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Abstract

T cells recognize and respond to self antigens in both cancer and autoimmunity. One strategy to 

influence this response is to incorporate amino acid substitutions into these T cell-specific 

epitopes. This strategy is being reconsidered now with the goal of increasing time to regression 

with checkpoint blockade therapies in cancer and antigen-specific immunotherapies in 

autoimmunity. We discuss how these amino acid substitutions change the interactions with the 

MHC class I or II molecule and the responding T cell repertoire. Amino acid substitutions in 

epitopes that are the most effective in therapies bind more strongly to T cell receptor and/or MHC 

molecules and cross-react with the same repertoire of T cells as the natural antigen.
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1 Introduction

The relative risk of developing cancer increases with autoimmunity, and autoimmunity 

increases the risk of cancer (reviewed in [1]), although both disease categories involve 

diverse cell types and mechanisms. One similarity in both conditions, however, is that T 

cells interact with self antigens. Specifically, the antigen receptor on T cells (TCRs) interacts 

directly with peptides derived from self proteins presented in the groove of MHC molecules. 

One case study involving a melanoma patient suggests that T cells and antigens in both 

diseases could be the same. The patient’s melanoma was treated with expanded autologous 

tumor infiltrating lymphocytes (TILs) resulting in durable and complete remission of the 

cancer. This patient also developed autoimmunity resembling Vogt-Koyanagi-Harada disease 
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(VKH) [2]. VKH is an autoimmune disease targeting organs that contain melanocytes, such 

as eye, ear, skin, and meninges.

Most T cells that effectively react to self antigens and attack self tissues, so called antitumor 

T cells in cancer or pathogenic T cells (Tpaths) in autoimmunity, are culled in the thymus 

during T cell development. Regulatory T cells (Tregs) promote tolerance to self antigens and 

stop the function of the other T cells to avoid autoimmunity. Interventions to activate T cells 

against self/tumor antigens for immunotherapies of cancer or to impair effector T cells 

(Tpath) cells against self antigens in autoimmunity therapies require innovative methods. To 

achieve such goals, here we discuss the use of mimotopes, mimics of epitopes, which 

substitute amino acids in the antigenic peptide with either natural or artificial amino acids. 

Mimotopes have also been tested in HIV and other infectious diseases, but are beyond our 

scope and have recently been reviewed [3].

Cross-reactivity of TCRs

For T cell immunity to be successful in modulating immune responses, TCRs must 

efficiently bind to more than one peptide-MHC (pMHC) molecule [4]. Each αβ T cell 

expresses one TCR generated by somatic recombination of gene fragments and random 

addition/subtraction of nucleotides at the gene fragment junctions (reviewed in [5]). This 

process results in vast TCR diversity making it possible for TCRs to interact with pMHC, 

and contributes to antigen binding specificity of the T cell. However, there are not enough T 

cells in our bodies for one T cell clone to interact with one peptide [eg, assuming 20 amino 

acids and 10 amino acid long peptides, there are 2010 (~1 × 1013) possible peptides, and 

there is the possibility of even more because peptides come in different lengths, may receive 

post-translational modifications, and there are multiple MHC-restricting molecules,). In 

addition, there is no mechanism for a single cognate antigen to find a single T cell clone 

during an infection. There are a number of hints that suggest TCRs interact with multiple 

peptide antigens. First, T cells are exposed to at least two pMHC molecules: one during 

thymic development and another as they function in the periphery. Another observation that 

suggests significant polyspecificity of T cells was the identification of diverse peptide 

ligands using synthetic combinatorial peptide libraries [6–8]. Using these libraries, it was 

estimated that between two thousand and two million stimulatory peptides contribute to each 

T cell activation. Another example of cross-reactivity was in a clinical trial for melanoma: 

patients received affinity-enhanced T cells that were meant to target and kill MAGE-3A 

expressing tumor cells, but those T cells also reacted with Titin-expressing cardiac cells [9–

11]. The two proteins had only 55% sequence overlap. To directly address the extent of 

cross-reactivity, Wooldridge and colleagues used experiments and modeling to estimate that 

a single TCR can respond to more than one million 10-mer peptides, making TCRs the most 

degenerate receptors known [12].

The cross-reactivity of TCRs to multiple pMHCs has inspired researchers to alter antigen-

specific T cell function in tumor immunity and autoimmunity using native peptides with 

substituted amino acids or new post-translational modifications. These substituted peptides 

have been given many names: peptide mimotopes, heteroclitic peptides, peptide analogues, 

altered peptide ligands, peptide variants, and peptide agonists. We have chosen 
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“mimotopes”, mimics of epitopes, for this review. Substituting amino acids in peptides is not 

the only method to change TCR specificity. There are numerous ways that peptides can be 

modified naturally or synthetically and remain recognized by TCRs. The concept of 

molecular mimicry also requires TCRs to be cross-reactive: pathogens and self-antigens 

share sequence or structural similarities (reviewed in [13]). The antigen from a pathogen 

infection, raises T cells that crossreact with self antigens and may result in autoimmunity. 

Using this framework, the pathogen is a mimotope for the T cells that cross-react with self. 

Structural studies [14] and computational molecular dynamics simulations [15] propose that 

major features of the pMHC structure for the myelin basic protein and peptides from Herpes 

simplex virus and Pseudomonas aeruginosa bind to a cross-reactive TCR from a multiple 

sclerosis patient in a similar manner.

Three issues need consideration to develop ideal mimotopes that can robustly modulate 

disease activity. First, peptides must stimulate efficient TCR signaling. Such peptides need 

to be efficiently presented by MHC molecules, and pMHCs need to be efficiently recognized 

by TCRs. Both of these interactions are most likely achieved with peptides that bind to the 

MHC molecule and the pMHC complex has relatively strong affinity for the TCR. Second, 

the TCR repertoire that reacts with an original epitope must be similar to the repertoire 

reacting with the mimotopes so that the mimotopes modulate T cells which make a 

difference in the disease (Fig 1). Third, in autoimmunity elimination or modification of the 

entire Tpath repertoire is necessary to stop the autoimmune process, whereas targeting a 

portion of the tumor-specific or autoimmune Treg repertoire may be sufficient to fight the 

disease (Fig 2). With these requirements for the development of effective mimotopes in 

mind, here we discuss past accomplishments and future directions in identification effective 

mimotopes.

2 Substitutions in the MHC anchor amino acids

MHC class I (MHCI) and MHC class II (MHCII) molecules bound to peptide are a classic 

example of how form reflects function. The peptide binding grooves of the MHC molecules 

face away from the antigen presenting cell, so that the peptide can interact with the TCR 

(reviewed in [16, 17] and by many others). The groove is bordered by two alpha helices and 

the floor of the groove is made of a beta-pleated sheet. The peptide lies in the groove in an 

extended state allowing the amino acid side chains to point in optimal directions for 

interactions with TCR. In MHCI molecules, depending on the allele and the polymorphisms, 

the floor of the groove has a series of 6 pockets, A through F, that interact with the peptide 

[18, 19]. The amino terminus of the peptide binds directly to the A pocket in a side-chain-

independent manner. The residue of the last amino acid is buried in the F pocket locking the 

peptide into the groove, elucidating one position of the MHCI allele’s peptide binding motif. 

Since the ends of the peptide are “attached” and the ends of the MHCI grooves are closed, 

the peptide can bulge in the middle allowing for conformational changes upon TCR binding 

[20]. The size, shape, and electronic charge of the pockets determine which peptides interact 

with that MHC allele and with what binding affinity. Many mimotopes for human antigens 

are designed and tested for presentation by the MHCI HLA-A*0201 allele (HLA-A2) 

because, relative to other HLA alleles, HLA-A2 is frequently identified in many human 
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populations and there are many reagents (such as antibodies, antigen databases, atomic 

structures, and transgenic animals) that facilitate its study.

Peptide binding to MHCII molecules differ from MHCI in that the TCR binding surface is 

made of two proteins, alpha and beta, and the peptide extends beyond the open ends of the 

groove [21, 22]. Hydrogen bonds between the peptide backbone and the MHCII molecules 

are generally conserved and sequence-independent. The peptide binds in a more extended 

form than MHCI, with more hydrogen bonds and lacks the central bulge sometimes found in 

MHCI. However, like MHCI, the amino acid side chains of MHCII contribute to individual 

pockets which interact specifically with peptide amino acids. These pockets are named after 

the position of the peptide side chains that they accept. The most frequently used pockets are 

P1 and P9 near the ends of the groove, followed by the more central P4 and P6. Thus, the 

peptide binding motifs found in MHCII peptides are usually, but not always, in positions 1, 

9, 4, and 6.

As the MHC molecules have been identified and analyzed, consensus peptide binding motifs 

have been determined for many alleles. These motifs are used by the ever improving 

algorithms to predict which peptides effectively bind to MHC molecules (reviewed in [23]). 

To date, researchers most frequently substitute amino acids in peptide antigens that interact 

directly with the MHC molecule, referred to as MHC anchor-residue modifications (partial 

list: [22, 24–32]). The general rationale for making these substitutions is if a peptide does 

not bind well to the MHC molecule, the stability of the peptide-MHC interaction and 

presentation of the peptide antigen to TCR will be weak, reducing immunogenicity. 

Numerous studies have introduced MHC anchor-residue modifications with the goal of 

leading to stronger or modulated antigen-specific T cell responses in immunotherapies of 

cancer and autoimmunity. Interestingly, in T cell fingerprinting analyses, mutations in the 

anchor amino acids of MHCI-restricted peptides did not hinder TCR interactions as 

predicted [33]. We do not include a comprehensive list here, but discuss studies that justify 

how these mimotopes performed in vivo.

2.1 In cancer

Early clinical trials, targeting antigens shared by melanoma and differentiating melanocytes, 

with substitutions in the MHC anchor residues, such as Melan-A/MART-126–35 A27L, 

showed little efficacy (WT EAAGIGILTV, A27L ELAGIGILTV, the substituted amino acid 

is bolded) [34]. Later trials were more promising. In a prime/boost study, melanoma patients 

were first vaccinated with a plasmid encoding Melan-A/MART-126–35 A27L, followed by a 

boost with peptides [35]. Another trial with the MART-1 mimotope compared the responses 

to peptide encapsulated in noninfectious virus-like particles with and without LAG-3Ig 

designed to engage the LAG-3 checkpoint protein. One patient of 12 had a partial response 

in this trial [36].

Cole et al. examined differences between the Melan-A/MART-126–35 wild type and 

mimotope peptides [37]. Using two different T cell clones, they showed that the peptides 

bind to the MHC and TCR molecules with different binding properties and stimulated 

different responses in vitro. They also stimulated peripheral blood mononuclear cells 

(PBMCs) from HLA-A2 donors with these peptides followed by sequencing of the 
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complementarity-determining region 3 of the TCR’s beta chain (CDR3P) regions. They 

identified only 15 of 101 unique clones elicited by both peptides, suggesting that different T 

cell repertoires respond to both peptides. Structural studies of this tumor antigen and 

mimotope peptide also indicate differences in the surfaces identified by the TCR, likely 

resulting in different TCR repertoires of responding T cells, see Figure 1A [38, 39]. In 

another study, Speiser et al. vaccinated human melanoma patients with these peptides and a 

strong adjuvant (CpG oligodeoxynucleotides) [40]. Although there were more T cells 

responding to the modified peptide vaccines, the quality and function of the T cells that 

cross reacted with the natural peptide was weaker than those responding to the wild type 

antigen vaccine. In the same vein, there were a number of examples when the natural 

epitopes make higher affinity interactions with TCRs than the mimotope resulting in better T 

cell responses [40].

A clinical trial using four well-characterized tumor antigen peptides with amino acid 

substitutions that increased their binding to HLA-A2 was performed in patients with early 

stage melanoma [41]. The patients were vaccinated with mimotope peptides and adjuvant 

then analyzed for responses. High frequencies of mimotope-specific effector-memory T cells 

were identified in the PBMCs and the tumor lesions; however, there was no improvement in 

diseasefree survival or overall survival in the patients. When the responding T cells were 

further analyzed, there were stronger responses to the mimotope peptide that did not cross-

react with the wild type tumor antigen. The peptide sequences were Melan-A/MART-1 WT 

and A27L see above, gp100209-217 WT ITDQVPFSV, gp100 2M IMDQVPFSV, NY-

ESO-1157–165 WT SLLMWITQC, NY-ESO-1 C165V SLLMWITQV, and Survivin WT 

ELTLGEFLKL, Survivin T97M ELMLGEFLKL.

A randomized phase 3 trial, which enrolled 185 patients at 21 centers, was conducted in 

patients with advanced melanoma [42]. Patients were given IL-2 with or without the 

gp100209–217 2M peptide in the adjuvant Montanide ISA-51. The patients who received 

the mimotope vaccine did significantly better: overall clinical response was higher with the 

2M peptide, 16% vs. 6%, and patients had longer progression-free survival, 2.2 months vs. 

1.6 months. Consistent with clinical outcomes, different conclusions were made when 

analyzing this peptide than the anchor modified mimotopes discussed above. The 2M 

mimotope bound HLA-A2 with 9-fold stronger affinity than the gp100209–217 wild type 

peptide [43]. In addition, crystal structures of peptide bound to the HLA-A2 molecule were 

very similar and ELISpot assays showed that the frequency of IFNγ producing T cells in 

response to the wild type and mimotope peptides were similar too. Antigen-specific memory 

T cells were identified in vaccinated individuals, and these T cells responded to melanoma 

cell lines suggesting that both peptides stimulated similar repertoires (Fig 1B) [44].

There have also been a number of clinical trials evaluating T cell responses in breast and 

ovarian cancer patients with HER2/neu-positive tumors vaccinated the HER2/neu peptide 

GP2 which binds to HLA-A2 molecules (reviewed in [45]). One caveat to these trials is that 

GP2 does not bind well to HLA-A2 (WT IISAVVGIL). Thus, there have been a number of 

attempts at altering a primary MHC anchor in the HER2/neu tumor antigen with the hopes 

of improving the peptide binding to MHC and the immunogenicity. Crystal studies of these 

substitutions showed substantial changes in the T cell binding surface suggesting that few T 
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cells that cross-react with WT peptide would be raised by this vaccine (I2L/V5L 

ILSALVGIL) [46].

2.2 In autoimmunity

In autoimmunity, delivery of high affinity signals into T cells using mimotopes can improve 

therapeutic efficacy through a number of mechanisms. Induction of stronger antigen-specific 

responses by Tregs, modulation of functions and phenotypes of Tpaths, and deleting Tpaths 

all assist identifying and targeting self antigen-reactive T cells in an efficient manner. An 

important aspect of the latter two strategies that aim to kill or modify response of Tpaths is 

that targeting T cells specific for a single epitope may not be sufficient to stop autoimmune 

responses (Fig 2); antigen-spreading of therapy effects to non-mimotope-specific Tpaths may 

also be necessary to halt autoimmunity.

Genetic risks of a number of autoimmune diseases are detected within the HLA loci [47, 

48]. Specific HLA alleles and haplotypes provide susceptibility or protection from the 

disease, such as susceptibility with DQ2 and DQ8 in celiac disease [49–51], DR3-DQ2/

DR4-DQ8 in type 1 diabetes [52–54], DQB1*0602 in narcolepsy [55, 56], and DR15-DQ6 

in multiple sclerosis [57, 58]. In contrast, DQB1*0602 provides dominant protection from 

the development of type 1 diabetes [53, 54]. These strong HLA associations with 

autoimmune diseases suggest that T cells reactive to epitopes that are specifically presented 

by risk HLA molecules play a critical role in the development of these autoimmune diseases.

In type 1 diabetes, which is a T cell-mediated autoimmune disease against pancreatic beta 

cells, the lack of an acidic amino acid residue (i.e. aspartic acid and glutamic acid) at 

position 57 of the DQ8 beta chain (β57) is associated with increased risk of developing this 

disease [52, 59]. As shown in studies analyzing peptide repertoires presented by both human 

DQ8 and the mouse ortholog I-Ag7, which is the MHCII molecule in NOD mice, a non-

obese model of type 1 diabetes, without this acidic residue the peptide repertoire in these 

alleles are typically negatively charged [60, 61]. Mimotopes with amino acid substitution 

with acidic residues at P9 have been tested as superagonists that are capable of efficiently 

detecting self-reactive T cells [62–64] and potentially suppressing diabetes development 

more effectively than natural epitopes [65]. Teyton and his colleagues demonstrated that lack 

of an acidic amino acid at β57 in I-Ag7 or DQ8 results in TCR repertoires with negatively 

charged amino acids in the CDR3P region [66, 67]. Thus, TCR repertoires will change when 

the mimotope has alterations in the pockets of the MHC molecule.

Celiac disease, which is distinguished by an intensive immune response to dietary gluten, is 

another autoimmune disease with a strong genetic association to HLA [49–51]. The majority 

of patients have DQ2 (DQA1*05:01-DQB1*02:01, so called DQ2.5) and/or DQ8 

(DQA1*03:01-DQB1*03:02) HLA class II haplotypes. Intestinal T cells of patients 

recognize peptides derived from gliadins, a protein component of gluten [68], and the 

majority of patients develop antibodies directed to transglutaminase 2, which deamidates 

glutamine to glutamic acid. It is well appreciated that DQ2 prefers acidic amino acid 

residues at P4 and proline at P6, whereas DQ8 has strong preference of acidic residues at P9 

[70] as mentioned above. Gliadins are extremely rich in glutamine and proline, and gliadin 

peptides modified by transglutaminase 2 elicit responses by intestinal T cells of patients 
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much more vigorously than unmodified gliadin peptides. Thus, deamidation of gliadin 

peptides so that they preferentially bind to DQ2 or DQ8 results in “naturally produced 

mimotopes” that induce robust T cell responses.

Citrullination of arginine is a well appreciated post-translational modification that generates 

antigens for rheumatoid arthritis [71, 72]. HLA-DRB1 alleles having particular sequences, 

the so called “HLA shared epitope alleles,” that are associated with a risk of rheumatoid 

arthritis developing anti-citrullinated protein antibodies. The HLA shared epitope sequences, 

amino acids 70–74 of DRB1, shape P4 of the peptide binding groove in HLA-DR molecules, 

and peptides with citrulline rather than arginine at P4 bind to shared epitope HLAs more 

efficiently [73, 74]. These peptides provide another example of naturally produced 

mimotopes that bind to MHC with high affinity, and elicit robust T cell responses. A major 

benefit of using such naturally produced mimotopes for therapies is that TCR repertoires 

targeting these mimotopes are all disease-associated, whereas experimentally designed 

mimotopes are likely to be recognized by only a portion of TCR repertoires targeting 

cognate disease associated antigens. Unlike for enhancing antitumor responses, all of the 

antigen-specific repertoire must be targeted in autoimmunity (Fig 2); otherwise, remaining 

Tpaths may continue to contribute to autoimmune progression.

3 Substitutions in secondary MHC anchor amino acids

One strategy to improve binding of peptides to MHC molecules is to make substitutions in 

secondary anchor amino acids. These amino acids are unique from the dominant consensus 

anchor amino acids discussed above, but also point into the MHC groove and contribute to 

stabilizing the pMHC interaction [75, 76]. One testable assumption made with these 

substitutions is that the interaction between the peptide and MHC molecule may change, but 

with the right substitution the surface that interacts with the TCR may not change and a 

similar repertoire of T cells may respond to the mimotope as the wild type peptide. The 

majority of studies of peptides with altered secondary anchor residues are in MHCI-

restricted peptides [7, 77–81], although some mimotope substitutions, synthesized or 

natural, in secondary anchor residues for MHCII-restricted antigens have been characterized 

[82, 83]. Peptides that bind to MHCII are more heterogeneous in length and more degenerate 

in MHC binding specificity than those that bind to MHCI. In addition, substitutions in 

peptides that bind weakly to MHCII molecules, might change the register of the peptide in 

the MHCII molecule since the ends of the peptide binding groove are open [84, 85].

3.1 In cancer

Since the HLA-DRB1*0401 (DR4) allele is well characterized, Chen et al examined DR4-

restricted mimotopes from the gp10044–59 peptide and their potential to contribute to 

melanoma therapies [83]. In this study, they solved the crystal structure of DR4 complexed 

with the self/tumor antigen and determined that the secondary anchor residues are in 

positions P4, P7, and P9. They made substitutions in secondary anchor amino acids, which 

bound with stronger affinity that the wild type peptide; however, different clones responded 

differently to the mimotopes. Some of them responded less than the wild type leading them 

to the conclusion that this method of identifying mimotopes does not provide predictable 
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results. Potential factors that may have contributed to this conclusion are that changes in the 

secondary anchor amino acids may have changed the surface recognized by T cells or the 

mimotopes may have shifted the binding register in DR4. Alternatively, the test clones may 

not represent the antigen-specific repertoire.

One early report that aimed to break immune tolerance to the differentiation antigen gp100, 

expressed in human melanomas and the mouse B16 model for melanoma, showed that 

substituting amino acids other than those in the primary anchor motifs may be effective. This 

study showed that xenoimmunization of mice with human gp10025–33 (KVPRNQDWL) 

elicited T cells that cross-reacted with mouse gp10025–33 (EGSRNQDWL) [86]. Although 

the study did not show tumor protection, the T cells from mice vaccinated with the human 

antigen produced more IFNγ in response to the mouse peptide than T cells from the mouse 

vaccinated with the mouse peptide. The MHC binding motif for H-2Db has an asparagine at 

P5 and a leucine at P9 and the amino acids at P2 and P3 are buried deep within the Db 

groove [87]. Thus, the human gp10025–33 peptide may represent a mimotope with 

advantageous secondary anchor substitutions for the mouse.

Many preclinical and clinical studies on the immune response to common epithelial tumors 

has focused on HLA-A2-restricted antigens from the carcinoembryonic antigen (CEA) and 

Muc-1 proteins. Both proteins are frequently expressed by many tumors, such as breast, 

ovary, bladder, lung, colon, stomach, and thyroid tumors. Schlom’s team identified the 

CAP-1 peptide, which encodes consensus anchor amino acids for HLA-A2. To improve 

binding, they tested a panel of single amino acid substitutions against a T cell line made 

from a patient immunized with recombinant vaccinia virus expressing CEA. They found that 

a mimotope with an aspartic acid in the secondary anchor at P6 improved immunogenicity 

and presentation (CAP-1 WT YLSGANLNL, CAP-6D YLSGADLNL) [88]. The same team 

analyzed the Muc-1 tumor antigen, which is found on the same subsets of tumors. They 

identified an HLA-A2-restricted antigen outside the immunogenic variable number of 

tandem repeat region, and included a substitution in the primary anchor residue 

(Muc-192–101 WT ATWGQDVTSV, Muc-1 93L ALWGQDVTSV) [89].

In a randomized phase 2 study of metastatic breast cancer, patients were treated with the 

CEA and Muc-1 mimotopes, in addition to chemotherapy docetaxel and many other immune 

stimulatory molecules, resulting in an unprecedented doubling of progression-free survival 

[90]. The other immune stimulatory molecules cytokines and recombinant viruses for T cell 

costimulatory. Interestingly, the CAP-6D peptide expanded different T cells than the CAP-1 

peptides; those expanded by CAP-6D had a lower functional avidity for the WT antigen 

(less sensitive) [91]. However, in the presence of this therapeutic immunostimulatory 

vaccine, T cells with low functional avidity may have been activated and/or the T cells in the 

tumor may have already been of high functional avidity, and the mimotopes may have 

offered specific T cells a functional boost.

Sharma and colleagues aimed to enhance the stability of the GP2 peptide from the HER-2/

neu protein to the HLA-A2 molecule to improve antitumor responses [46]. They started with 

a version of GP2 that substituted both MHC anchor amino acids to encode the consensus 

motifs and then made a third substitution by changing valine to leucine in a central amino 
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acid with the hope to further stabilize peptide binding (ILSALVGIV). They found that this 

change did the opposite: the peptide did not bind as well to the MHC molecule. To 

determine why, they crystalized the complexes, and showed that the amino acids which 

would be pointing toward the TCR had significantly changed. Another study of the GP2 

peptide binding HLA-A2 showed that a substitution in a secondary anchor residue, 

phenylalanine in P7, improves peptide binding [78]. Joseph et al showed when vaccinating 

HLA-A2 transgenic mice with either the G7F mimotope or wild type GP2 peptide, T cells 

produced more IFNγ in response to wild type GP2 suggesting that this substitution may 

improve antitumor T cell responses.

We used an immunogenic mouse model to better understand the mechanism of action of 

these mimotopes. The immunodominant CD8 T cell response to the mouse CT26 colon 

cancer cell line is to GP70423–431, also known as AH1, bound to the MHCI molecule H-2Ld 

(Ld)[92]. The AH1 peptide encodes both consensus anchor residues for binding to Ld 

(proline in P2 and phenylalanine/leucine in P9) and it binds Ld with high affinity (ca 300–

400 nM range) [93]. Thus, we made other substitutions in the antigenic peptide to identify 

potential mimotope peptides to improve the antitumor response. Initial experiments using a 

tumor antigen-specific T cell clone, antigen presenting cells, and a panel of peptides that 

replaced each amino acid in AH1 with an alanine, suggested that changing an amino acid in 

P5 from valine to alanine, A5, would increase the affinity to the T cell clone and enhance the 

antitumor response (AH1 WT SPSYVYHQF, A5 SPSYAYHQF) [93]. Using a strong 

adjuvant [94], the A5 peptide protected all vaccinated mice from developing a tumor, 

whereas the wild type AH1 peptide protected none of the mice [95]. We also identified the 

valine to alanine substitution using a combinatorial peptide library [6]. Although most of the 

peptides that we identified using this library also had the anchor amino acids, one peptide 

that protected 60% of mice from developing tumors, had a substitution in one of the Ld 

anchor residues (proline in P2 was substituted with asparagine) and six of nine amino acid 

substitutions (PS39, MNKYAYHML). Notably, all of the peptides identified from the 

combinatorial peptide library harbored the alanine substitution in P5 and, like the wild type 

peptide, tyrosines in positions 4 and 6 predicted (and later shown) to point toward the TCR.

To understand why mimotopes such as PS39 and A5 protect from tumor growth and other 

peptides do not, we used MHC tetramers that were labeled with different fluorophores and 

loaded with different peptides [95]. We used peptides that were covalently linked to the β2m 

molecule of the tetramer so that peptides could not reveal inaccurate results by loading MHC 

molecules in other tetramer complexes during the staining process. We simultaneously 

stained cells from mimotope-vaccinated mice with mimotope- and AH1-loaded tetramers. 

All mimotope vaccines immunized equally well, as mimotope-vaccinated mice had similar 

frequencies of mimotope-specific T cells, but not all of the mimotope vaccines elicited 

similar frequencies of T cells that also cross-reacted with the AH1-loaded tetramers. The 

more T cells that double stained with the AH1- and mimotope-loaded tetramers, the better 

that mimotope protected from tumor development. Protection also correlated with IFNγ 
production in response to ex vivo stimulation with the AH1 peptide. We concluded that the 

frequency of T cells that cross-reacted with the wild type antigen and the sensitivity of those 

T cells to make IFNγ was critical for optimal performance of the mimotope vaccine. More 
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results using the immunogenic CT26 system are included in the next section, since although 

the amino acid in P5 points into the MHC molecule, it significantly changed TCR binding.

4 Amino acid substitutions that improve T cell responses

Research using surface plasmon resonance to study binding affinity and kinetics of the 

monomeric TCR-pMHC interaction suggest that the physiologic affinity range is 100 to 1 

micromolar (μM) [96]. However, a recent study by Zhang et al, which examined Hepatitis C-

specific T cells using an in situ TCR affinity and sequence assay, found 1000-fold range in 

affinity in specific CD8+ T cells [97]. Since TCRs are the only antigen-specific molecules 

on the surface of T cells, a simple assumption is that the affinity of the TCR for pMHC 

correlates with the strength of the T cell response, although there are a number of noted 

exceptions (reviewed in [98]). The monomeric affinity between TCR and pMHC molecule is 

weak relative to other receptor-ligand interactions and T cells have on average 105 TCR 

molecules on their surfaces [99]. In addition, many other receptor-ligand interactions take 

place after TCR-pMHC binding resulting in a stronger avidity [100]. Krogsgaard and 

colleagues showed the threshold affinity is 10 μM—stronger binding does not further 

increase the avidity of the interaction [101]. The overall function of mimotopes in therapies 

of cancer and autoimmunity is to increase the biding of this interaction.

4.1 In cancer

One of the most highly studied tumor antigens with potential for adding specificity to tumor 

vaccines is the cancer testes antigen NY-ESO-1. NY-ESO-1 is immunogenic in a wide range 

of malignancies and is presented by many class I and class II HLAs [102]. As mentioned 

above, peptide substitutions have been made in NY-ESO-1157–165 to improve binding to the 

HLA-A2 molecule (WT SLLMWITQC). Studies have also been performed targeting 

residues that interact with the TCR. With structure trials and binding assays, Webb et al 

showed that substitution of the non-consensus amino acid in P9 cysteine, an HLA-A2 anchor 

position, with a non-natural epitope, 2-aminoisobutyric acid (Abu), did not result in stronger 

HLA binding, but did bind TCRs from T cell clones with higher affinity [103]. Of note, this 

study considered potential oxidative damage that occurs with peptides harboring cysteine, 

which can be applied to other peptide vaccines. Testing the hypothesis that peptides 

substituted with conserved TCR binding amino acids improve T cell responses, Shang et al 

used a molecular simulation strategy in positions 4–8 in the HLA-A2-restricted NY-ESO-1 

peptide. When the tryptophan in position 5 was substituted with a phenylalanine, the peptide 

continued to bind to HLA-A2, and was more immunogenic in a number of assays. 

Specifically, a cross-reactive repertoire was identified in HLA-A2-expressing PBMCs from 

healthy individuals, IFNγ production was detected in response to the wild type peptide, and 

T cells raised to the mimotope with phenylalanine substitution killed target cells loaded with 

the wild type peptide [104].

Using high throughput sequencing and the mouse CT26 tumor model discussed above, we 

investigated the sequences of the cross-reactive TCRs from T cells responding to mimotope 

vaccines and the tumor [105]. We asked whether the protective mimotopes elicited a de novo 

subset of T cells or T cells that were already activated by the tumor antigen. We found that 
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most of the tumor-specific T cells were similar to those expanded by the tumor (Fig 1B) and 

that many of the mimotope-elicited T cells that cross-reacted with the AH1 peptide shared a 

specific motif in their CDR3P sequences. Over 8% of tumor infiltrating T cells had a 

CDR3P motif. Binding assays showed that TCRs with this motif had weaker binding affinity 

(≥100 μM) than the original sub-cloned TCR (5 μM) [106].

To determine if TCRs encoding the motif identified more therapeutic mimotopes than the 

higher affinity TCR, we screened peptide libraries with both TCRs [107]. Almost half of the 

peptides identified with both TCRs had the beneficial alanine at P5 (mimotope A5). We used 

pools of mimotopes identified by both TCRs in tumor protection assays; most mice grew 

tumors. However, if we followed the initial immunization with a boost with the AH1 peptide 

which does not protect on its own, we observed significantly more protection with the 

peptides identified with the common TCR than the high affinity, 70% vs. 5%, respectively. 

Thus, it was more important for the TCR used to identify mimotopes to be representative of 

the population to be immunized than to be of high affinity.

Finally, we performed structural studies to understand why the mimotope A5 protects from 

tumor formation and the wild type peptide AH1 does not [106]. The structure of the peptides 

bound to MHC look very similar, the only difference is that the bulge in the center of the A5 

peptide is shifted toward the MHC molecule about 1Å, explaining the overlapping 

repertoires. We showed that the monomeric affinity of the A5 peptide in the TCR-pMHC 

interaction was significantly stronger than the wild type peptide, ~11 μM versus >100 μM, 

respectively. Interestingly, binding of the A5 complex displayed second order kinetics, 

suggesting that there was a conformational change in the complex occurring after initial 

binding of the TCR. Further structural studies of the T cell receptor binding to A5-MHC 

showed this conformational change in the tyrosines quite dramatically—one tyrosine rotated 

135° which results in numerous interactions between the identified motif in the CDR3β and 

the peptide, explaining the increase in affinity and protection.

4.2 In autoimmunity

Many mimotopes have been designed for autoimmunity based on the responsiveness of T 

cells isolated from patients or animal models. T cell clones, derived from targeted organs or 

PBMCs cells, are tested to identify amino acid substitutions of peptides that reduce 

pathogenic responses or elicit strong regulatory responses. Some of the mimotopes identified 

have been tested for therapeutic purposes in clinical trials. Examples of such clinical trials to 

preserve pancreatic beta cell function in diabetes patients include a mimotope modified from 

the human insulin B chain peptide 9–23 restricted by HLA-DQ8 (WT 

SHLVEALYLVCGERG, NBI-6024 SHLVEALALVAGERG) [108]. The substitutions in 

NBI-6024 are known to be important in the diabetes-prone NOD mouse model [109–111]. 

Importantly, we have recently shown that CD4 T cells reactive to the wild type peptide are 

present in the islets of organ donors with type 1 diabetes [112]. However, the decline of C-

peptide concentrations, a measure of pancreatic beta cell function, were not improved by 

subcutaneous administration of the mimotopes over two years compared to placebo [108].

Mimotopes of myelin basic protein were also tested in clinical trials for multiple sclerosis. 

Amino acid substitutions were made in the DR15-restricted myelin basic protein peptide 83–
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99 targeted by CD4 T cells in the central nervous system of multiple sclerosis patients (WT 

ENPVVHFFKNIVTPRTP). Two amino acids at positions 89 and 91 have been shown to be 

important as TCR contact residues. Subcutaneous administration of mimotope NBI-5788 

was effective in inducing mimotope-reactive CD4 T cells with a Th2-like phenotype with no 

progression of disease (NBI-5788 AKPVVHLFANIVTPRTP). Unfortunately, there was no 

improvement in patients receiving a lower dose of the mimotope and many of those who 

received a higher dose suffered from hypersensitivity reactions, so the trial was discontinued 

[113–115]. Another mimotope, CGP77116 which also has amino acid substitutions at 

positions 89 and 91, was tested in patients with relapsing-remitting multiple sclerosis. In this 

trial some of the patients receiving high doses of the peptides (50 mg weekly) showed 

exacerbation of disease [113]. Although unsuccessful, these studies showed a trend that 

efficacy of the treatment depends on peptide dose and schedule [115]. Also, one explanation 

for poor trial outcomes may be due to the diversity of peptides administered. Antigens 

targeted by T cells involved in disease progression vary unless therapies are given at the 

initial stage, thereby anticipating the need for eliminating or modifying phenotypes of Tpaths 

that react with a variety of antigens. Indeed, a recent clinical trial using four peptides derived 

from myelin basic protein (ATX MS-1467) showed a preferable outcome with expansion of 

Tregs [116, 117] consistent with studies performed in humanized (DR2 × Ob1)F1 mice 

[118]. Thus, whether or not peptides are natural or altered, it is important to consider as 

many disease-associated T cells as possible early in disease progression.

Antigen repertoires that are targeted by T cells in the intestines of celiac disease patients 

target are considered relatively narrow. Therefore, rationally designed epitope-specific 

immunotherapies for celiac disease are a logical solution. As mentioned above, celiac 

disease-associated T cells preferably react with “naturally produced mimotopes” that result 

from deamidation of gliadin-derived peptides. Clinical trials using the combination of three 

gluten-derived peptides, which contain at least five gliadin-specific T cell epitopes presented 

by HLA-DQ2.5 (Nexvax2), were conducted with HLA-DQ2.5-positive celiac disease 

patients [119]. While the Phase 1 studies showed preferable outcomes in terms of safety and 

tolerability, it was recently announced that the Nexvax 2 phase-2 trial was discontinued due 

to lack of protection by the therapy from gluten challenge [120]. While the negative outcome 

was unfortunate, this well-designed study leaves us with important suggestions for future 

trials. Analyses of antigen specificity of T cells associated with alternation of phenotypes 

between groups receiving different doses and schedules of therapy will also be beneficial in 

understanding needs for future therapies.

5 Future mimotopes

The concept that adding antigen-specific T cell responses to immunotherapies has 

reemerged as patients are relapsing after checkpoint therapies for cancer and antigens are 

being discovered in autoimmunities. Methods to improve mimotopes that enhance binding 

of peptide to MHC or pMHC to T cell repertoire are evolving, and technologies that predict 

epitopes and mimotopes recognized by particular TCRs are being developed [33, 121–123]. 

Chemically modified antigens or antigens with unnatural amino acids, such as d-amino 

acids, may help to implement subtle changes in antigens; those that improve binding but do 

not change the antigen surface [124, 125].
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In the search for the perfect antitumor mimotope, we identified many that were suboptimal 

and did not protect from tumor growth. Most of these mimotopes raised T cell repertoires 

that were not cross-reactive with the wild type antigen. However, we determined that we 

could improve these suboptimal mimotopes by boosting with the wild type antigen [126, 

127]. The first immunization with the mimotope would stimulate a small fraction of the 

crossreactive T cells with higher affinity than the wild type antigen did, then the booster 

immunization with the wild type antigen did not have to be as strong to expand the T cells 

differentiating into cytotoxic T lymphocytes as these T cells have a much lower threshold for 

stimulation. For this reason, the order of the vaccination could not be reversed.

Unlike in tumor immunity, in autoimmunity some mimotopes have ultimately been found to 

bind with lower affinity than the wild type peptide. Some self antigens originally thought to 

weakly interact with their cognate T cell repertoire, but were actually mis-identified 

antigens. For example, a panel of T cell clones made by the Haskins’ group (including 

BDC-2.5 and BDC-10.1), were isolated from the spleen of diabetes-prone NOD mice. These 

TCRs induce diabetes in adoptive transfer experiments and transgenic mouse models 

(summarized in [128]). Until recently antigens targeted by these TCRs were unknown. A 

number of mimotopes that stimulate these T cell clones were identified during the past two 

decades [[129] and other refs], and finally Haskins and colleagues discovered that a fusion 

peptide composed of preproinsulin and chromogranin A is a target that can stimulate 

BDC-2.5 and other several T cell clones a magnitude of order more strongly than the natural 

chromogranin A peptide [130]. Importantly, T cells recognizing this fusion peptide, 2.5HIP 

(hybrid insulin peptide), are the most frequent in the islets of NOD mice among T cells 

recognizing mimotopes that can stimulate the BDC-2.5 and other T cell clones [130], 

suggesting that only a portion of TCR repertoires recognizing the mimotopes overlaps with 

repertoires of the wild type antigen.

Reactivity of tumor-specific and autoreactive T cells is typically lower than pathogen-

reactive T cells, and indeed atypical binding between autoreactive TCRs and peptide-MHC 

complexes has been structurally demonstrated [131–134]. Therefore, mimotopes that have 

high affinity to MHC or to TCR and are recognized by T cells more efficiently have been 

explored for antigen-specific therapies. However, the studies pursuing antigen specificity for 

BDC-2.5 and other diabetogenic T cell clones raise an important possibility that antigens 

truly targeted by disease-involving T cells may react to the antigen as strongly as pathogen-

reactive T cells and may be more appropriate to be utilized for therapies than artificially-

designed mimotopes as mimotopes could influence only a portion of T cell repertoires. 

Thus, identifying antigens that are truly targeted by disease-associated T cells may be 

critical for the development of robust antigen-specific immunotherapies.

Another important concept required to develop ideal mimotopes for autoimmune diseases is 

to distinguish antigens that are preferably recognized by Tregs from those for Tpaths. For 

example, the majority of HIP2.5-specific T cells in the islets of NOD mice have a 

pathogenic phenotype, whereas T cells specific for an insulin peptide contain a higher 

proportion of FoxP3-positive Tregs [135]. Depending on the use of mimotopes for therapies 

(i.e. delete Tpaths or elicit Tregs), mimotopes that are preferably recognized by either Tregs or 

Tpaths need to be identified to be used for therapies (Fig 2).
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In summary, structural, functional, and repertoire studies show that amino acid substitutions 

must be examined for each antigen. To date there is not a formulae that will work to identify 

efficacious mimotopes without significant investigation, although the decades of study have 

established what needs to be addressed for each antigen. These studies, in addition to the 

adjuvants required to get a significant response, the dosing regimen, the time during disease 

progression, and the antigen itself all contribute to making these antigen-specific therapies 

successful.

Abbreviations

APC antigen presenting cell

CDR3 complementarity-determining region 3

CEA carcinoembryonic antigen

ELISpot enzyme-linked immunospot

HIP Hybrid insulin peptide

HLA human leukocyte antigen

IFNγ interferon-gamma

MHC major histocompatibility complex

MHCI MHC class I

MHCII MHC class II

μM micromolar

P amino acid position (in a peptide)

PBMC peripheral blood mononuclear cell

pMHC peptide-MHC complex

TCR T cell receptor

TIL tumor infiltrating lymphocytes

Tpath pathogenic T cell

Treg regulatory T cell

VKH Vogt-Koyanagi-Harada disease

WT wild type
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Figure 1. Venn diagrams demonstrate commonalities between antigen-specific T cell repertoires.
The T cell repertoires that respond to the wild type antigen are in blue (left) and the 

mimotope antigen is in brown (right). When targeting effector T cells for antitumor 

immunity or regulatory T cells for autoimmunity, we predict from the literature reviewed 

here that more overlap between T cell repertoires that respond to the wild type and 

mimotope antigens result in more robust T cell responses (A). We predict that peptide-MHC 

and mimotope-MHC with similar structures will stimulate similar T cell repertoires. 

Substitutions in amino acids that contact the TCR and primary and secondary MHC anchor 

residues can change the structure recognized by the TCR. If the repertoires are disparate (B), 

non-specific T cells will be recruited. Methods of focusing the small over-lapping repertoire 

to the wild type T cells are discussed in Part 5.
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Figure 2. Venn diagrams demonstrate how disease-associated T cell repertoires differ in cancer 
and autoimmunity.
The T cell repertoires that respond to disease-associated antigen(s) are in blue (left) and the 

mimotope are in brown (right). Assuming that all tumor cells express the mimotope-targeted 

antigen, activating a fraction of the T cells as noted in A, will recognize all of the tumor cells 

(overlap). This scenario may also be true in autoimmunity if the mimotope targets Tregs or 

converts pathogenic T cells to Tregs. Alternatively, in autoimmunity if the mimotope only 

targets a fraction of the pathogenic T cells, the remaining pathogenic T cells in blue will still 

be involved in the autoimmune process (A). If most/all of the pathogenic T cells are targeted 

in autoimmunity as in B, then further autoimmune processes will be halted. Unless the 

antigen repertoire of the autoimmune disease is narrow, the possibility of discovering such a 

mimotope for autoimmunity is unlikely, especially in the progressive stages of disease.
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