Table 3.
Results of multiple linear regression analysis of associations between different quartiles of PCB congeners and various lipid fractions and BMI (n = 181).
Variable in Model | TGa |
LDa |
HDb |
BMIc |
||||
---|---|---|---|---|---|---|---|---|
B | P value | B | P value | B | P value | B | P value | |
PCB 138 quartiles | 44.98 | 0.001∗ | 3.21 | 0.50 | -2.01 | 0.17 | 0.64 | 0.27 |
PCB 153 quartiles | 30.14 | 0.04∗ | 1.98 | 0.71 | -1.27 | 0.43 | -0.41 | 0.53 |
PCB 180 quartiles | 20.64 | 0.09 | 0.02 | 0.10 | 0.12 | 0.93 | 0.04 | 0.94 |
PCB Sum quartiles | 65.82 | 0.006∗ | 1.78 | 0.84 | 3.32 | 0.22 | -0.02 | 0.99 |
PCB 118 quartiles | 20.10 | 0.005∗ | 2.45 | 0.36 | -1.22 | 0.14 | 0.62 | 0.053 |
Model R square | 0.31 | 0.06 | 0.25 | 0.13 |
∗Statistically significant relationship (p < 0.05).
TG & LDL adjusted for Age, Gender, BMI, Fat rich diet, Working Type (Active or Sedentary).
HDL adjusted for Age, Gender, BMI, Fat rich diet, Working Type (Active or Sedentary) and Seafood diet.
BMI adjusted for Age, Gender, Fat rich diet, Working Type (Active or Sedentary).