Skip to main content
. 2020 Jan 31;30(5):2680–2691. doi: 10.1007/s00330-019-06597-8

Table 3.

The predictive performance of individual feature on clinical, semantic, and radiomics model on the training dataset

Individual features ACC (95% CI) Sensitivity Specificity AUC (95% CI)
Clinical
  Age 0.57 (0.51–0.62) 0.28 0.76 0.63 (0.57–0.69)
  Gender 0.60 (0.55–0.66) 0 1 0.56 (0.51–0.61)
  Smoking 0.60 (0.55–0.66) 0 1 0.55 (0.51–0.58)
  Family history 0.60 (0.55–0.66) 0 1 0.50 (0.49–0.52)
Semantic
  Diameter 0.71 (0.66–0.76) 0.60 0.78 0.81 (0.77–0.86)
  Location 0.57 (0.52–0.63) 0.02 0.94 0.51 (0.44–0.57)
  Nodule type 0.77 (0.72–0.82) 0.69 0.83 0.80 (0.76–0.84)
Radiomics
  LocInt_peakLocal 0.68 (0.64–0.73) 0.60 0.74 0.83 (0.80–0.87)
  Wavelet_HLL_Stats_max 0.68 (0.63–0.72) 0.59 0.73 0.85 (0.82–0.89)
  GLRLM_LGRE 0.76 (0.72–0.80) 0.68 0.81 0.90 (0.87–0.92)
  Wavelet_LLL_Stats_cov 0.73 (0.68–0.77) 0.63 0.79 0.87 (0.84–0.90)

ACC, accuracy; AUC, area under curve; CI, confidence interval