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Introduction

Heart failure (HF) and renal dysfunction are common coexisting problems in clinical 

practice. There are bi-directional interrelationships between the heart and kidney, and it has 

been stated that the kidney is the most important organ related in acute HF. Acute or chronic 

dysfunction of one organ induces acute or chronic dysfunction of the other, described as 

“cardio-renal syndrome’ (CRS) (1, 2). In addition, renal dysfunction in HF may lead to 

reduced diuretic efficiency, diuretic resistance, worsening of congestion followed by further 

deteriorated renal function, which becomes a vicious cycle. Renal dysfunction is also a 

strong independent predictor for short- and long-term outcomes in patients with acute HF 

(3–9). Traditionally, the causes of CRS have been attributed to renal hypo-perfusion 

resulting from low cardiac output and over diuresis. However, in the past decades, data have 

increasingly demonstrated more of a correlation between venous congestion and CRS, rather 

than low cardiac output, linking the failing right heart to CRS. Indeed, right heart failure 

(RHF) and CRS both have complex and intertwining pathophysiologies that may involve 

various organs and systems beyond isolated dysfunction of the heart and/or kidneys. This 

review focuses on pathophysiology intersections between RHF and cardio-centric 

phenotypes of CRS (“Type 1” and “Type 2”) as well as considerations of therapeutic 

management.

Definition and Classification of Cardio-Renal Syndrome

The Working Group of the National Heart, Lung, and Blood Institute in 2004 first described 

CRS as the result of interaction between the kidney and other circulatory compartments that 

increase circulating volume and symptoms of HF and disease progression(10). The most 

extreme progression of cardio-renal dysregulation leads to the term “cardio-renal 

Address for correspondence: W. H. Wilson Tang, MD, Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid 
Avenue, Desk J3-4, Cleveland, OH 44195., Phone: (216) 444-2121 / Fax: (216) 445-6165, TANGW@ccf.org. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cardiol Clin. Author manuscript; available in PMC 2021 May 01.

Published in final edited form as:
Cardiol Clin. 2020 May ; 38(2): 185–202. doi:10.1016/j.ccl.2020.01.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



syndrome”, and therapy for congestive symptoms is limited by decline in renal function. 

This physiologic concept is in stark contrast with classification schemes proposed by Ronco 

et al (1) and the Acute Dialysis Quality Initiative (ADQI)(2) that described the primary 

organ dysfunction (heart or kidney) and time course (acute or chronic), with an additional 

subtype for a systemic condition affecting both organs simultaneously (Table 1). Although 

useful to clarify more precisely the clinical presentation of CRS, the overlap between the 

Ronco/ADQI subtypes and frequent evolution of one subtype to another could be 

challenging and has limited such a classification scheme to guide therapeutic management. 

Furthermore, there are limited quantifications of cardiac or renal functional assessments to 

determine these subtypes, rendering them largely descriptive and academic in clinical 

applications.

Traditional Concept of Impaired Forward Perfusion in Cardio-Renal 

Syndrome

Traditionally, “right heart failure” is often characterized by the inability of the right ventricle 

(RV) to generate enough stroke volume, thereby resulting in systemic venous congestion, 

under filling of the left ventricle, and in the most advanced cases, cardiogenic shock. Acute 

RHF can occur because of abruptly increased RV afterload (pulmonary embolus, hypoxia, 

and acidemia) or decreased RV contractility (RV ischemia, myocarditis, post cardiotomy 

shock). Each condition represents a unique hemodynamic challenge for the RV. In addition, 

the failing right heart can be a downstream manifestation of a primary insult (e.g., 

pulmonary hypertension, tricuspid valve dysfunction due to pacemaker lead interference), 

even though the downstream disturbances of the cardio-renal interactions are likely similar.

Historically, impairment in forward flow (cardiac output) leading to decreased renal arterial 

perfusion and neurohormonal activation has been considered as a key events in CRS (11, 

12). It is therefore logical that the RV as the primary contributor to adequate preload directly 

contributes to CRS. Original descriptions of CRS postulated that renal blood flow could be 

preserved until the cardiac index fell below 1.5 L/min/m2(12), which is often described as 

“pre-renal.” Arterial under filling, secondary to low cardiac output and increased peripheral 

vascular resistance, may activate the renin-angiotensin-aldosterone system (RAAS), 

sympathetic nervous system (SNS) and release of arginine vasopressin resulting in water and 

sodium retention and worsening HF(11).

Clinical Evidence of Systemic Venous Congestion and Impaired Renal 

Function

Over the past decade, there is increasing evidence that worsening renal function (WRF) in 

the setting of CRS may not be adequately explained solely due to arterial under filling (4, 

13–16). The ADHERE registry (Acute Decompensated Heart Failure National Registry) 

observed the same incidence rate of renal dysfunction in AHF with reduced and preserved 

systolic function (17), indicating that impairment of forward flow is not likely the primary 

culprit in the large majority of patients experiencing CRS. Meanwhile, WRF following 

treatment occurs more often in the setting of HF with preserved ejection fraction than those 
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with severely reduced ejection fraction (18). It is therefore important to recognize that the 

occurrence of WRF in the setting of impaired perfusion (cardiogenic or distributive shock 

leading to intravascular depletion that is often a detrimental consequence) can be 

significantly different from that in the setting of systemic venous congestion. The latter often 

leads to increased venous pressure and increases the backward pressure into the intra-

abdominal organs that can be reversed with effective decongestion. Indeed, signs and 

symptoms of congestion such as the presence of elevated jugular venous pressure (JVP), 

orthopnea, ascites and edema were independently related to the reduced estimated 

glomerular filtration rate (GFR) and were associated with increased mortality(19). In 

patients with predominant RHF, systemic venous congestion assessed by inferior vena cava 

(IVC) diameter was an independent determinant of GFR (20), and reduction of IVC size 

after treatment was associated with improvement of GFR. This is supported by the study of 

non-invasive and invasive measurements of venous congestion that showed correlation 

between high central venous pressure (CVP) with baseline renal impairment(4, 15, 16, 21) 

and WRF in acute HF (14), and WRF less frequently in patients with CVP < 8 mmHg after 

intensive medical therapy(14). Moreover, high CVP was also an independent predictor for 

cardiac rehospitalization (22) and all-cause mortality (4, 15). Finally, in patients who had 

congestion confirmed by echocardiography, relief of venous congestion showed significant 

renal function improvement in HF with RV dysfunction (23). Table 2 is a summary of 

studies that showed an association between venous congestion and renal dysfunction. It is 

important to also recognize that WRF in the setting of aggressive diuresis can also lead to 

hemoconcentration that is not necessarily “worsening” and in fact can indicate an effective 

therapeutic response with effective relief of systemic venous congestion.

Pathophysiology of Right Heart Failure and Cardio-Renal Syndrome

As previously mentioned, the overarching pathophysiology of CRS in RHF is complex 

through a variety of mechanisms due to the complex interrelationship between the heart and 

kidney as shown in Figure 1. Systemic venous congestion develops in the context of RHF - 

often the final pathway of many cardiovascular diseases – can be found in either isolated RV 

failure or biventricular failure. The consequences of venous congestion on various organs 

(backward congestion) play a pivotal role in the pathophysiology of CRS and have both 

local and systemic effects. Local venous congestion effects the kidneys and splanchnic 

organs and leads to renal and splanchnic congestion. Also, venous congestion produces 

systemic vascular congestion. These lead to mechanical, biological and immune responses 

which contribute to CRS development.

Several mechanisms have been postulated to explain the effect of venous congestion and 

renal dysfunction involving various organs, not only the heart and kidneys, which were 

originally called CRS. Elevated renal venous pressure obliterated renal tubules by distending 

renal venules (24), reduced renal perfusion pressure, increased renal interstitial pressure by 

fluid extravasation leading to a hypoxic state of renal parenchyma, tubular dysfunction. It 

also activated the RAAS (25–29) and SNS (30), activated vascular inflammation by 

endothelial cell dysfunction(31), and contributed to other abdominal organs (i.e. splanchnic 

venous and intestinal congestion) and lymphatic congestion (32). Clearly, these mechanisms 

are not mutually exclusive, and the large majority of them have been difficult to assess at the 
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bedside. We will expand on these mechanisms further as they relate to the pathophysiology 

of RHF and CRS.

Renal Congestion

Effect of the pressure—Backward pressure from systemic venous into renal veins can 

generate increased renal venous pressure that can directly impair a wide range of kidney 

functions(33). Indeed, studies demonstrated that increased renal venous pressure showed a 

relationship with reduction in urine flow and alteration in glomerular and tubular function. 

Furthermore, renal blood flow decreased by increased venous pressure more than an 

equivalent decrease in arterial pressure(34). It was previously postulated that increased renal 

venous pressure leads to renal parenchymal congestion within the non-distensible renal 

capsule (so-called “renal tamponade”) resulting in increased interstitial pressure that affects 

the entire capillary bed and tubules (35, 36). Experimental models have demonstrated the 

effects of increased renal venous pressures on changes in filtration fraction, flow from 

baroreceptor, intrinsic vascular reflex response (myogenic response), tubuloglomerular 

feedback (TGF), RAAS and SNS (37).

Clinically, renal venous congestion secondary to increased systemic pressure, often is 

reflected by high CVP, may lead to decreased intra-renal arterio-venous gradient and, 

theoretically, decreased renal perfusion pressure (RPP). It is a gradient between aortic and 

renal venous pressure that is equal to mean arterial pressure (MAP) minus CVP. However, 

studies in acute HF patients showed incongruous results which demonstrated the similarity 

in renal perfusion pressure (estimated by MAP-CVP) in those with and without WRF during 

acute HF hospitalization(14). These observations may imply that mechanisms of WRF may 

be more directly related to venous congestion. Meanwhile, in animal experimental studies, 

an increased renal venous pressure retards urine flow equal to the decrease in arterial 

pressure (24, 38). Therefore, congested renal venules and increased interstitial hydrostatic 

pressure may compress renal tubules and obstruct the urine flow (24, 39). Moreover, 

increased renal interstitial pressure may decrease renal blood flow even in the presence of 

furosemide (to block tubuloglomerular feedback), renal decapsulation (local sympathetic 

inhibition) or systemic inhibition of SNS (using phentolamine)(40). In a human study, 

abdominal compression led to increased intra-abdominal and renal venous pressure and was 

associated with a fall in urine output(41). Regarding filtration function, stepwise increase in 

renal venous pressure particularly during volume expansion showed decrease of GFR(42–

46) which is explained by increased renal venous pressure resulting in increased tubular 

pressure(43) which will oppose filtration and net ultrafiltration pressure(39). As early as 

1913, the experimental study of chronic passive renal congestion in dogs created by selective 

banding of the unilateral renal vein showed effect on renal excretory function(47). 

Conversely, reduction in venous pressure demonstrated reversibility of impaired natriuresis/

aquaresis and GFR (42, 45).

Neural reflex and Neurohormonal mechanism—Myogenic response is an 

autoregulatory mechanism in mammalian kidney which is the intrinsic capability of the renal 

vasculature, particularly in the small diameter vessels in response to an increase in wall 

tension which results in smooth muscle cell contraction by increased intracellular calcium 

Tabucanon and Wilson Tang Page 4

Cardiol Clin. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and activation of myosin light chain kinase(48). Rise in renal venous pressure, by a partially 

obstructed renal vein resulted in vasoconstriction, has been studied in animal models and 

showed strong effect on arterial microcirculation by triggered sympathetic vasoconstrictive 

neural responses(49) that were both extrarenal and intrarenal mechanisms(50). Surgical or 

pharmacological sympathectomy partially prevent the effects of venous congestion(50). In 

addition, stimulation of mechanoreceptors in an intra-renal vein by venous pressure 

enhanced local sympathetic renal nerve activation, resulted in intra-renal arterial 

vasoconstriction and decreased GFR (51, 52).

Experimental studies have demonstrated both increase in intra-abdominal pressure and renal 

venous pressure affecting an increase in plasma renin activity and aldosterone level (53–55) 

even though they may not result in significant changes in hemodynamic parameters such as 

cardiac index or systemic blood pressure(46). An animal study as early as 1949 showed 

elevated renal venous pressure can significantly diminish sodium and water excretion, but 

with modest elevations in renal venous pressure and slight changes in renal plasma flow, 

GFR, and filtration fraction(45). These effects of congestion impinging on renal sodium 

excretion lead to a vicious cycle of salt and water retention and more renal congestion(56).

Splanchnic Congestion

Studies of the interaction between splanchnic congestion and CRS have demonstrated that 

they might be a strong contributor to development of renal dysfunction in HF. Indeed, the 

splanchnic veins have a function as a blood reservoir and actively function in regulation for 

cardiac preload during changes in volume status (57) which is regulated by passive 

(transmural pressure changes) or active mechanisms (SNS regulation) (57–59). Furthermore, 

splanchnic veins have high capability to pool additional blood volume which contributed up 

to 66% of total additional volume(58). However, maladaptation of splanchnic capacitance 

function in HF has been demonstrated (60) which raised speculation that incremental 

capacity of splanchnic capacitance is limited, and thereby could be the result of long 

standing venous congestion and neurohormonal activation in advanced HF(61) and might be 

a significant factor in CRS development.

Liver and spleen are crucial visceral organs in the splanchnic circulation and contain 

approximately a quarter of total blood volume in the human body (58, 62). Studies in 

splanchnic compartment and CRS showed correlation between major visceral organs and 

kidney by local reflex systems. First, hepatorenal reflex, which is regulated by receptors in 

intrahepatic circulation, which result in the kidney being neurally-mediated (63, 64). This 

occurs through (i) chronic splanchnic congestion resulting in portal vein distension and 

stretch of the venous wall which leads to renal vasoconstriction(65) and (ii) increased 

intrahepatic adenosine by portal vasoconstriction activated by SNS mediated α-adrenergic 

receptor and release to circulation. This results in renal vasoconstriction and sodium 

retention by activation TGF(66, 67). Second, splenorenal reflex can lead to increased 

intrasplenic venous pressure and neutrally-mediated renal vasoconstriction (68, 69). 

Conversely, interruption of either afferent or efferent reflex pathway resultsin elimination of 

both hepato- and spleno-renal reflexes (64, 69). Furthermore, splenic congestion leads to 

interstitial edema by intrasplenic fluid extravasation from splenic sinusoids, which are freely 
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permeable for plasma protein. Thus intravascular hydrostatic pressure becomes a main 

determinant for fluid transport. Fluid extravasation from splenic sinusoids to lymphatic 

circulation and interstitial tissue, respectively, lead to perception of decreased effective 

circulatory volume and exacerbate neurohormonal activation, creating a vicious cycle of 

sodium and water retention(32). Atrial natriuretic peptide (ANP) might be another 

contributor to promote reduction in central plasma volume. Infusion of ANP in rats resulted 

in hemoconcentration and reduction in plasma volume which are not entirely accounted for 

by excretion of urine(70). This effect was explained as ANP having effects on splanchnic 

hemodynamics including increased intrasplenic pressure and increased intrasplenic fluid 

extravasation(71).

Dysfunction of intestinal endothelial cells secondary to bowel edema due to backward 

congestion and consequences in alteration of gut microbiota have been demonstrated and 

speculated to be a contributor to development of CRS in RHF. Intestinal villi have a unique 

microcirculation, and the tips of intestinal villi are the most susceptible to anoxic damage 

(72). Splanchnic congestion, co-existing with low perfusion and sympathetic activation, 

leads to increased risk of non-occlusive ischemia of intestinal villi(73). In addition, 

increased intestinal wall thickness and edema have been observed in patients with HF and 

have been shown to have a direct correlation with increased paracellular intestinal 

permeability (74) which is secondary to hypoxia, hypoperfusion and endotoxin production 

by intestinal gram-negative bacteria (74, 75). These structural and functional alterations of 

gut barrier result in translocation of gut microbiota and their components into host 

circulation including lipopolysaccharides (LPS) and protein-bound uremic toxins produced 

by gut microbiota which contribute to renal dysfunction (76–78). LPS, found in the outer 

membrane of gram-negative bacteria, further promote mucosal barrier function deterioration 

and systemic inflammatory processes(79). LPS and pro-inflammatory cytokines levels were 

found to be higher in edematous chronic HF than non-edematous and healthy volunteers. 

Also, reduction could be demonstrated after diuretic treatment (80). Inflammation activation 

is further discussed in the section on Inflammation and CRS.

Although, evaluation of splanchnic congestion is not clinically available unless there are 

detectable ascites, increased intra-abdominal pressure (IAP) might be used and reflects 

splanchnic congestion. As reported in the study, increased IAP (≥ 8 mmHg) was found in 

60% of patients admitted with advanced HF(81), and ascites were found in a small number 

which suggested splanchnic congestion could contribute to increased IAP(32). Furthermore, 

increased IAP was associated with impaired renal function, and changes in IAP were strong 

predictors of change in renal function compared to hemodynamic parameters (41, 81). IAP 

may contribute to renal dysfunction by increased renal parenchyma, renal venous and 

intraglomerular pressures and decreased renal perfusion reflected by reduced GFR (41, 46, 

55, 81–83). Moreover, increased IAP was also associated with RAAS activation, which 

showed increased plasma renin activity and aldosterone level(55). Reduction in IAP by 

ultrafiltration or paracentesis has corresponded with improvement in renal function in some 

patients (84).
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Inflammation and Cardio-Renal Syndrome

There are increasing data that inflammation could be related to pathogenesis of CRS. 

Production of pro-inflammatory cytokines as a consequence of HF could be from 

neurohormonal activation, venous congestion including either local congestion, such as 

splanchnic congestion and intra-renal venous congestion, or systemic venous congestion. 

Elevated cytokines in HF have been demonstrated, such as tumor necrotic factor-α (TNF-α), 

interleukin-6 (IL-6) and interleukin-1 (IL-1) (85, 86) and correlate with poor clinical 

outcomes (87–89). These cytokines have direct biological effects to both structural and 

functional damage to various end-organs including the heart, vasculature and kidney(90). 

Studies have shown that inflammation results in depressed cardiac function, vascular 

dysfunction, renal fibrosis and progressive renal dysfunction (91–97). Finally, inflammation 

may increase vascular permeability and promote absorption of pro-inflammatory endotoxins 

from the bowel(90). Hence, a vicious cycle develops leading to increased congestion due to 

end-organ damage and more inflammation activation.

Inflammation consequences of neurohormonal activation

Increased activity of RAAS and SNS in HF leading to chronic inflammation have been 

demonstrated. Angiotensin II (AII) increases TNF-α biosynthesis in myocardium which is 

mediated through the angiotensin 1 receptor (AT1R) (98). Similarly, in animal studies, AII 

treated rats showed increased renal tissue expression of TNF-α (glomeruli, mainly at 

endothelium of tubules and vasculature), activated nuclear factor-kappa B (NF-kappa B) and 

systemic infusion of AII induced renal synthesis of IL-6, monocyte chemoattractant 

protein-1 (MCP-1) co-existing with glomerular and interstitial inflammatory cells in 

kidney(99, 100). Chronic blockage of AT1R supports the role of AII inflammatory responses 

which showed reduction in circulating pro-inflammatory cytokines such as TNF-α (101). 

SNS also promoted inflammatory responses which was demonstrated in the animal study 

when isoproterenol infusion increased expression of TNF-α, IL-6 and IL-1β in myocardium 

cells and cardiac blood vessels(102) and beta-adrenergic blocker administration decreases 

those effects(102).

Inflammatory Consequences of Venous Congestion

Venous and tissue congestion may promote inflammatory responses by various 

mechanisms(90). Mesenteric venous congestion leads to bowel wall edema and increased 

vascular permeability, gram-negative bacterial translocation through the endothelial cells of 

the intestinal villi, and thereby endotoxin release has been proposed(103). Endotoxins, such 

as LPS, which is elevated in HF(104), promotes the secretion of pro-inflammatory cytokines 

through the effect on human monocyte and macrophage function such as TNF-α, the IL-1 

family, IL-6, IL-8, the IL-10 family, the IL-12 family, IL-15 and transforming growth factor 

beta (TGF-β)(105). LPS and cytokine levels have shown to be increased in edematous 

chronic HF (80). According to a cohort study in chronic HF, more elevated LPS levels in 

patients with peripheral edema were demonstrated, and these levels showed a reduction after 

acute diuretic treatment (80). In addition, supporting data showed higher endotoxin levels in 

the hepatic vein compared to the left ventricle in acute HF which suggests bacterial or 

endotoxin translocation from bowel to the blood stream(106).
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Beside bacterial and endotoxin translocation, hemodynamic stimulation by intravascular 

volume expansion can promote vascular inflammation and endothelial cell activation 

through cytokine secretion itself (31, 90) and alter other bioactive molecules such as nitric 

oxide (NO) and prostacyclin function(107). Regarding inflammation, both in vitro and in 
vivo studies have shown evidence of activation of vascular endothelial cells and increased 

production of a variety of vasoactive meditators, including inflammatory cytokines after 

biomechanical stress including TNF-α, IL-6 (108–110). A specific study of fluid load in 

normal dogs created venous congestion accompanied by vascular endothelial activation of 

inflammation and oxidative stress (111). Moreover, in a human study, peripheral congestion 

was created through applied pressure using a tourniquet on the arms of healthy subjects 

which caused release of inflammatory markers, IL-6 and endothelin-1 (ET-1)(112).

Hence, evidence of systemic inflammation in HF has been increasing and is postulated to 

contribute to CRS development which could be secondary to neurohormonal and 

sympathetic activation, and vascular and tissue congestion. Inflammation leads to end-organ 

damage, causing progressive fluid accumulation thereby further inflammatory activation 

occurs.

Effects of Right Ventricular Volume Overload

Right ventricular dysfunction and dilation in RHF secondary to increased RV filling pressure 

leads to ventricular interdependence which result in leftward shift of interventricular septum 

and altered left ventricle (LV) geometry(113). Hence, reducing LV distensibility, preload, 

reducing cardiac output and thereby reducing renal arterial pressure which might be another 

contributing factor in CRS(15, 113, 114). This is often seen in isolated RHF as in advanced 

pulmonary arterial hypertension.

Novel Diagnostic Strategies for Congestion and Cardio-Renal Syndrome

Serum and Urine Biomarkers

Biomarkers provide a wide spectrum of prevention, early diagnosis, treatment and outcomes 

of organ injury including in the heart and kidney (115). There are various biomarkers for 

renal and cardiac injury which provide different roles in diagnosis and prognosis in acute 

kidney injury (AKI), HF and CRS (116, 117). B-type natriuretic peptide (BNP), a cardiac 

biomarker, is a marker of myocardial stretch, has both diagnostic and prognostic roles in HF 

and CRS(116). In HF with impaired renal function, including CRS, there are higher BNP 

levels compared with patients with normal renal function which could be attributed to 

impaired renal excretion, volume overload by impaired renal function and cardiomyopathy 

associated with renal dysfunction(118–120). In CRS, there is elevation of other cardiac 

biomarkers such as cardiac troponin (120, 121) and galactin-3(122). High levels of glactin-3 

and cardiac troponin were associated with higher mortality in HF (121, 122).

Beside cardiac biomarkers which are directly associated with congestion, renal biomarkers 

also have value for both diagnosis and prognosis in CRS. Neutrophil gelatinase-associated 

lipocalin (NGAL) is a large lysosomal enzyme originating in the proximal tubular cell; 

detection of urine NGAL indicates proximal tubular injury (123). Elevated NGAL was 
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observed in HF with renal dysfunction(120), and elevated serum and urine levels of NGAL 

could be a useful predictor for dialysis and death in AKI including CRS(124). Serial 

measurement of NGAL in AHF is an accurate predictor of WRF (125), although the 

majority of patients with CRS have relatively low urine NGAL levels as significant intrinsic 

kidney injuries are relatively uncommon. AKI biomarkers such as NGAL are not readily 

available for clinical use.

Cystatin C (CysC) is a renal biomarker present in all nucleated cells with a constant 

production rate. It is freely filtrated, completely reabsorbed and not secreted by renal 

tubules(117). Cystatin C is dramatically better than creatinine for measuring GFR, because 

CysC is not primarily determined by muscle mass (126). The studied use of CysC 

calculation for GFR and reclassified CKD stage showed stronger correlation and more linear 

correlation to death along with all eGFR (127). Combined CysC and others biomarkers, such 

as N-terminal pro-BNP (NT pro-BNP) and cardiac troponin T, had additive prognostic value 

for adverse events in AHF (128). Albuminuria in HF without concomitant comorbidity such 

as renal dysfunction, hypertension and diabetes might provide greater diagnostic power for 

CRS than by using eGFR alone (129, 130). Albuminuria also had a prognostic value in HF 

and is associated with increased mortality and increased admissions for HF independent of 

eGFR, diabetes, and hypertension (129, 131).

It is important to recognize that few cardiac or renal biomarkers are specific to RHF or CRS. 

Biomarker-guided strategies have also failed to uniformly provide incremental treatment 

benefits over standard of care, largely because the above-mentioned biomarkers have not 

distinguished RHF as a unique contributor to CRS, and the majority of biomarkers have 

been developed with diagnosing a clinical condition in mind (e.g., AKI or HF).

Renal Ultrasonography

Renal vein flow pattern using Doppler ultrasound is a non-invasive tool which has been 

studied in several situations including HF with renal venous congestion (132–137). In HF, 

intrarenal venous flow patterns depend on right atrial pressure (RAP) and are strongly 

correlated with clinical outcomes (136). Patterns of renal venous vein flow were stratified by 

RAP. Continuous renal vein flow patterns were correlated with normal RAP (RAP <8 

mmHg). A discontinuous renal flow pattern was associated with increased RAP, and a 

monophasic pattern had the highest RAP and poorest prognosis (<40% survival at 1 year) 

(136). The discontinuous pattern is explained by transmission of backward pressure from 

increased RAP to the renal vein which results in increased pulsatility of flow pattern and 

reflects the response of renal vessels in increased intrarenal pressure within the encapsulated 

capsule(132) (Figure 2). Moreover, renal flow pattern, rather than renal resistive index (RI), 

which is calculated from renal arterial waveform, was shown to have incremental prognostic 

value (136) that could reflect the more important role of renal venous congestion rather than 

renal hypoperfusion. However, reversibility of renal flow pattern has not been demonstrated 

by any current therapeutic options; hence, we lack data to support the use of renal venous 

flow pattern to make the decision for decongestive therapeutic strategies. In addition, this 

tool requires expertise to perform, technical feasibility and needs validation for consistency 

of Doppler waveform sampling by operators and in a diverse group of patients.
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Intra-abdominal Pressure via Indwelling Urine Catheter

Splanchnic congestion secondary to backward pressure in RHF can be evaluated by measure 

of IAP as mentioned before. Measurements of IAP could be obtained by measuring intra-

bladder pressure using the intra-bladder catheter connected to a transducer. Increased IAP is 

defined as elevated pressure greater than normal range of 5–7 mmHg (81).

Medical Treatment Options for Right Heart Failure and Cardio-Renal 

Syndrome

Decongestion is the cornerstone in CRS treatment to reduce systemic venous congestion and 

return balance in hemodynamic, neurohormonal and biological activation. Hence, 

improvement of renal perfusion pressure by reducing CVP, renal venous pressure and RV 

volume overload thereby improve RV and LV performance(138). Decongestion strategies 

include diuretics, ultrafiltration and dialysis. Oral diuretic is the first line strategy and has 

been used for years with natriuretic effect and volume reduction leading to immediate relief 

of HF symptoms(139). Although, the most challenging of decongestion in CRS is diuretic 

resistance due to several mechanisms, such as impaired renal function, reduced cardiac 

output leading to low delivery of diuretic to the site of action (kidney), inadequate dose of 

diuretic or inadequate substrate (sodium and chloride) at the renal tubules(138, 140).

Loop diuretics

Loop diuretics inhibit Na+-K+−2Cl− co-transporter at the thick ascending limb of the loop of 

Henle and are the most common diuretics used in clinical practice since they have a short 

peak of action (10–30 minutes and 1–1.5 hours for intravenous and oral administration, 

respectively)(141). Loop diuretics cause natriuresis, thereby causing net negative water and 

salt balance and reduced volume overload. The most commonly used loop diuretics are 

furosemide, torsemide and bumetanide. Torsemide has greater and more consistent oral 

bioavailability (90%) than furosemide (10–90%)(141–143). Although, the oral 

bioavailability of furosemide can be improved when taken before a meal, since furosemide 

has been shown to have a 30% reduction in oral bioavailability with food(144). Intravenous 

or novel subcutaneous furosemide ensure 100% bioavailability (145, 146). However, 

torsemide, with a longer half-life, leads to less frequent doses compared to furosemide 

(142). Hence, torsemide is suggested as a more effective and well tolerated diuretic in CHF 

compared to furosemide in several studies including a meta-analysis (147–149). Moreover, 

loop diuretics are protein-bound anions; >90% bound to plasma proteins and are secreted in 

the proximal tubules to reach their site of action(150). The ability of the diuretic to be 

protein-bound can have competition from exogenous anions such as non-steroidal anti-

inflammatory drugs (NSAIDs) and endogenous anions such as bile acid and uremic toxin 

(116, 138) resulting in reduced diuretic efficacy. In addition, hypoalbuminemia, which is 

common in advanced HF, could contribute to decreased loop diuretic transportation to the 

site of action(138).

Indeed, dose-response to diuretic curve in HF shifts downward and to the right; therefore, a 

higher dose of diuretic is needed to achieve the same therapeutic effect in HF(151). A single 

dose of furosemide elicits transient natriuresis(152). Hence, increased frequency or 
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continuous use of a loop diuretic could be considered. However, continuous dosing of loop 

diuretics showed no difference in symptom relief or change in renal function in The Diuretic 

Optimization Strategies Evaluation in Acute HF (DOSE-AHF) trial compared with a bolus 

strategy, while high doses were associated with greater diuresis, weight loss, and transient 

WRF(153). A bolus dose of loop diuretic also showed no difference in mortality compared 

with continuous infusion. However, continuous infusion is associated with more 

hyponatremia, need for vasopressors, rehospitalization and death at 6 months (154). Starting 

with an intravenous diuretic dose 2.5 times the daily oral equivalent diuretic dose is 

reasonable as advised in the DOSE-AHF trial(138). Upon transition to oral therapy, the 

dosing frequency should depend on medication half-life which is every 4–6 hour for 

furosemide and bumetanide and every 8–12 hours for torsemide(155).

A stepwise pharmacologic strategy has been proposed and studied in post hoc analysis of 3 

randomized controlled trials in acute HF with CRS, including DOSE-AHF(153), the 

Cardiorenal Rescue Study in Acute Decompensated Heart Failure (CARRESS-HF)(156) and 

Renal Optimization Strategies Evaluation in AHF (ROSE-AHF) trial(157). These studies 

showed superiority to standard decongestive therapy (including non-adjusted diuretic dose) 

without WRF and superiority to ultrafiltration in preservation of renal function at 96 hours 

(158). The stepwise diuretic regimen is shown in Table 3. In the setting of significant venous 

congestion as a result of RHF leading to progressive impedance of venous return from the 

kidneys, effective decongestion may improve renal perfusion and thereby increase diuresis 

and natriuresis. On the other hand, excessive diuresis without adequate right heart reserve 

can reduce preload and impair cardiac output, leading to relative intravascular hypovolemia 

and decreased diuresis and natriuresis. Regardless, the rise in serum creatinine may or may 

not be indicative of intrinsic injury or damage to the kidneys; and the ultimate delicate 

balance can be impacted by the status of the right heart.

Diuretic resistance

To date, the definition of diuretic resistance is not clear and no standard definition is 

available. However, it has been defined as diminished or loss of diuretic response before the 

therapeutic goal of relief from edema has been achieved(159). There are various metrics to 

measure either diuretic efficacy or resistance, including weight loss, net fluid loss, urine 

output per 40 mg of intravenous furosemide-equivalent doses and natriuresis(155). These 

measures account for loop diuretics, the most commonly used diuretics in volume overload, 

but do not account for other diuretics(155). Moreover, there is no definite cut-off for those 

metrics for either diuretic resistance or efficacy. However, diuretic efficacy in HF has been 

shown as a strong predictor for mortality and morbidity including all-cause death, HF 

readmission and renal related readmission after correction with baseline eGFR(140, 160–

165). This was attributed to GFR and diuretic efficacy represented in a different part of 

kidney function; while GFR is the glomerular function, diuretic efficacy is the tubular 

function(155).

Braking phenomena, diminished diuretic-induced natriuresis by hemodynamic and 

neurohormonal responses, have all been implied as contributors to diuretic resistance(138). 

Hemodynamic braking develops when diuretic reduces extracellular fluid volume thereby 
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causing SNS and RAAS activation which increases sodium reabsorption at proximal tubules 

(166). Neurohormonal braking develops when diuretic increases urine sodium and activates 

TGF causing renin production thereby causing afferent arteriolar vasoconstriction which 

indirectly reduces sodium filtration(167). Nephron remodeling (distal tubular hypertrophy 

and hyperplasia) as a consequence of prolonged use of loop diuretic is also considered a 

determinant of diuretic efficacy (168, 169). In addition, furosemide-treatment in HF has 

demonstrated enhanced distal sodium transport more than proximal which could attenuate 

the loop diuretic response (170). Hence, addition of non-loop diuretics (i.e. thiazide or 

potassium sparing diuretic), which is termed “segmental nephron blockage,” may be 

reasonable and also might overcome the braking phenomenon and nephron remodeling 

thereby augmenting natriuresis(171) without compromising GFR(156). However, the 

evidence of this approach in CRS is still lacking, let alone in the setting of RHF. Moreover, 

renal dysfunction in the context of CRS reduces excretion of the diuretic into the tubular 

lumen and natriuresis in CKD is reduced by decreased sodium filtration (172, 173).

Other medical therapies

Vasoactive and inotropic drugs have been used extensively in clinical practice for significant 

RHF, although clinical trial evidence has been lacking (especially regarding preference of 

milrinone over other vasoactive drugs). Much of the literature is based upon cardio-centric 

optimization of hemodynamic parameters in advanced HF patients. In the acute setting 

where pulmonary hypertension is a major contributor, selective pulmonary vasodilators have 

been used with success (e.g., inhaled nitric oxide, prostacyclin and iloprost), although there 

is limited data to support the role of phosphodiesterase type 5 inhibitors for this indication.

Summary/Conclusion

The heart and kidney have complex bidirectional interlinks termed CRS type 1 and 2 that 

represent the renal dysfunction secondary to acute and chronic heart problems, respectively. 

Contemporary data have shown more correlation of venous congestion and renal dysfunction 

in HF which represents the significant influence from the right heart. Prevention of CRS 

should be the most important goal. This requires understanding of the pathophysiology of 

CRS which involves several interfaces and is not just limited to heart and kidney. Splanchnic 

organs play an important role in this such as pressure effect of venous congestion, 

inflammatory responses and neurohormonal activation. Decongestion is still the mainstay 

strategy in HF with CRS and is clinically challenging. These could be caused by reduced 

diuretic efficiency and diuretic resistance. However, dedicated diuretic strategy in CRS or 

diuretic resistance remain unclear and further randomized trials are needed. In addition, 

clinical assessment of extracellular fluid status remains important to keep the balance 

between hypervolemia and dehydration.
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Synopsis

Cardio-renal syndrome is a complex interplay of dysregulated heart and kidney 

interaction that leads to multiorgan system dysfunction, which is not an uncommon 

occurrence in the setting of right heart failure. The traditional concept of impaired 

perfusion and forward flow has recently been modified to include the recognition of 

systemic venous congestion as a contributor, with direct and indirect mechanisms 

including elevated renal venous pressure, reduced renal perfusion pressure, increased 

renal interstitial pressure, tubular dysfunction, splanchnic congestion and neurohormonal 

and inflammatory activation. Treatment options beyond diuretics and vasoactive drugs 

remain limited and lack supportive evidence.
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Key Points

• The physiologic definition of cardio-renal syndrome refers to cardio-renal 

dysregulation as therapy for congestive symptoms and is limited by decline in 

renal function.

• Right heart failure contributes to the traditional concept of “forward failure” 

by providing inadequate preload to maintain cardiac output, thereby creating 

arterial under filling and impaired renal perfusion.

• Systemic venous congestion as a result of “backward failure” has gained 

better recognition as an important contributor to increased renal venous 

pressure, renal interstitial pressure, and increased intra-abdominal pressure as 

part of splanchnic congestion.

• Current diagnostic strategies, besides bedside assessment, include novel 

serum or urine biomarkers, renal ultrasonography, and intra-abdominal 

pressure measurements.

• Effective relief of congestion and maintenance of circulatory organ perfusion 

remains the primary treatment goal along with the lack of targeted specific 

therapy improvement in right ventricular reserve.
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Figure 1: Summary of pathophysiology of RHF and CRS.
RHF: Right heart failure, CVP: Central venous pressure, IAP: Intra-abdominal pressure, 

ANP: Atrial natriuretic peptide, RAAS: Renin-angiotensin-aldosterone system, SNS: 

Sympathetic nervous system, A-V: Arterio-venous, RPP: Renal perfusion pressure, PV: 

Portal vein, ECV: Effective circulatory volume, LPS: Lipopolysaccharide, TNF- α: Tumor 

necrotic factor – α, IL-6: Interleukin-6, IL-1 β: Interleukin-1β, GFR: Glomerular filtration 

rate.
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Figure 2. Ultrasound Profiles Across the Spectrum of Elevated Right Atrial Pressure As 
Indication for Cardio-Renal Syndrome in Right Heart Failure.
Abbreviation: RAP, right atrial pressure. (From Tang WH, Kitai T. Intrarenal Venous Flow: 

A Window Into the Congestive Kidney Failure Phenotype of Heart Failure? JACC Heart 

Fail. 2016;4(8):683–6; with permission.)
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Table 1.

Types of Cardio-renal syndrome (CRS)

Type of CRS Definition Conditions

Type 1: Acute CRS Acute worsening of heart function leading to kidney 
injury and/or dysfunction

Acute HF, Acute cardiogenic shock

Type 2: Chronic CRS Chronic abnormalities in heart function leading to 
progressive and permanent CKD

Chronic HF

Type 3: Acute Renocardiac 
syndrome

AKI causing acute heart dysfunction Acute glomerunephritis/ AKI cause acute 
HF,

Type 4: Chronic Renocardiac 
syndrome

CKD leading to chronic heart disease and CKD 
progression

CKD cause cardiac hypertrophy, 
decreased cardiac function

Type 5: Secondary CRS Systemic diseases leading to heart and kidney damage/
dysfunction

Diabetes, sepsis, septic shock

CRS: Cardio Renal Syndrome, HF: Heart failure, AKI: Acute Kidney Injury, CKD: Chronic Kidney damage
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Table 2.

Summary of studies linking venous congestion and renal dysfunction in heart failure

Author, year 
(Reference)

Objectives Study population and 
study design

Results Conclusion

Nohria et al, 
2008(4)

To evaluate correlation 
between hemodynamic 
parameters using pulmonary 
artery catheter and renal 
function

Prospective RCT of 433 
patient with AHF

RAP correlated with serum 
Cr

Renal dysfunction or 
WRF does not related to 
poor forward flow alone

Mullens et al, 
2009(14)

To determine whether 
venous congestion, rather 
than low CO is primarily 
associated with worsening 
renal function inADHF

Prospective observational 
study of 145 ADHF treated 
with PAC guided

WRF associated with high 
CVP with 75% of patients 
with baseline CVP > 24 
immHg developed WRF

Venous congestion is 
more important factor 
driving WRF

Damman et al, 
2009(15)

To investigate the 
relationship between 
increased CVP, renal 
function and mortality

Retrospective study of 2557 
CVD patients with RHC

CVP>6 mmHg showed 
steep declined in eGFR

Increased CVP is 
associated with impaired 
renal function

Damman et al, 
2010(19)

To investigate the 
relationship between signs 
and symptoms of congestion, 
renal impairment and 
outcomes

Double-blind RCT of 2647 
HF NYHAclasslll/VI

Signs and symptoms of 
congestion were 
independently related to 
low eGFR and increase in 
mortality

Signs and symptoms of 
congestion are associated 
with renal impairment 
and independent 
determinants of 
prognosis

Guglin et al, 
2011(16)

To assess correlation of 
congestion and renal 
function

Retrospective study of 178 
patients with HF and 
underwent RHC

Serum Cr correlated with 
CVP, PCWP and renal 
perfusion pressure but not 
with Cl or LVEF

Renal dysfunction 
correlated with venous 
congestion and low renal 
perfusion

Testani et al, 
2010(23)

To assess diuresis in RV 
dysfunction and resulting in 
reduced venous congestion 
and improving in renal 
function

Prospective study of 141 
patients with HF with 
congestion assessed by 
echocardiography

RV dysfunction had more 
frequent venous congestion 
and lower incidence of 
worsening renal function

Relief of venous 
congestion in RV 
dysfunction likely leads 
to improved renal 
function
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Table 3.

Stepped diuretic strategy: Treatment algorithm from CARRESS-HF

Daily UO assessment

UO > 5 L/day : reduce current diuretic regimen if desired

UO3–5 L/day : continue current diuretic regimen

UO < 3 L/ day : see diuretic table

At 24 hours assessment

If persistent volume overload

Assessed daily UO as above

Advance to the next step on diuretic table if UO < 3 L/ day

At 48 hours assessment

If persistent volume overload

Assessed daily UO as above

Advance to the next step on diuretic table if UO < 3 L/ day and consider

: Dobutamine or dopamine at 2 μg/kg/min if SBP < 100 mmHg and LVEF < 40% or

RV systolic dysfunction

: Nitroglycerin or nesiritide if SBP > 120 mmHg and severe symptoms

At 72–96 hours assessment

If persistent volume overload

Assessed daily UO as above

Advance to the next step on diuretic table if UO < 3L/ day and consider

: Dobutamine or dopamine at 2 μg/kg/min if SBP < 100 mmHg and LVEF < 40% or

RV systolic dysfunction

: Nitroglycerin or nesiritide if SBP > 120 mmHg and severe symptoms

- Hemodynamic guided IV-therapy

- LVAD

- UF or dialysis

Diuretic table

Current loop diuretic Suggested dose

dose Loop diuretic dose Thiazide dose

± thiazide

A. ≤80 mg 40 mg IV bolus + 5 mg/hr 0

B. 81–160 mg 80 mg Iv bolus + 10 mg/hr 5 mg metolazone QD

C. 161–240 mg 80 mg Iv bolus + 20 mg/hr 5 mg metolazone BID

D. ≥240 mg 80 mg Iv bolus + 30 mg/hr 5 mg metolazone BID

CARRESS-HF: Cardiorenal Rescue Study in Acute Decompensated Heart Failure, UO: Urine output, LVEF: Left ventricular ejection fraction, RV: 
Right ventricle, SBP: Systolic blood pressure, LVAD: Left ventricular assist device, UF: Ultrafiltration (From https://biolincc.nhlbi.nih.gov/media/
studies/carress/Protocol.pdf?link_time=2020-01-15_23:30:43.304569.)
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