normalized power spectral density exemplary raw EEG traces, and the aperiodic (1/f) 
component from young and old patients.
A) Median (±median absolute deviation) normalized power spectral density plots of EEG 

derived from the Y25 (blue) and O25 (orange) patients of the data set. power spectral 

density is presented with corresponding AUC values and bootstrapped 95% confidence 

intervals. The relative power spectral density indicated a more uniform distribution of the 

EEG from the old group with lower relative power at low frequencies (0.5–5 Hz) and higher 

relative power at high frequencies (>21 Hz).

B) Exemplary raw EEG traces from patients in the Y25 group (blue) and O25 group 

(orange). These traces highlight the age-induced differences on the EEG, especially fewer 

slow oscillations and an increased amount of high frequent activity.

C) Median (±median absolute deviation) of the exponential fit of the aperiodic (background) 

1/f component between the Y25 (blue) and O25 (orange) patients. In addition, the AUC 

values and 95% bootstrapped confidence intervals are presented. In general, the aperiodic 

component of the power spectral density was more uniformly distributed in the old patients.

Filled circles indicate a significant difference, between Y25 and O25 evaluated by AUC 

confidence intervals excluding 0.5. The areas of light colors indicate the median absolute 

deviation. In the boxplots, the circles indicate outliers as defined by the MATLAB plotting 

routine. They were not excluded from analysis. Y25: youngest 25% O25: oldest 25%
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Figure 3: Linear regression and box plots of the youngest vs. the oldest quartile for (A) the 
relative (normalized) EEG alpha power, (B) the relative EEG beta power, and (C) the slope of the 
aperiodic 1/f component with corresponding box plots.
A) Relative power in the alpha-band EEG did not significantly (p= 0.176, t-statistic: −1.36) 

change with age. There was no significant difference (p= 0.693, AUC= 0.52 [0.42 0.63]) in 

relative alpha power between Y25 (0.10 [0.08 0.17]) and O25 (0.10 [0.07 0.17]).

B) Relative EEG beta power did not significantly (p=0.077, t-statistic: 1.78) change with 

age, but there was a significant difference (p= 0.041) in relative beta power between Y25 

(0.03 [0.02 0.04]) and O25 (0.04 [0.02 0.06]). The AUC=0.62 [0.52 0.73] as effect site 

indicated a “poor” effect

C) The slope of the aperiodic 1/f component derived by the fitting oscillations & one over f 
algorithm significantly decreased with age (p<0.001, t-statistic: −8.14). The box plot 

indicates a significant flatter (p<0.001) slope in O25 patients (median [1st 3rd quartile]: 2.00 

[1.89 2.16]) compared to the Y25 (2.36 [2.19 2.60]). The AUC=0.84 [0.76 0.92] as effect 

site indicated a “good” effect.
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In the regression plots, the yellow dots present the single patients and the blue line the linear 

fit. Y25: youngest 25% O25: oldest 25%; yr: year
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Figure 4: Permutation entropy (m=3, τ=1): Linear regression and box plots of the youngest vs. 
the oldest quartile for the (A) 0.5–30 Hz range, (B) the alpha range, (C) and the EEG beta range.
A) Permutation entropy of the 0.5–30 Hz filtered EEG significantly increased (p<0.001, t-

statistic: 7.04) with age. Age had a “good” and significant (p<0.001; AUC=0.81 [0.71 0.90]) 

effect on permutation entropy as depicted in the comparison between Y25 (2.02 [1.98 2.07]) 

and O25 (2.11 [2.06 2.15]).

B) Permutation entropy of the alpha-band EEG showed no significant age-related effect 

(p=0.489, t-statistic: 0.69) and the AUC for the comparison between Y25 and O25 indicated 

no effect (p=0.384; AUC=0.55 [0.43 0.67]).

C) Permutation entropy of the beta-band EEG significantly (p>0.001, t-statistic: 4.95) 

increased with age. Age had a “fair” and significant (p<0.001; AUC= 0.71 [0.61 0.80]) 

effect on permutation entropy as depicted in the comparison between Y25 (2.24 [2.20 2.27]) 

and O25 (2.27 [2.24 2.29]).
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In the regression plots, the yellow dots present the single patients and the blue line the linear 

fit. In the boxplots, the circles indicate outliers as defined by the MATLAB plotting routine. 

They were not excluded from analysis. Y25: youngest 25% O25: oldest 25%; yr: year
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Figure 5: Approximate entropy (m=2, r=0.2SD, τ=1) vs. age and corresponding youngest vs. 
oldest quartile box plot for the (A) 0.5–30 Hz EEG range, (B) the EEG alpha range, (C) and the 
EEG beta range.
A) Approximate entropy of the 0.5–30 Hz filtered EEG significantly (p<0.001, t-statistic: 

4.87) increased with age. Age had a “fair” and significant (p<0.001; AUC= 0.76 [0.66 0.85]) 

effect on approximate entropy as depicted in the comparison between Y25 (0.83 [0.77 0.89]) 

and O25 (0.93 [0.84 0.99]).

B) Approximate entropy of the alpha-band EEG significantly (p<0.001, t-statistic 4.18) 

increased with age. Age had a “poor”/”fair” and significant (p=0.002; AUC= 0.69 [0.60 

0.78]) effect on approximate entropy as depicted in the comparison between Y25 (0.57 [0.56 

0.59]) and O25 (0.60 [0.57 0.62])

C) Approximate entropy of the beta-band EEG significantly increased with age (p=0.015; 

AUC=0.66 [0.55 0.77]). Age had a “fair” and significant effect on approximate entropy as 
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depicted in the comparison between O25 (1.08[1.03 1.12]) and Y25 (1.05 [1.00 1.08]) of the 

data set.

In the regression plots, the yellow dots present the single patients and the blue line the linear 

fit. In the boxplots, the circles indicate outliers as defined by the MATLAB plotting routine. 

They were not excluded from analysis. Y25: youngest 25% O25: oldest 25%; yr: year
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