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Key Points

• Acquired aplastic
anemia is a T-cell–
mediated autoimmune
bone marrow aplasia,
without a known etio-
logic trigger.

•Clonal expansion of
CD81 effector T lym-
phocytes can occur
following vaccination
and accompany graft
dysfunction or aplastic
anemia relapse.

Introduction

Acquired aplastic anemia (AA) is an immune-mediated bone marrow aplasia caused by cytotoxic T
lymphocyte attack on early hematopoietic cells.1 In most patients, no trigger or specific mechanism of
autoimmunity is identified.2 Without understanding the causes of AA autoimmunity, rationally designed
prevention and treatment are not possible. Barriers to identifying triggers of AA include the rarity of AA
and the inability to analyze patient samples before AA onset at the time of exposure to the putative trigger.

Several cases of AA onset or relapse following immunizations have been reported.3-8 Based on
these clinical observations, the British Society for Standards in Haematology recommended against
vaccinating AA patients treated with immunosuppression because of the concern for triggering AA
relapse.9 However, beyond clinical descriptions of temporal association, evidence to support this
recommendation is lacking. Here, we describe AA relapse post–bone marrow transplant (BMT)
after vaccination and present a detailed immunologic analysis demonstrating a massive clonal
expansion of CD81 T effector memory–like (TEM) lymphocytes postvaccination.

Case description

A 31-year-old male with severe AA was treated with fludarabine (120 mg/m2), cyclophosphamide
(1200 mg/m2), and rabbit anti-thymocyte globulin conditioning,10 followed by an infusion of 2.13 108

total nucleated (1.1 3 106 CD341) bone marrow cells per kilogram from his HLA-identical sister.
Graft-versus-host disease prophylaxis was methotrexate and cyclosporine. Neutrophil and platelet
engraftment occurred on days 126 and 133, respectively. At 6 months posttransplant, the patient
had nearly normal blood counts, with a white cell count of 3.8 3 109 cells per liter with 64%
neutrophils, hemoglobin of 11.8 g/dL, an absolute reticulocyte count of 71 3 109 cells per liter, and
platelet count of 217 3 109 cells per liter. Chimerism analysis revealed .99% CD33/CD66b1

myeloid donor chimerism, but only 7% CD31 donor T cells.

Six months after transplant, while continuing cyclosporine, the patient received concurrent pneumococcal
conjugate and inactivated influenza vaccines. Within 1 week of vaccination, the patient’s absolute
reticulocyte count dropped to 27 3 109 cells per liter, and it fell to undetectable levels by 4 weeks
after vaccination, with new red cell transfusion dependence (Figure 1). The patient developed
progressive thrombocytopenia, with a nadir of 81 3 109 platelets per liter. The bone marrow was
hypocellular with reduced erythroid elements. Work-up for potential etiologies, including viral infections,
was unrevealing (supplemental Materials and methods; supplemental Table 1), without evidence of graft-
versus-host disease. CD81 lymphocyte counts doubled from 6053 106 cells per liter to 12803 106 cells
per liter (CD4/CD8 ratio of 0.1-0.2), with a clonal T-cell receptor (TCR)–g rearrangement. The patient was
diagnosed with presumed immune-mediated graft dysfunction and treated with an increasing cyclosporine
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dose, with improvement in blood counts. Because of persistent poor
mixed chimerism, a donor lymphocyte infusion was administered, with
eventual conversion to full donor chimerism.

Methods

The diagnosis of AA was determined by standard criteria.11-13

Peripheral blood (PB) mononuclear cells, stained for CD3, CD4,

CD8, CD27, CD45RA, CCR7, CD95, CD127, FoxP3, and TCRVB19
(VB17 using older nomenclature), were analyzed on a BD LSR II flow
cytometer. The TCR-b chain repertoire was analyzed by next-
generation sequencing (NGS) of the TCR Vb gene rearrangements
on bulk bone marrow or sorted PB mononuclear cells. Paired a and
b chain TCR sequences were determined by single-cell immune
profiling and analyzed for convergent antigen specificity using the
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Figure 1. Clonal expansion of CD8
1
lymphocytes temporally associated with immunization and graft dysfunction in a patient with AA. (A) Time course of

platelet count showing decreasing platelet counts postimmunization and stabilization of thrombocytopenia after an increase in cyclosporine (CsA) dose. (B) Time course of

absolute reticulocyte count, demonstrating a precipitous decline in the immediate postimmunization period, with an improvement in reticulocytopenia following an increase in

cyclosporine dose. (C) Time course of CD41 and CD81 lymphocyte counts showing a selective expansion of CD81 T lymphocytes postvaccination. (D) Time course of the

percentage of donor chimerism in total PB and CD31 T lymphocytes, showing poor mixed CD3 chimerism, with improved chimerism after treatment with donor lymphocyte infusion

(DLI). (E) Frequency histograms of the 10 top productive TCRb rearrangements, as determined by bulk NGS sequencing of the TCR Vb gene in the patient’s bone marrow (BM) at

diagnosis before stem cell transplantation (pre BMT), at day 1104 posttransplant prior to vaccination (Vacc.), at day 1250 posttransplant after vaccination, and in sorted PB CD81

T lymphocytes at day 1354 posttransplant after vaccination. The patient was subsequently treated with donor lymphocyte infusion (DLI), with improvement in the percentage of

donor chimerism, as shown in panel D, and diminution of the top expanded clones, as shown in PB CD81 lymphocytes on day 1750 posttransplant. The pie charts illustrate the

proportion of the top 2 expanded clones (red) relative to all of the remaining clones (blue). The total number of remaining productive TCR Vb gene rearrangements identified by bulk

NGS are listed (n). (F) The 2 dominant CD81 T lymphocyte clonotypes, with their corresponding frequencies pre- and postvaccination. Frequencies in BM at diagnosis, at day

1104 posttransplant prevaccination, at day 1250 posttransplant after vaccination, and in sorted PB CD81 T lymphocytes at day 1354 posttransplant were obtained by bulk TCRb

sequencing. TCRa pairing was determined through 103 genomics single-cell immune profiling of sorted PB CD81 T lymphocytes on day 1354 posttransplant.
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GLIPH (grouping of lymphocyte interactions by paratope hotspots)
algorithm.14 See supplemental Materials and methods for additional
details.

Results and discussion

To explore the mechanism of immune-mediated graft dysfunction,
we performed serial analysis of the TCR-b repertoire in the patient’s
bone marrow DNA collected at AA diagnosis, after engraftment
prevaccination, and postvaccination at graft dysfunction (Figure 1E).
NGS of the TCR Vb gene rearrangements identified a dominant
recipient-derived clone (TCRVB19-D2-J2-5) that accounted for
4.2% of T-cell rearrangements at diagnosis; it persisted after BMT
and expanded following vaccination to account for 29.0% of all T-cell
rearrangements and 34.6% of CD81 T-cell rearrangements. A
second recipient-derived T-cell clone with a similar, but nonidentical,
rearrangement (TCRVB19-D2-J2-2) also expanded markedly post-
vaccination, increasing from ,1% prevaccination to 10.3% of Vb
gene rearrangements and accounting for 21.8% of CD81 T-cell
rearrangements after vaccination. Single-cell immune profiling
confirmed the same dominant TCR-b clonotypes and identified the

paired TCR-a chains (Figure 1F; supplemental Table 2). Using the
GLIPH algorithm,which uses multiple metrics of convergence, including
conserved motifs, gene usage, and similarity of complementarity-
determining region 3 (CDR3) sequences to cluster TCRs into
groups with a high probability of sharing antigen specificity,14 the
expanded TCR clones in our patient clustered into a single antigen
convergence group (supplemental Materials and methods;
supplemental Dataset 1).

Taking advantage of the shared TCRVB19 between the 2
dominant clones, staining with anti-TCRVB19 specific antibody
demonstrated that TCRVB191 lymphocytes made up 52.3% of
the patient’s CD81 population and exhibited a CD272 TEM phenotype
(CCR72 CD272 CD951), consistent with antigen-stimulated differ-
entiated cells (Figure 2A-B). CD41 FoxP31 regulatory T-cell numbers
were low (supplemental Figure 1).

Our results demonstrate a striking clonal expansion of recipient-
derived CD81 TEM lymphocytes temporally associated with
immunization and graft dysfunction in a patient with AA. The
dominant CD81 T-cell clone after the vaccination corresponded to
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Figure 2. Clonally expanded T lymphocytes have T effector memory and T effector memory RA phenotype. (A) Immunophenotyping analysis of the patient’s PB

lymphocytes on day 1354 posttransplant revealed an expansion of the TCRBV191 T-cell population with the CD272 T effector memory phenotype (CD31 CD81 CD45RA2

CD272 CCR72 CD951) and the T effector memory RA phenotype (CD31 CD81 CD45RA1 CD272 CCR72 CD951). The 2 T-cell clones of interest accounted for 92.5%

of all TCRBV191 PB CD8 lymphocytes, as determined by bulk TCR Vb sequencing. (B) Immunophenotyping of PB lymphocytes from a healthy donor. (C) A systematic review

of published cases of AA onset or relapse temporally related to vaccinations.
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the most abundant T-cell clone in the patient’s bone marrow at initial
AA diagnosis. The temporal relationship between immunization and
graft dysfunction, accompanied by the postvaccine clonal expan-
sion of the recipient CD81 TEM lymphocytes, suggests that
immunization played a role in triggering graft dysfunction. Other
factors that contributed to this patient’s graft dysfunction are the
mixed T-cell chimerism, which can occur with a reduced-intensity
BMT using anti-thymocyte globulin– and alemtuzumab-containing
conditioning,10,15,16 subtherapeutic cyclosporine level, and low
CD341 cell dose. Reduced regulatory T cells likely contributed to
postvaccine TEM cell expansion.17,18

Several cases of AA onset or relapse closely following vaccinations
or viral infections have been reported3-8,19 (Figure 2C). However,
a causal relationship has not been established, and no study has
explored immunological changes induced by immunizations in
relapsed AA patients. Our data provide the first insight into the
mechanism underlying vaccine-associated immune-mediated mar-
row failure by demonstrating CD81 TEM cell expansion after
vaccination.

One potential explanation for postvaccine marrow failure is the
cross-reactivity between the antigens contained in the vaccine and
the putative AA autoantigen(s) present on hematopoietic cells. A
similar mechanism has been proposed for hepatitis-associated
AA.20 Of the 2 coadministered vaccines, the selective expansion of
CD81 lymphocytes, whose normal function is immune surveillance
against intracellular pathogens, including viruses and tumors,
suggests that the influenza vaccine could be the culprit. Two
previous cases of AA following influenza vaccination7,8 and 1 case
following influenza infection19 have been described. Usage of Vb19
was reported in CD81 T-cell immune responses to influenza matrix
protein in HLA-A2 individuals exposed to influenza A,21,22 and the
CDR3 sequences of the patient’s expanded clones are similar to
known influenza-reactive CDR3 sequences23 (supplemental Fig-
ure 2). The selective expansion and antigen convergence of the 2
dominant clones suggest antigen-specific clonal expansion, likely in
response to influenza vaccination, and argue against a nonspecific
immune response. Future studies are needed to evaluate the
reactivity of the expanded T-cell clones against specific vaccine-
associated epitopes and to determine their cytotoxicity against the
patient’s hematopoietic cells.

Clinical interpretation of our results requires caution. Our results
support the recommendation against routine vaccinations in AA
patients treated with immunosuppression9 and suggest that AA

patients with low CD31 chimerism after BMT may similarly be at risk
for immune-mediated marrow failure after vaccination. We recom-
mend careful consideration of the risks and benefits of immuniza-
tions in AA patients and advise delaying routine vaccinations in BMT
recipients with high residual host CD31 content until immune
reconstitution of donor T cells. In patients in whom cytotoxic T-cell
responses need to be minimized, a recombinant flu vaccine would
be preferable to whole inactivated virus vaccine, which contains
a wider range of antigenic targets and potential T-cell epitopes.24

Finally, in AA, unlike in malignant disorders, post-BMT cyclosporine
should be continued at therapeutic levels for 6 to 9 months,
followed by a cautious taper while monitoring for late graft failure.9
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