Skip to main content
. 2020 Apr 14;6(4):e03775. doi: 10.1016/j.heliyon.2020.e03775

Table 3.

Results of multiple linear regression analysis of associations between different quartiles of PCB congeners and various lipid fractions and BMI (n = 181).

Variable in Model TGa
LDa
HDb
BMIc
B P value B P value B P value B P value
PCB 138 quartiles 44.98 0.001∗ 3.21 0.50 -2.01 0.17 0.64 0.27
PCB 153 quartiles 30.14 0.04∗ 1.98 0.71 -1.27 0.43 -0.41 0.53
PCB 180 quartiles 20.64 0.09 0.02 0.10 0.12 0.93 0.04 0.94
PCB Sum quartiles 65.82 0.006∗ 1.78 0.84 3.32 0.22 -0.02 0.99
PCB 118 quartiles 20.10 0.005∗ 2.45 0.36 -1.22 0.14 0.62 0.053
Model R square 0.31 0.06 0.25 0.13

∗Statistically significant relationship (p < 0.05).

a

TG & LDL adjusted for Age, Gender, BMI, Fat rich diet, Working Type (Active or Sedentary).

b

HDL adjusted for Age, Gender, BMI, Fat rich diet, Working Type (Active or Sedentary) and Seafood diet.

c

BMI adjusted for Age, Gender, Fat rich diet, Working Type (Active or Sedentary).