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Key Points

•Human T cells coex-
pressing the full-length
isoform of Helios with
FOXP3 delay disease
in a murine graft-versus-
host disease model.

• The full-length and
short isoforms of the
transcription factor He-
lios differentially medi-
ate human Treg
function.

Regulatory T cells (Tregs) are a subset of immune cells that suppress the immune response.

Treg therapy for inflammatory diseases is being tested in the clinic, with moderate success.

However, it is difficult to isolate and expand Tregs to sufficient numbers. Engineered Tregs

(eTregs) can be generated in larger quantities by genetically manipulating conventional

T cells to express FOXP3. These eTregs can suppress in vitro and in vivo but not as effectively

as endogenous Tregs. We hypothesized that ectopic expression of the transcription factor

Helios along with FOXP3 is required for optimal eTreg immunosuppression. To test this

theory,we generated eTregs by retrovirally transducing total humanT cells (CD41 and CD81)

with FOXP3 alone or with each of the 2 predominant isoforms of Helios. Expression of both

FOXP3 and the full-length isoform of Helios was required for eTreg-mediated disease delay

in a xenogeneic graft-versus-host disease model. In vitro, this corresponded with superior

suppressive function of FOXP3 and full-length Helios-expressing CD41 and CD81 eTregs.

RNA sequencing showed that the addition of full-length Helios changed gene expression in

cellular pathways and the Treg signature compared with FOXP3 alone or the other major

Helios isoform. Together, these results show that functional human CD41 and CD81 eTregs

can be generated from total human T cells by coexpressing FOXP3 and full-length Helios.

Introduction

Regulatory T cells (Tregs) are a subset of T cells that mediate immune homeostasis through suppression
of immune activity.1-4 Tregs downregulate the immune response via a variety of mechanisms, including
inhibiting conventional T-cell (Tconv) proliferation and activation, secretion of immunosuppressive
cytokines, killing of immune cells, and induction of anergy. The major Treg subset that has been
studied is CD41 Tregs, which represent 3% to 5% of circulating CD41 T cells. In addition, there are
CD81 Tregs, which have not been well characterized.5,6

There is intense interest in using Tregs as a cellular therapeutic. Clinical trials are testing the use of natural
Tregs in the treatment of multiple inflammatory diseases, including type 1 diabetes, transplant rejection,
and graft-versus-host disease (GVHD).7-11 These trials have shown that CD41 Treg infusions are safe but
only moderately successful. A major challenge is expanding natural CD41 Tregs to numbers required to
treat.9 Another limitation of Treg therapy is isolating a pure population of Tregs. Tregs are commonly
isolated by selecting CD41 CD251 T cells, but these markers are also expressed by activated Tconvs.12

This scenario leads to potential contamination of Tregs with Tconvs that could exacerbate disease. In
addition, natural Tregs can convert to Tconvs and lose immunosuppressive activity in vivo.13-16

Engineered Tregs (eTregs) provide potential solutions to the limitations of natural Tregs. Total CD41

T cells can be isolated in greater numbers and expanded more quickly than endogenous Tregs. These
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cells can then be transduced with Treg genes, allowing for the
creation of a much larger number of Tregs compared with natural
Tregs. Coexpression of Treg genes with a transduction marker
allows for purification of eTregs and ensures homogeneity of the
cell population.17 Constitutively expressing Treg transcription
factors stabilizes the Treg phenotype.18 Although the advantages
of eTregs are clear, the Treg genes necessary to create an optimal
engineered Treg are still undefined.

High expression of the transcription factor FOXP3 is a hallmark of
CD41 Tregs. Enforced FOXP3 expression in CD41 T cells generates
Tregs capable of mediating in vitro suppression.19 Furthermore,
FOXP3-transduced CD41 T cells can reduce symptoms in murine
colitis and GVHD models.20,21 However, in a study using a murine
arthritis model, FOXP3-transduced cells were not as effective as
endogenous Tregs at reducing joint destruction or decreasing the
number of pathogenic T helper 17 cells in the joint.18 In addition,
microarray data have shown that FOXP3 is not sufficient to induce
a complete Treg gene signature in murine CD41 T cells.22

In addition to FOXP3, the Ikaros family member Helios is highly
expressed in ;70% of CD41 FOXP31 Tregs.23 Helios1 CD41

Tregs more effectively suppress cytokine production by Tconv
cells24,25 and are more stable under inflammatory conditions
than Helios– CD41 Tregs.23,26-28 Mice with Helios deficiency in
Foxp31 cells develop spontaneous autoimmune disease, and
CD41 Tregs from these mice have reduced suppressive activity
and survival.29,30 Coexpression of Helios and Foxp3 in murine CD41

Tconvs increases the Treg transcriptional signature index compared
with Foxp3 alone.31 Furthermore, Helios is required to mediate CD81

Treg function.29 For these reasons, we hypothesized that ectopic
expression of Helios with FOXP3 would generate optimal CD41 and
CD81 eTreg-mediated immunosuppression.

Here, we report that human CD41 and CD81 T cells isolated from
the peripheral blood can be genetically modified to express high
levels of FOXP3 and Helios. We generated eTregs that coex-
pressed FOXP3 with the following 2 endogenous splice variants of
Helios found in human nTregs32,33: full-length Helios (Hel-FL) and
a shorter form, D3B Helios (Hel-D3B). The addition of Hel-FL to
FOXP3 was able to convey increased immunosuppressive proper-
ties to both CD41 and CD81 Tregs in vitro, and eTregs expressing
Hel-FL and FOXP3 were the most effective at immunosuppression
in vivo in a xenogeneic GVHD model.

Methods

Isolation of human peripheral blood

mononuclear cells

Blood was collected from healthy adult volunteers under signed
informed consent with approval from the Institutional Review Board of
the University of Kansas Medical Center (KUMC). Peripheral blood
mononuclear cells (PBMCs) were isolated via Ficoll-Paque (GE
Healthcare) density centrifugation with SepMate tubes (STEMCELL
Technologies Inc.).

Construction of retroviral vectors and production of

retroviral particles

Retroviral constructs were generated to express complementary
DNA (cDNA) encoding FOXP3, Hel-FL, or Hel-D3B. The NCBI
Reference Sequences for FOXP3, Hel-FL, and Hel-D3B are

NM_014009.3, NM_016260.2, and NM_001079526.1, respec-
tively. The SFG retroviral vector, RDF, and pEQPAM3 retroviral
packaging plasmids were generously donated by Malcom Brenner
(Baylor College of Medicine). The cDNAs were cloned into the SFG
vector via Gibson assembly.34 Multiple genes were linked in frame
with a picornavirus 2A ribosomal skip peptide.35 The FOXP3
construct contains truncated CD19 (DCD19) cDNA, and the Hel-
FL and Hel-D3B contains truncated CD34 (DCD34) cDNA. The
NCBI Reference Sequences for CD19 and CD34 are
NM_001178098.1 and NM_001025109.1. The DCD19 and
DCD34 sequences only contain the signal peptide, extracellular
and transmembrane regions. DCD19 and DCD34 alone vectors
were generated as negative controls. FOXP3, DCD19, and DCD34
were codon optimized via Invitrogen GeneArt Gene Synthesis
(Thermo Fisher Scientific) before being cloned into the SFG vector.
Hel-FL and Hel-D3B cDNA sequences were not altered before
cloning. Viral particles were generated by transfecting HEK
293T cells with SFG vectors containing genes of interest, retroviral
packaging vectors, and FuGENE HD Transfection Reagent
(Promega). Viral supernatants were collected 2 and 3 days after
transfection and stored at 280°C until use.

Activation and transduction of human T cells

Human T cells were activated in Aim V medium (Thermo Fisher
Scientific) with 2% human AB serum (Bio-Techne) (complete
media). Then, 3 3 106 PBMCs at 106/mL were stimulated with
2 mg/mL plate-bound anti-CD3 (OKT3; Bio X Cell) and anti-CD28
(9.3; Bio X Cell). After 2 days of activation, complete medium was
supplemented with 200 U/mL of recombinant human interleukin-2
(rhIL-2) (PeproTech). Cells were passed every 2 to 3 days at 1 to
2 3 106 cells/mL in complete medium supplemented with rhIL-2
(200 U/mL). Five to 6 days postactivation, T cells were transduced
with viral supernatants containing DCD34 vectors. Allowing cells to
expand for 5 to 6 days increased the starting T-cell number an
average of twofold. Non-tissue culture 6-well plates were coated in
RetroNectin (Takara Bio Inc.) at 20 mg/mL in phosphate-buffered
saline per manufacturer’s instructions. Then, 1.5 mL of viral
supernatant per well was bound to RetroNectin-coated plates by
centrifuging plates for 2 hours at 2000g at 32°C. Viral supernatant
was removed, and 1.5 mL of viral supernatant and 2.5 to 3 3 106

T cells in complete medium with rhIL-2 at 106 cells/mL were added
to each well. Transduced cells were positively selected 2 days
posttransduction with anti-human CD34 CELLection magnetic
beads (Thermo Fisher Scientific). Beads were allowed to dissociate
and removed via magnet 2 days later, and cells were transduced
(without restimulation) with viral supernatants containing DCD19
vectors. Transduced cells were positively collected 2 to 3 days later
with CELLection Biotin Binder Kit beads (Thermo Fisher Scientific)
coated with biotinylated anti-human CD19 antibody (HIB19;
BioLegend). Beads were removed 2 days later and used in assays
up to 10 days after the last transduction. FOXP3 and Helios were
transduced on separate vectors because Helios downregulated
expression of genes on the same vector (including DCD34)
(Figure 1D; supplemental Figure 1). Sequential transduction was
also optimal for transduction efficiency.

Real-time polymerase chain reaction

RNA was isolated by using the RNeasy Mini Kit (Qiagen). RNA was
converted to cDNA by using the TaqManHighCapacity RNA-to-cDNA
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kit (Thermo Fisher Scientific). Real-time polymerase chain reaction was
performed by using the following primers:

F: 59TGATGGCTATATAACGTGTGACAA39, R: 59CTCACACTT
GAAGGCCCTAATC39.

Xenogeneic murine GVHD model

All animal studies were approved by the KUMC Institutional Animal
Care and Use Committee. NOD-SCIDIL-2Rgnull (NSG) mice were
purchased from The Jackson Laboratory and bred at KUMC under
specific pathogen-free conditions.

NSG mice (8-12 weeks old) of both sexes received 1.5 Gy of
whole-body irradiation. The next day, the mice were injected retro-
orbitally with 107 human PBMCs, 107 PBMCs with 53 106 eTregs
(all cells from the same donor), or phosphate-buffered saline. Mice
were clinically scored with the GVHD scoring system established by
Cooke et al36 and euthanized at a score of 7 (graphed as a 7 for the
remainder of the experiment) or at 42 days postinjection. The
researcher assessing score was blinded to the treatment of
each mouse.

Flow cytometry

Cells were stained with various combinations of the following anti-
human antibodies: CD3-APC-Cy7, CD4-PE-Cy7, CD4-eFluor-610,
CD8-Alexa Fluor (AF) 488, CD8-Brilliant Violet (BV) 785, CD19-
BV421, CD34-BV605, CD39-BV 510, CD25- PerCPCy-5.5,
CD127-BV650, CD73-APC-Cy7, CCR4-PE-Cy7, GITR-PE-Cy5,
CTLA-4-PE, and CD62L-AF700 (BioLegend). Intracellular tran-
scription factor staining was performed by using the FOXP3
Staining Buffer kit (eBioscience) with anti-human FOXP3-PE, anti-
human Helios-AF647, or anti-Helios-BV421 (BioLegend). Samples
were run on an LSRII (Becton Dickinson) or Attune NxT (Thermo
Fisher Scientific).

Activation-induced cell death assay

Cells were resuspended at a concentration of 106 cells/mL in
complete media. Then, 2 3 105 cells were stimulated with plate-
bound anti-CD3 (10 mg/mL OKT3) and anti-CD28 (1 mg/mL 9.3)
for 2, 4, or 6 days. Cells were stained with Zombie Green Fixable
Viability Dye and Annexin V PE (BioLegend) and assessed for cell
death via flow cytometry.

Intracellular cytokine staining

Two3 105 cells were stimulated with plate-bound anti-CD3 (10mg/mL
OKT3) and anti-CD28 (1 mg/mL 9.3) for 6 hours in the presence of
Golgi Stop (Becton Dickinson) and Brefeldin A (MilliporeSigma).
Cells were stained with extracellular antibodies and then fixed with
2% paraformaldehyde (MilliporeSigma), permeabilized with perme-
abilization buffer from the FOXP3 Staining Buffer kit (eBioscience),

and stained with the following antibodies: anti-human IL-2-FITC, anti-
human interferon-g–Pacific Blue, anti-human IL-10-AF647 or anti-
human-IL-21 AF647, anti-human IL-4-PE-Cyanine-7, and anti-human
IL-17A BV605 (BioLegend).

Suppression assay

Autologous T cells were isolated from PBMCs by using a T-cell
enrichment kit (STEMCELL Technologies Inc.) and labeled with the
Cell Proliferation Dye eFluor670 (eBioscience). T cells were
cocultured with each eTreg cell strain at a 1:1 ratio with or without
stimulation at 5 3 105 cells/mL. Cells were stimulated with anti-
CD3 and anti-CD28 coated DYNAL Dynabeads (Thermo Fisher
Scientific) (1:10 bead:target cell ratio). After 96 hours, cells were
stained with Zombie Green Fixable Viability Dye (BioLegend), and
target cell proliferation was assayed via flow cytometry. Percent
suppression was calculated by the following equation: [(percent
responder proliferation alone) – (percent responder proliferation
with transduced cells)]/(percent responder proliferation alone)
3 100.

RNA sequencing

FOXP3–DCD191DCD34, FOXP3–DCD191Hel-FL–DCD34, and
FOXP3–DCD191Hel-D3B–DCD34 cells were generated with
PBMCs from 3 different donors. Cells were collected 5 days after
the second transduction, and CD41 and CD81 cells were isolated
via flow cytometry–assisted cell sorting on a BD FACS Aria III (BD
Biosciences). RNA was isolated by using the RNeasy Mini Kit
(Qiagen). TruSeq stranded messenger RNA sequencing libraries
were performed by using the Illumina TruSeq and NuGEN sample
preparation kits (Illumina). Paired-end RNA sequencing data were
generated by using a NovaSeq 6000 Sequencing System
(Illumina).

Adaptor removal was performed by cutadapt,37 and quality control
was done with FastQC (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc). Samples were aligned to human genome
(hg38) with RSEM38 and bowtie2,39 and transcript counts were
obtained. Using the Bioconductor package “edgeR,”40 data were
normalized according to library size, and genes with low expression
were filtered out. Genes were retained if their count per million
(cpm) value was larger than 1 for at least 2 samples of the 18
considered in this study. After filtering low/nonexpressed genes,
13 955 remained for subsequent statistical analysis (supplemental
Table 1).

Genes were further filtered with differential expression by taking the
top 2000 genes with the lowest false discovery rate and then further
restricted to genes with an expression change that was the same
direction in all 3 donors. These filtered lists were made for each
donor and comparison, and the cpm gene counts were used to

Figure 1. Generation of human eTregs by transduction with FOXP3 and/or Helios. (A) Illustration of SFG retroviral vector containing genes of interest and

transduction surface markers. (B-E) Transduction marker (DCD34 and DCD19), Helios, and FOXP3 protein expression in eTregs was assessed via surface and intracellular

transcription factor staining and flow cytometry. Cells were assessed after the second transduction and magnetic bead purification for CD19. Graphs represent a summary of

the percentage of eTregs positive for DCD34, DCD19, FOXP3, and Helios of total live cells (B) and geometric mean fluorescent intensity (GMFI) of FOXP3 and Helios of

transduced cells gated on DCD19 expression (C); n 5 3 to 9, and 6 different donors. Histograms and dot plots are representative figures of DCD34 and DCD19 expression

following the second transduction and CD19 bead purification (D) and FOXP3 and Helios expression in DCD191 transduced cells (E). (F) Representative figure of Helios

messenger RNA expression assessed via real-time polymerase chain reaction and visualized via gel electrophoresis.*P # .05 compared with no eTregs based on a 1-tailed

Mann-Whitney U test.
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conduct a gene set enrichment analysis (GSEA) with the GSEA
version 3.0 software (Broad Institute) (supplemental Table 2).
Enrichment in the KEGG pathway gene sets (c2.cp.kegg.v6.2.sym-
bols.gmt) was used to identify and visualize significantly enriched
pathways.41,42

To examine Treg-related gene expression, heat maps were
generated based on the cpm values. Two lists of Treg genes were
generated based on comparisons of Tconvs vs Tregs by Miyara
et al,15 Mold et al,43 and Bonacci et al,44 referred to as the “up gene
list” and the “down gene list.” From the gene expression
comparisons data, genes were analyzed that were present in the
up or down Treg gene lists and had a nominal, uncorrected P, .05.
Genes were then selected if they exhibited the expected expression

pattern; that is, all 3 subjects were upregulated in an up-gene
comparison or vice versa. Finally, the 2 comparisons were merged
into 1 heat map. For each cell in the heat map, the difference of cpm
values was calculated between 2 strains of cell for 1 subject and
divided by the average cpm value of that gene in all 3 subjects.

Statistical analysis

Data were analyzed with GraphPad Prism 7 (GraphPad Software)
and the R statistical programming language (http://r-progject.org).
Data reported at each time point for GVHD score are an average of
the scores of the mice left alive and the last scores and weights of
any deceased mice in each group. Mann-Whitney U tests were
done to compare GVHD scores at each time point. The log-rank
(Mantel-Cox) test was used for analysis of Kaplan-Meier curves.
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Figure 2. FOXP3
1
Hel-FL eTregs delay disease pro-

gression in a xenogeneic GVHD murine model. NSG

mice aged 8 to 12 weeks were sublethally irradiated. The

next day, the mice were injected retro-orbitally with 107 hu-

man PBMCs alone (n 5 8), with 107 human PBMCs 1 5 3

106 empty vector control cells (n 5 6), 107 human PBMCs

1 5 3 106 FOXP3 eTregs (n 5 8), 107 human PBMCs 1

5 3 106 FOXP31HEL-FL eTregs (n 5 7), or 107 human

PBMC 1 5 3 106 FOXP31Hel-D3B eTregs (n 5 7). (A)

GVHD score. *P # .05 compared with no eTregs based on

a 1-tailed Mann-Whitney U test for each time point. (B)

Kaplan-Meier curve of survival. Death was marked when the

GVHD score was $7. The data shown are the aggregated

data from 5 separate experiments that used T cells from 4

different donors. *P # .05 compared with no eTregs as de-

termined by using the log-rank test. PBS, phosphate-

buffered saline.
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Differences between groups were compared via Mann-Whitney U
tests. Differences between groups with data normalized to a control
were compared by using the Wilcoxon matched-pairs signed
rank test, which paired data points within separate experiments.
One-tailed analysis was used because hypotheses were 1 tailed
(1 direction). P # .05 was considered significant. Results show
mean 6 standard error of the mean unless indicated otherwise.

Results

Generation of human eTregs via retroviral

transduction of FOXP3 and Helios

We generated human eTregs that expressed both FOXP3 and
Helios with a dual vector transduction system. A dual vector system
was used because a single tricistronic vector resulted in reduced
expression of FOXP3 in Helios-expressing cells (Figure 1; supple-
mental Figure 1). In addition, we transduced total T cells rather than
purified CD41 T cells19 to reduce selection steps in eTreg
production. T cells in both mice and humans express 2 isoforms
of Helios, Hel-FL, and the shorter isoform lacking half of the 3rd
exon (Hel-D3B), although little is known about the functional
differences between these splice variants.32,33 Thus, we trans-
duced either Hel-FL or Hel-D3B with a truncated CD34 marker
(DCD34) and FOXP3 with a truncated CD19 marker (DCD19) into
T cells purified from peripheral blood to obtain a mixed population of
CD41 and CD81 T cells that highly expressed both Helios and
FOXP3 (supplemental Figure 2). Although DCD34 expression was
downregulated in transduced cells with Helios (Figure 1D), there
was still higher expression of Helios compared with an empty vector
control (Figure 1E). The transduced isoform of Helios was the
predominant splice variant of Helios expressed in each eTreg
(Figure 1F).

FOXP31Hel-FL eTregs delay disease in a xenogeneic

GVHD model

To assess the suppressive capacity of each eTreg strain, we used
a xenogeneic GVHD model in which sublethally irradiated NSG
mice were injected with human PBMCs without or with each eTreg
cell strain. Injected eTregs had comparable CD4:CD8 ratios across
all groups (supplemental Figure 3). Treatment with FOXP31Hel-FL
eTregs significantly delayed GVHD progression compared with
mice injected with PBMCs alone (Figure 2A). In addition, FOXP31

Hel-FL eTregs significantly improved overall survival compared with
mice injected with PBMCs only (Figure 2B). In contrast, the FOXP3
or FOXP31Hel-D3B eTregs did not delay GVHD or affect overall
survival.

Hel-FL and Hel-D3B coexpression with FOXP3

differentially regulate CD41 and CD81

eTreg suppression

To determine why the FOXP31Hel-FL eTregs were best at
suppressing GVHD, we first assessed the ability of each eTreg
strain to suppress T-cell proliferation in vitro. In addition to the total
eTregs, we purified and analyzed the suppressive capability of
CD41 and CD81 T cells in the eTreg strains separately. Hel-FL

expression increased the ability of both total and CD41 eTregs to
suppress the proliferation of naive T cells in this assay (Figure 3;
supplemental Figures 4-6). However, both FOXP31Hel-FL and
FOXP31Hel-D3B similarly increased the suppressive capability of
CD81 eTregs. These data show that there is a differential
requirement for Helios isoform expression in CD41 and CD81

T cells for the enhancement of suppressive function of FOXP3-
expressing eTregs.

Helios expression reduces eTreg proliferation

and survival

To determine whether the greater suppressive function of the
Helios-expressing eTregs was due to enhanced eTreg survival, we
compared the proliferation and survival of the eTreg cell strains
in vitro. FOXP3 expression reduced proliferation over time, and the
addition of either isoform of Helios further reduced proliferation and/
or survival (Figure 4A). There was also an increase in activation-
induced cell death in all 3 eTreg cell strains, with more death
observed in both the Helios-expressing eTregs (Figure 4B-C).
Interestingly, Helios expression alone did not significantly affect
proliferation (supplemental Figure 7).

Hel-FL and Hel-D3B differentially affect gene

expression in FOXP3-expressing human T cells

In addition to no observable difference in cell survival between
FOXP31Hel-FL and FOXP31Hel-D3B eTregs, we detected no
differences in the expression of the Treg markers CD25, CD73, or
CCR4, or secretion of interferon-g, IL-2, IL-4, IL-10, or IL-17A
between these cell strains (supplemental Figures 8-10). Therefore,
to determine how these cell strains were different, we performed
RNA sequencing (supplemental Tables 1 and 2).

Adding either isoform of Helios to FOXP3-expressing CD41 or
CD81 eTregs significantly changed gene expression and altered
the KEGG pathways enriched compared with FOXP3 alone
(Figure 5). FOXP31Hel-FL and FOXP31Hel-D3B eTregs had the
least transcriptional differences (Figure 6A). However, FOXP31Hel-
FL induced enrichment in different KEGG pathways more than
FOXP31Hel-D3B in both CD41 and CD81 eTregs (Figure 6B).
Three of these pathways were enriched by Hel-FL in both CD41

and CD81 eTregs; these were the p53 signaling, cell adhesion
molecule, and cytokine–cytokine receptor interaction pathways. Of
note, however, there were differences in the genes that were
changed in these common pathways between CD41 and CD81

eTregs (supplemental Figure 11).

We also compared the genes expressed in our eTreg strains vs
a “Treg signature” that we generated from a list of gene changes
observed in previous comparisons between human Tconvs and
Tregs.15,43,44 Coexpression of Hel-FL or Hel-D3B with FOXP3
generated cells with more “Treg signature”–like gene expression
compared with FOXP3 alone (Figure 7). However, the FOXP31Hel-
D3B eTregs had a gene expression pattern most similar to this
“Treg signature.” This was true for both CD41 and CD81 eTregs. In
addition, there were many Treg genes whose expression was

Figure 3. (continued) (B) Representative dot plots of responder cell proliferation 96 hours after coculture with eTregs or empty vector control. *P # .05 in each comparison

based on a 1-tailed Wilcoxon test. ND, not detectable; ns, not statistically significant.
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Figure 4. Expression of FOXP3, FOXP3
1
Hel-FL, and FOXP3

1
Hel-D3B reduces cell expansion and survival. (A) Cell counts of eTregs growing in IL-

2–supplemented media over 9 days. n 5 4 for each group from 4 different donors. *P # .05 compared with empty vector control based on a 1-tailed Mann-Whitney U test for

each time point. (B) Numbers of live (Zombie Green and Annexin V negative) eTregs after stimulation for 2, 4, and 6 days with anti-CD3 and anti-CD28 plate-bound antibody.
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(C) Representative contour plots of activation-induced cell death in eTregs or empty vector control cells after stimulation for 2, 4, and 6 days.
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Figure 5. Hel-FL or Hel-D3B coexpression with FOXP3

alters gene expression and pathway enrichment in CD41 or

CD8
1
eTregs compared with FOXP3 alone. All comparisons in

this figure use FOXP3 eTregs as the baseline for comparison of

CD41 or CD81 eTregs as indicated. (A) Volcano plots depicting

gene expression differences between the cell strains. Within the

volcano plots, genes were colored if they had a false discovery

rate (FDR) #0.1. Blue denotes downregulation, and red represents

upregulation. The 2 vertical lines represent logFC5 22 and

logFC5 2. The horizontal line presents –log10(0.05). (B) Summary

of normalized enrichment scores (NES) of KEGG pathways with

P # .05 that were enriched in the comparison of two eTreg cell

strains indicated after GSEA. Blue bars are pathways enriched in

the baseline eTregs, and red bars are pathways enriched in eTregs

being compared.
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differently affected by the coexpression of Hel-FL or Hel-D3B with
FOXP3 in both CD41 and CD81 eTregs.

Discussion

The current article describes that overexpression of Hel-FL along
with FOXP3 in total human T cells converts these T cells into CD41

and CD81 eTregs with immunosuppressive properties. We

recognize that transduction efficiency will need to be optimized to
translate this work to the clinic. One approach would be to
transduce cells 2 to 3 days after activation when cells are more
actively dividing. We showed that treatment with these FOXP31

Hel-FL human eTregs was able to delay disease in a xenogeneic
GVHD model, whereas treatment with FOXP31Hel-D3B or FOXP3
eTregs was not. Similarly, we found that both CD41 and CD81

FOXP31Hel-FL eTregs had the most suppressive capacity in vitro
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Figure 6. FOXP3
1
Hel-D3B mediates different gene transcription and pathway enrichment in CD4

1
and CD8

1
eTregs compared with FOXP3

1
Hel-FL. All

comparisons in this figure use FOXP31Hel-FL eTregs as the baseline for comparison, either CD41 or CD81 as indicated. (A) Volcano plots depicting gene changes. Within

the volcano plots, genes were colored if they had an FDR #0.1. Blue denotes downregulation, and red represents upregulation in the indicated comparison. The 2 vertical lines

represent logFC5 22 and logFC 5 2. The horizontal line presents –log10(0.05). (B) Summary of normalized enrichment scores (NES) of KEGG pathways with P # .05 that

were enriched compared with two eTreg cell strains after GSEA. Blue bars are pathways that are more downregulated in the Hel-D3B–expressing cell line, and red bars are

pathways that are more upregulated in the Hel-D3B cell line, compared with the HEL-FL–expressing cell line.
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compared with FOXP3 alone. There were no measurable differ-
ences in survival, Treg marker expression, or cytokine production
between FOXP31Hel-FL and FOXP3 eTregs. Thus, we performed
RNA sequencing and revealed that there was a significant change
in gene expression between FOXP31Hel-FL eTregs compared with
FOXP3 alone. These genes are involved in immune pathways,
including cell adhesion molecules, JAK/STAT signaling, and Treg-
related genes. Changes in transcription were expected, as ectopic
expression of Helios and FOXP3 in mouse Tconvs mediated
expression of different Treg signature genes.22,31 However, the

changes we observed in the human cells by Helios expression were
different from those observed in mouse T cells. Further studies will
be needed to determine which specific genes and pathways altered
by Hel-FL expression are responsible for the observed changes in
human eTreg function.

Although Helios has been described as a key Treg transcription
factor for many years, its function in Tregs is still being defined.
Experiments using Treg-specific Helios-deficient mice showed that
Helios plays a major role in mediating both CD41 and CD81 mouse
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Figure 7. Hel-FL or Hel-D3B coexpression with FOXP3 mediates different gene transcription of Treg signature genes in CD4
1
and CD8
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eTregs. Heat maps

comparing expression of Treg signature genes that are upregulated in Tregs (TREG UP) (A) or downregulated in Tregs (TREG DOWN) (B) compared with Tconv. Each heat
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D3B1) in both CD41 and CD81 eTregs as indicated. We first identified the subset of genes that had a nominal, uncorrected P , .05 in each indicated eTreg comparison
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subjects.
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Treg function and survival.29,30 In contrast, we found that in human
eTregs, Helios expression reduced Treg survival but enhanced Treg
suppressive function. This scenario correlates with the Helios1 subset
of human CD41 Tregs that have improved stability in proinflammatory
environments compared with Helios– CD41 Tregs.23-28

We found that both Hel-FL and Hel-D3B coexpression with FOXP3
changed gene expression compared with FOXP3 alone, but there
were changes that were unique to each isoform of Helios. We also

found that coexpression of these 2 isoforms differentially affected
the suppressive function of FOXP3-expressing CD41 and CD81

eTregs. FOXP31Hel-FL expression improved CD41 eTreg sup-
pressive activity, whereas FOXP31Hel-D3B expression did not.
However, FOXP31Hel-D3B did improve suppressive activity of
CD81 eTregs to a similar degree as FOXP31Hel-FL eTregs.
Correlation of the gene changes in FOXP31Hel-FL and FOXP31

Hel-D3B with our functional studies reveal molecular mechanisms
required to convey immunosuppressive properties to CD41 and
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CD81 T cells. Our RNA sequencing and GSEA data showed that
FOXP31Hel-FL CD41 eTregs had increased gene enrichment in
p53 signaling and cytokine–cytokine receptor interaction but
decreased gene enrichment in cell adhesion molecules compared
with FOXP31Hel-D3B CD41 eTregs. Consistent with these data,
p53 signaling is important for CD41 Treg induction in mice.45 The
various cytokine receptors that were upregulated on FOXP31Hel-
FL CD41 eTregs included the chemokine receptors CCR5 and
CXCR6, which have been shown to be expressed on endogenous
human Tregs,46 where these receptors drive immune cell trafficking
to sites of inflammation.47-52 The differences we observed in cell
adhesion molecule expression between FOXP31Hel-FL and
FOXP31Hel-D3B CD41 eTregs could be linked to T-cell immuno-
suppressive function, although further studies are needed. Thus, the
changes we found in these 3 KEGG pathways likely explain why
FOXP31Hel-FL CD41 eTregs were more effective at suppressing
in vivo and in vitro than FOXP31Hel-D3B CD41 eTregs. However,
this theory will have to be directly tested in future studies.

FOXP31Hel-D3B and FOX1Hel-FLCD81 eTregs had similar
differences in KEGG pathway expression compared with
FOXP31Hel-D3B and FOX1Hel-FL CD41 eTregs, but unlike with
the CD41 eTregs, these CD81 eTreg cell strains suppressed equally
well in vitro. Further examination revealed there were differences in the
specific genes that were changed in the common pathways altered in
FOXP31Hel-D3B compared with FOX1Hel-FL CD41 and CD81

eTregs. Thus, the specific gene expression differences in these
pathways that were unique to the CD41 eTregs could identify the
genes important in mediating T-cell suppressive activity.

We found that both CD41 and CD81 FOXP31Hel-D3B had
a higher Treg signature compared with FOXP31Hel-FL eTregs
based on the number of genes that were differentially expressed in
our Treg signature gene lists. However, based on the functional
differences between FOXP31Hel-FL and FOXP31Hel-D3B CD41

eTregs, it is the genes that are differentially expressed between
these 2 eTreg cell strains that are critical to CD41 T-cell
immunosuppressive function rather than the number of genes
changed. Similarly, the gene expression differences between the
FOXP31Hel-FL and FOXP31Hel-D3BCD81 eTregs are not critical
to CD81 T-cell immunosuppression, as these 2 cell strains
suppress at a similar level.

Taken together, our findings indicate that the endogenous isoforms
of Helios play different roles in CD41 and CD81 Tregs. Hel-D3B
lacks half an exon in a zinc finger domain, which affects its ability to
bind DNA. Thus, differences between the effect of FOXP31Hel-
D3B overexpression in CD41 vs CD81 T cells likely arises from
epigenetic differences between the cell subsets and promoter
accessibility. Another example of Ikaros family members playing
different roles in CD41 and CD81 T cells is the critical role of
Ikaros in CD81, but not CD41, T-cell development.53 Investigating
the differences between FOXP3, FOXP31Hel-FL, and FOXP31

Hel-D3B CD41 and CD81 eTregs will help define which signaling
pathways are critical for CD41 and CD81 Treg function.

In conclusion, our data show that ectopic expression of Hel-FL
along with FOXP3 in human T cells results in the generation of
immunosuppressive CD41 and CD81 eTregs. We describe
differential roles for the 2 endogenous isoforms of Helios in
mediating suppressive function in CD41 and CD81. These new
findings define new roles for endogenous Helios splice variants in
both CD41 and CD81 Tregs. These findings not only provide insight
into the role of Helios and FOXP3 coexpression in Treg function but
could improve current human eTreg generation protocols and
increase the potential for eTregs to be used in the clinic.
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