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SUMMARY

Circulating mucosal-associated invariant T (MAIT) cells are
depleted and dysfunctional in advanced liver disease. Here

we show that MAIT cell function is compartmentalized in
decompensated cirrhosis, where peritoneal MAIT cells are
immunocompetent, migratory cells that accumulate during
peritonitis and contribute to inflammation.

BACKGROUND & AIMS: Mucosal-associated invariant T
(MAIT) cells are depleted from blood in patients with advanced
liver disease and show features of immune dysfunction.
Because circulating MAIT cells differ from organ-resident MAIT
cells, we aimed to investigate the frequency, phenotype, and
function of peritoneal MAIT cells from patients with cirrhosis
and spontaneous bacterial peritonitis (SBP).

METHODS: MAIT cells in blood and ascitic fluid from patients
with cirrhosis were characterized using flow cytometry.
Healthy individuals and noncirrhotic patients undergoing
peritoneal dialysis served as controls. MAIT cell migration was
studied in transwell assays. Cytokine release in response to
infected ascitic fluid and bacterial products was assessed
in vitro.

RESULTS: Peritoneal CD3+ CD161hi Va7.2+ T cells had an in-
flammatory, tissue retention phenotype, expressing the alpha E
integrin, the chemokine receptors CCR5 and CXCR3, and the acti-
vation marker CD69 at higher levels than their circulating equiv-
alents. Seventy-seven percentbound to MR1 tetramers loaded with
the pyrimidine intermediate 5-(2-oxopropylideneamino)-6-d-
ribitylaminouracil. The ratio of peritoneal to blood MAIT cell fre-
quency increased from 1.3 in the absence of SBP to 2.6 at diagnosis
and decreased by day 3. MAIT cells migrated toward infected as-
citic fluid containing CCL5 and CCL20 and released cytokines in an
MR1-restricted fashion. Whereas the depleted circulating MAIT cell
pool displayed features of immune exhaustion, peritoneal MAIT
cells remained competent producers of inflammatory cytokines in
response to bacterial products. Peritoneal MAIT activation corre-
lated with systemic inflammation, suggesting a possible link be-
tween peritoneal and systemic immunity.

CONCLUSIONS: Peritoneal MAIT cells phenotypically and
functionally differ from circulating MAIT cells in decom-
pensated cirrhosis and redistribute to the peritoneum during
SBP. (Cell Mol Gastroenterol Hepatol 2020;9:661-677; https://
doi.org/10.1016/j.jcmgh.2020.01.003)
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B acterial infections are frequent life-threatening com-
plications in patients with advanced liver disease,
particularly in the presence of decompensated cirrhosis
with ascites."™ Spontaneous bacterial peritonitis (SBP) re-
sults from the translocation of viable bacteria from the gut
across the gastrointestinal barrier into mesenteric lymph
nodes or the portal vein, followed by seeding into ascitic
fluid (AF) with low antimicrobial capacity.* In patients with
advanced cirrhosis, a failure of immunologic control occurs
on multiple levels.”™” Particularly, innate immune responses
of intestinal, circulating, and peritoneal myeloid cells are
believed to critically contribute to pathologic bacterial
translocation, the susceptibility, and the outcome of SBP.*
In addition, evidence suggests impaired adaptive immune
responses in patients with advanced cirrhosis by conven-
tional and unconventional T cells.***"?

Mucosal-associated invariant T (MAIT) cells are uncon-
ventional T cells that act as a bridge between the adaptive
and the innate arm of the immune system.'* They were
initially characterized to be preferentially located in the gut
lamina propria,'” but they account for 1%-10% of total
circulating T cells in the blood and comprise the major pro-
portion of innate-like lymphocytes in human liver.*® Activa-
tion of their unique T-cell receptor (TCR), with the invariant
alpha chain Va7.2]Ja33 in humans, relies on the presentation of
microbial vitamin B metabolites bound to the MHC class I-like
molecule MR1 on antigen-presenting cells.'”*® In the absence
of antigen presentation, MAIT cells can also be activated in a
TCR-independent manner via interleukins (ILs) 12 and 18."7

Because MAIT cells have the ability to relocate to sites of
infection and to release inflammatory cytokines and cytotoxic
granules on activation,”” we hypothesized a critical role of
innate immune cells in maintaining peritoneal immunity in
the context of decompensated cirrhosis and during SBP
occurrence. Recent studies reported a functional exhaustion of
circulating MAIT (cMAIT) cells in patients with alcoholic liver
disease as a result of repetitive pathologic bacterial trans-
location."* Performing and interpreting such studies is chal-
lenging because the cMAIT cell pool is depleted in patients
with liver disease, and conflicting data exist whether MAIT
cells accumulate in the diseased liver.'**'** Because the
depleted cMAIT cell pool may differ from organ-resident MAIT
cells, the aim of this study was to investigate the phenotype
and function of human MAIT cells in the peritoneal cavity in
decompensated cirrhosis and during the course of SBP.

Results
Patients’ Characteristics

One hundred two patients with decompensated cirrhosis
and ascites were eligible for the study. Two patients were
excluded because of secondary peritonitis. Among the
remaining 100 patients, 16 had SBP at study inclusion, and
4 developed SBP during follow-up. Among the 20 patients
who developed SBP, 3 patients had recurrent SBP during the
study period. The majority of patients were male (84%),
with a median age of the total population of 61 years
(Table 1). Alcoholic liver disease was the main cause of
cirrhosis. As expected, patients with SBP had features of
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more advanced liver disease and signs of peritoneal and
systemic inflammation (Table 1). Among patients with SBP,
50% were culture positive in AF, and 15% had concomitant
bacteremia. Microbial culture results, concomitant medica-
tion, and primary prophylaxis are given in Tables 2 and 3.

CD3+ CD161hi Va7.2 TCR-Positive Cells in the
Peritoneal Cavity Resemble Organ-Resident
MAIT Cells

We identified circulating and peritoneal MAIT cells as
viable CD3+ CD161hi Va7.2 TCR-positive cells'®** and
confirmed antigen specificity in a subset of patients by using
tetramer staining of MR1 loaded with the pyrimidine in-
termediate 5-(2-oxopropylideneamino)-6-d-ribitylaminour-
acil (5-OP-RU) (Figure 1). Consistent with previous data,**
we observed a depletion of circulating CD3+ CD161hi
Va7.2+ cells in patients with decompensated cirrhosis
(median 0.4% of CD3+ T cells) compared with healthy
controls (median 4.7% of T cells; P < .0001) (Figure 24). In
the peritoneal compartment, the median frequency of CD3+
CD161hi Va7.2+ cells in AF from patients with decom-
pensated cirrhosis (0.5% of T cells; range, 0.1%-5.8%) was
lower than in the peritoneal fluid of patients with end-stage
renal disease undergoing continuous ambulant peritoneal
dialysis (CAPD) (3.6%; range, 0.9%-14.1%; P < .0001) but
higher than in paired blood samples from patients with
cirrhosis (0.4%; range, 0.03%-4.1%; P < .001) (Figure 24).

To verify that CD3+4 CD161hi Va7.2+ cells were MAIT
cells, we performed MR1/5-OP-RU tetramer staining in a
subset of samples (n = 9). The median frequency of MR1/5-
OP-RU positive CD3+ CD161hi Va7.2+ cells was 77%
(range, 61%-97%) in the peritoneum and 73% (range,
28%-98%) in blood from patients with cirrhosis
(Figure 2B). The majority of peritoneal MAIT (pMAIT) cells
were CD8+ positive or CD4 and CD8 double negative,
irrespective of staining strategy (Figure 2C). When
compared with peritoneal conventional CD161- Va7.2- T
cells, peritoneal CD161hi Va7.2+ cells expressed higher
levels of the transcription factor RORyT (Figure 2D),
alongside high levels of CCR6, beta 7 integrin, and CD69
(Figure 2E), which is consistent with the phenotype of
organ-resident MAIT cells.”® Because of these phenotypic
markers, from here on we refer to CD3+ CD161hi Va7.2
TCR-positive cells as MAIT cells in the article, acknowl-
edging a possible, but limited contamination with CD161hi

Abbreviations used in this paper: AF, ascitic fluid; CAPD, continuous
ambulant peritoneal dialysis; cMAIT, circulating mucosal-associated
invariant T; IFN, interferon; IL, interleukin; MAIT, mucosal-associated
invariant T; MELD, Model for End-Stage Liver Disease; 5-OP-RU, 5-(2-
oxopropylideneamino)-6-d-ribitylaminouracil; pMAIT, peritoneal
mucosal-associated invariant T; SBP, spontaneous bacterial perito-
nitis; TCR, T-cell receptor; TNF, tumor necrosis factor.
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Table 1.Patients’ Baseline Characteristics

Total patients

Decompensated cirrhosis

Decompensated cirrhosis

(N = 100) without SBP (N = 80) with SBP (N = 20) P value
Age, y, median (range) 61 (36-81) 63 (36-81) 7 (38-73) .18
Male sex, N (%) 84 (84) 69 (86.3) 15 (75.0) .30
Alcoholic liver disease, N (%) 84 (84) 65 (81.3) 19 (95) .18
Previous SBP 11 (11.0) 3(3.8) 5 (25) .008
AF analysis, median (interquartiles)
White blood cells, ul™’ 160 (110-380) 135 (90-190) 2695 (1208-9350) <.0001
Neutrophils, uL™" 20 (10-70) 20 (10-30) 1885 (713-7243) <.0001
Protein, g/L 13.3 (8.4-18.9) 12.6 (8.4-18.2) 15 6 (8.0-23.1) .56
Albumin, g/L 7.2 (5.0-11.4) 7.0 (5.0-10.9) 5 (5.0-14.4) .28
Laboratory data, median (interquartiles)
Total bilirubin, umol/L 39 (20-72.4) 37 (20-72) 50.0 (21.5-219.4) .09
Serum albumin, g/L 28.0 (23.4-32.0) 28.0 (24.3-31.0) 30.0 (20.0-36.0) .65
Serum sodium, mmol/L 135 (130-138) 135 (130-138) 135 (130-139) .55
Serum protein, g/L 60.3 (57.0-70.3) 64.0 (59.0-71.0) 59.0 (53.0-65.3) .048
Creatinine, umol/L 112 0 (68.5-158.5) 107 (67-148) 120.5 (105.0-181.0) .09
Urea, mmol/L 9 (6.9-16.5) 4 (6.3-18.0) 10.3 (8.5-17.4) .53
International normalized ratio 4 (1.3-1.8) 4 (1.3-1.7) 1.7 (1.3-2.4) .06
White blood cell count, 10%/L 6 6 (4.4-10.0) 6 1 (4.2-9.1) 9.3 (6.4-21.7) .001
Platelet count, 70%/L 120.5 (76.0-179.8) 122 (76-180) 120.5 (74.5-176.0) .73
C-reactive protein, mg/L 27.7 (10.8-57.7) 23.8 (8.5-43.5) 63.4 (47.5-104.2) <.0001
Clinical scores, median (interquartiles)
Child-Pugh score 10 (8-12) 10 (8-12) 10 (8-13) 43
MELD score 17 (13-22) 17 (13-21) 21 (14-28) 18

NOTE. Characteristics of patients included in the study. Data are given as median with interquartiles or frequency with per-

centages. P values are based on Mann-Whitney test for continuous data or Fisher exact test for discrete data.

Va7.2 TCR-positive conventional T cells, which are nonre-
active to the vitamin B2 precursor derivative 5-OP-RU.

Peritoneal Redistribution of MAIT Cells During

Early SBP

We equally observed a depletion of CD8+4CD3+ T cells in
blood from patients with decompensated cirrhosis
compared with healthy controls and no significant changes
in percentage of total CD3+ cells (Figure 34). Because MAIT
cells have been shown to decrease with age,%'27 we
compared age-matched samples (5 controls vs 10 patients)
and still observed a striking depletion of cMAIT cells from
blood in patients with cirrhosis (median 5.4% vs 0.5%; P =

.0007; Figure 3B).

Table 2.Microorganisms Isolated From AF and Blood
Cultures From Patients With SBP

AF culture Blood culture
results N (%)  results N (%)

3 (15)
2 (10)
1(5)

Positive culture results 1

E coli

Streptococcus pneumoniae

Listeria monocytogenes

Klebsiella pneumoniae

Enterobacter cloacae

Enterococcus faecalis

Enterococcus faecalis and
Candida albicans

Negative culture results

-
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o

10 (50) 17 (85)

The frequency of MAIT cells in blood did not significantly
change in the presence of SBP (Figure 3C). However, we
observed significant changes in pMAIT cell frequency among
T cells during SBP, with highest concentrations at day 1 and
resolution with treatment (Figure 3D). This was confirmed
when the AF to blood ratio was considered as a marker of
compartmental MAIT cell distribution in the total patient
cohort (median ratio 1.3 in the absence of SBP vs 2.6 at day
1 of SBP; P = .0098; Figure 3D). Peritoneal MAIT cells
showed increased expression of the activation marker CD69
as compared with cMAIT cells in absence and presence of
SBP, whereas the regulation marker programmed cell death
protein 1 did not significantly differ (Figure 3E).

Peritoneal MAIT Cells Have an Inflammatory
Migratory Phenotype

To investigate whether pMAIT cell redistribution during
SBP is the result of selective recruitment to the peritoneum,
we compared the expression of chemokine receptors, tissue
retention markers, and gut homing markers between pMAIT
cells from patients with decompensated cirrhosis and
cMAIT cells. The vast majority of pMAIT cells expressed the
alpha 4 integrin and the beta 7 integrin similar to cMAIT
cells (Figure 44 and B). Consistent with the phenotype of
MAIT cells,'® pMAIT cells expressed high levels of CCR6
similar to cMAIT cells from controls and patients with
cirrhosis (Figure 4C).

The surface expression of the alpha E integrin (tissue
retention marker CD103) was increased in pMAIT cells as
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Table 3.Clinical Data on Previous and Current Treatment of

Patients With SBP (n = 20)

Characteristics N (%)
Previous antibiotic exposure® 13 (65)
Nonselective -blockers® 5 (25)
Proton pump inhibitors® 18 (90)
On rifaximin prophylaxis at SBP 7 (35)
Empirical treatment of SBP

Piperacillin/tazobactam =+ linezolid 11 (55)
Meropenem + linezolid 8 (40)
Failure of empirical therapy 4 (20)

aWithin the last 4 weeks.

compared with cMAIT cells (Figure 4D). pMAIT cells from
patients with decompensated cirrhosis expressed higher
levels of the chemokine receptors CXCR3 and CCRS5 than their
circulating counterparts, consistent with a more inflammatory

mononuclear cells
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Live gate(@2,49%)

P2

SSC-A

Live/Dead Marker
gated on P3 (DLC)

gated on P3 (HC)
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migratory phenotype (Figure 4E and F). There were no sig-
nificant differences in surface expression levels of CCR5 and
CXCR3 in the absence or presence of SBP, although CXCR3
levels on pMAIT cells tended to be numerically lower during
SBP (Figure 4G and H), consistent with CXCR3 being inter-
nalized after ligand binding and migration.”®*’

Circulating MAIT Cells Preferentially Migrate
Toward Infected AF

To investigate the role of chemokines in the recruitment
of MAIT cells to the peritoneal cavity during SBP, we
measured the ligands of CCR6, CCR5, and CXCR3 in a subset
of AF samples from 22 patients with and without SBP
(Table 4). We detected significantly increased levels of
CCL20 (CCR6 ligand) and CCL5 (CCRS5 ligand) in AF during
SBP but no significant differences in CXCL10 (CXCR3 ligand)
(Figure 54).

To investigate whether MAIT cells preferentially migrate
over conventional T-cell subsets toward infected AF, we
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Figure 2.Peritoneal CD3+ CD161hi Va7.2+ cells
resemble organ-resident MAIT cells in decompensated
cirrhosis. (A) Percentage of Va7.2+CD161hi circulating and
peritoneal cells among CD3+ T cells in healthy controls (HC)
(n = 19), patients with decompensated liver cirrhosis (DLC) in
the absence of SBP (n = 75), and in controls without cirrhosis
undergoing CAPD (n = 13). (B) Percentage of MR1/5-OP-RU
tetramer positive Va7.2+CD161hi circulating and peritoneal
cells from patients (n = 9). (C) CD8/CD4 T-cell composition of
Va7.2+CD161hi, CD161hi MR1/5-OP-RU+, and MR1/5-OP-
RU+ among peritoneal CD3+ T cells from patients with
decompensated cirrhosis (n = 6). (D) Median fluorescent in-
tensity (MFI) of intranuclear RORyt, Tbet, and GATA-3 in
peritoneal CD3+ Va7.2+ CD161hi cells and CD3+ Va7.2-
CD161- T cells as determined by flow cytometry (n = 8). (E)
Surface expression of CCR6 (n = 8), beta 7 integrin (n = 12),
and CD69 (n = 10) in peritoneal CD3+ V«7.2+ CD161hi cells
and peritoneal CD3+ Va7.2—- CD161- T cells from patients
with cirrhosis in the absence of SBP. *P < .05, **P < .01, **P
< .001 in Wilcoxon signed-rank test (paired samples) and
Mann-Whitney U test (unpaired samples).
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analyzed the T-cell composition before and after migration
by using transwell migration chambers. To have sufficient
numbers of MAIT cells for such functional assays and to
avoid the assessment of recently migrated cells with che-
mokine receptor internalization,”” we used mononuclear
cells from healthy individuals for migration experiments.
Mononuclear cells, which were activated with Escherichia
coli supernatant overnight, were put in the upper chamber
and migrated along a gradient of chemokines or filtered AF
in the bottom chamber. We observed that a higher per-
centage of MAIT cells migrated toward infected AF from
patients with SBP (final MAIT cell fraction, 11.2% of CD3 T
cells) as compared with patients without SBP (final MAIT
cell fraction, 3.1%; P = .02) (Figure 5B). Consistent with the
analysis of chemokine receptor expression, MAIT cells
preferentially migrated over conventional T cells against
gradients of the recombinant chemokines CCXL10, CCL5,
and CCL20 (Figure 5C).

Although CCL20 was the strongest chemotactic agent to
preferentially recruit MAIT cells, CXCL10 and CCL5 showed
the strongest chemotactic abilities in terms of absolute T-
cell recruitment at concentrations of 150 ng/mL
(Figure 5D).

Peritoneal MAIT Cells Largely Remain Functional
and Are Potent Producers of Inflammatory
Cytokines

Having shown a preferential migration of MAIT cells
toward infected AF (Figure 5B) alongside an enrichment of
pMAIT cells in the early course of SBP (Figure 3D), we
investigated whether this redistribution during SBP was
associated with markers of early activation by assessing
CD69 expression. Consistent with previous observations,'*
CD69 expression on cMAIT cells from patients with
decompensated cirrhosis was increased as compared with
controls (Figure 3E).

Next, we investigated whether filtered bacterial culture
supernatants from riboflavin-positive (E coli) and riboflavin-
negative bacteria (Enterococcus faecalis) were sufficient to
activate MAIT cells in the presence of antigen-presenting
cells. In this model, E coli potently activated cMAIT cells
from healthy controls, as indicated by CD69 expression,
whereas cMAIT cell activation in patients with decom-
pensated cirrhosis was significantly reduced compared with
healthy controls (56.9% vs 83.3%; P = .002) (Figure 6A4).
Owing to high baseline expression, we could not use the
CD69 read-out for pMAIT cell activation in this model.
Therefore, we assessed cytokine production after stimula-
tion with bacterial products. Consistent with the data on
CD69 expression, we observed a significantly reduced
number of responding cMAIT cells in patients with cirrhosis
as compared with controls, when assessed for intracellular
tumor necrosis factor (TNF) and interferon (IFN)-y pro-
duction (Figure 6B and C), whereas no changes in IL-17
production were observed in response to filtered E coli
supernatant (Figure 6D). In contrast, pMAIT cells from pa-
tients with cirrhosis did not show impaired cytokine release
under these conditions and remained potent producers of
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Figure 3. Peritoneal MAIT cell frequency is regulated during SBP. (A) Percentage of CD8 expressing circulating CD3+T
cells and CD3+ T cells of lymphocytes from patients with decompensated liver cirrhosis (DLC) and from healthy controls (HC)
are shown (n = 7-13). (B) Percentage of Va7.2+CD161hi cMAIT cells among CD3+ T cells in age-matched patients with DLC
in the absence of SBP (n = 10) and in HC (n = 5). (C) Frequency of circulating Va7.2+ CD161hi MAIT (cMAIT) cells of CD3+ T
cells in DLC and during the course of SBP on days 1 (d1) and 3 (d3). (D) Frequency of peritoneal CD3+ Va7.2+ CD161hi MAIT
(PMAIT) cells in patients with serial samples in the course of SBP (before SBP: n = 4; on day 1: n = 18; on day 3: n = 13; after
SBP: n = 5). Connected samples are indicated (left panel), and ratio of pMAIT cell to cMAIT cell frequency in patients without
SBP (n = 75) and patients during SBP are shown (right panel). (E) Frequency of CD69 and PD-1 positive CD3+ Va7.2+
CD161hi cMAIT and CD3+ Va7.2+ CD161hi pMAIT cells from HC and patients with DLC in the absence and presence of SBP.
Box plots from 6-13 representative individuals are shown.*P < .05, **P < .01, **P < .001 in Wilcoxon signed-rank test (paired
samples) and Mann-Whitney U test (unpaired samples). P values from Mann-Whitney U test (unpaired samples) and Wilcoxon
signed-rank test (paired samples) are shown. Overall P in (D) indicates result from Kruskal-Wallis test.
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TNF and IFN-y (Figure 6B and C). Quantification of inflam-
matory cytokines in the AF in the presence and absence of
SBP revealed an elevated concentration of TNF during SBP,
whereas IFN-y and IL-17 in AF were not significantly
regulated (Figure 6E).

Bypassing the T-cell membrane receptor complex using
phorbol 12-myristate 13-acetate and ionomycin, we
observed no differences between pMAIT cells from patients
with cirrhosis and healthy cMAIT cells, indicating a similar
maximum release capacity for IFN-y and TNF (Figure 74-C).
In addition, there was no evidence for reduced expression of
cytotoxic granules, granzyme B and perforin, between
pMAIT cells and healthy cMAIT cells (Figure 7D and E).
Using combined Ki-67 and MR1/5-OP-RU tetramer staining,
we did not observe a preferential proliferation of MAIT cells

as compared with conventional T cells in the peritoneal
cavity in the absence of SBP (Figure 7F).

Infected Ascitic Fluid Activates MAIT Cells in an
MR1-Restricted Fashion

To investigate whether AF from patients with SBP was
sufficient to activate immunocompetent MAIT cells ex vivo,
we incubated healthy peripheral blood mononuclear cells
with bacteria-free, filtered AF from patients with and without
SBP for 24 hours and assessed CD69 expression. In this model,
we observed a higher increase in CD69 expression after
treatment of healthy cMAIT cells with infected AF from pa-
tients with SBP as compared with patients without SBP
(Figure 84). To investigate whether pMAIT cell activation was
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Table 4.Baseline Characteristics for Patients Included in Cytokine and Chemokine Analysis

Decompensated cirrhosis

Decompensated cirrhosis

without SBP (N = 12) with SBP (N = 10) P value
Age, y, median (range) 63 (36-81) 55 (38-68) .73
Male sex, N (%) 9 (75.0) 7 (70.0) 1.00
Neutrophils, uL™" (IQR) 20 (10-20) 4850 (1435-2714) <.0001
Total bilirubin, umol/L (IQR) 24 (13-69) 113 (31-366) .04
Creatinine, umol/L (IQR) 107 (53-150) 94 (47-130) .67
International normalized ratio (IQR) 1.5 (1.3-2.3) 1.9 (1.7-3.2) .08
C-reactive protein, mg/L (IQR) 5.7 (3.4-39.8) 51.2 (28.1-86.2) .01
MELD score (IQR) 16 (11-23) 23 (12-35) .23
Culture-positive AF, N (%) 0 (0.0) 8 (80.0) <.0001

NOTE. Characteristics of patients included for chemokine analysis. Data are given as median with range or interquartiles (IQR)

or frequency with percentages. P values are based on Mann-Whitney test for continuous data or Fisher exact test for discrete

data.

MR1-dependent, we first demonstrated surface expression of
MR1 on circulating CD14+ monocytes and CD14+ peritoneal
macrophages from patients with decompensated cirrhosis by
flow cytometry. The number of MR1-expressing cells and the
fluorescence intensity were higher in peritoneal macrophages
as compared with circulating monocytes (Figure 8B), but no
differences in MR1 expression on macrophages in the pres-
ence and absence of SBP were observed (Figure 8C). To
determine whether pMAIT cell activation was MRI1-
dependent, we used MR1 blocking antibodies before
treating with filtered infected AF from patients with SBP.
Incubating with MR1 blocking antibodies significantly
reduced the number of IFN-y and TNF producing pMAIT cells
in response to infected AF, whereas peritoneal conventional T
cells did not respond (Figure 8D and E), indicating that pMAIT
cell activation in the course of SBP depends on antigen pre-
sentation by the MR1 major histocompatibility complex.

Peritoneal MAIT Cell Activation Status Correlates
With Disease Severity

Following these observations, we correlated clinical data
with MAIT cell function, specifically with immune activation
indicated by CD69. In the absence of SBP, the frequency of
CD69-expressing pMAIT cells correlated with the Model for
End-Stage Liver Disease (MELD) score (P = .0009)
(Figure 94). In the presence of SBP, the frequency of CD69-
expressing pMAIT cells significantly correlated with the
white blood cell count as a marker of systemic inflammation
(P = .02) (Figure 9B). In contrast to pMAIT cell activation,
the activational status of cMAIT cells did not significantly
correlate with these surrogate markers of disease severity
(Figure 9C and D). We did not observe any correlation of
pMAIT cell frequency or activation status with AF protein
concentration or concomitant medication (Figure 10).

Conclusions
In this study we examine the frequency, phenotype, and
function of MAIT cells of the peritoneal cavity from patients

with decompensated cirrhosis in the absence or presence of
SBP. We report a redistribution of MAIT cells, owing to a
preferential migration of functional MAIT cells toward
infected in contrast to noninfected AF. In contrast to cMAIT
cells, which are depleted in end-stage liver disease and
show signs of functional exhaustion,">**** pMAIT cells from
patients with decompensated cirrhosis respond to bacterial
products comparable with healthy MAIT cells and remain
potent producers of TNF and IFN-y in a MR1-restricted
fashion.

In the absence of SBP, the circulating as well as the
resident peritoneal MAIT cell pool is significantly reduced in
patients with cirrhosis. The processes by which MAIT cells
are depleted could not be linked to increased apoptosis and
require further investigations."* In agreement with previous
observations in blood,®" pMAIT cells from patients with
cirrhosis showed significant proliferation as indicated by Ki-
67 staining, but this did not differ from conventional T cells.
Consistent with their role in fighting bacterial infections by
linking innate and adaptive immune responses,’’>* we
observed a relative enrichment of MAIT cells in AF from
patients at the day of diagnosis of SBP, which resolved after
antibiotic treatment by day 3. Comparative kinetics of MAIT
cell frequencies in blood and AF during SBP, integrin and
chemokine receptor repertoire, and ex vivo migration as-
says imply the redistribution of MAIT cells to sites of
inflammation, as observed in CAPD-associated peritonitis®”
and in hepatic fibrosis.>’ Elevated concentration of CCL5
and CCL20 in the peritoneal cavity during SBP, alongside the
high expression CCR5, CCR6, and CXCR3 on pMAIT cells in
patients with cirrhosis, suggest recruitment and/or reten-
tion of pMAIT cells. The increased expression of the mucosal
homing receptors alpha E beta 7 along with the high
expression alpha 4 beta 7 integrin on pMAIT cells is
consistent with a gut-homing and tissue retention
phenotype.®®

Together, our data indicate that MAIT cells from blood
and AF differ in their ability to migrate to tissues, and
pMAIT cells are configured to respond to proinflammatory
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chemotactic signals sensed by CCR5, CXCR3, and CCR6.
Although the origin of pMAIT cells during SBP remains
unknown, our data suggest the early recruitment from
blood by chemotactic signals from infected ascites, followed
by MR1-dependent activation and only short-term retention
in the peritoneal cavity. We can only speculate whether
other MAIT cell-rich tissues, such as liver and gut epithe-
lium, contribute to the direct recruitment to the peritoneal
cavity, and whether their subsequent reduction is a result of
redistribution to other tissues or increased cell death.
Because we observed a higher percentage of CD161-
negative cells among CD3+ Va7.2+ T cells at day 3 of
SBP (Figure 11), down-regulation of CD161 may contribute
to the relative depletion of CD3+ Va7.2+ CD161hi T cells,

which has been demonstrated in co-culture models with E
coli in vitro.*’

We observed differences in the expression patterns of
activation and immunomodulatory markers of peritoneal in
contrast to circulating MAIT cells in cirrhosis. Such marked
differences have been reported for colonic versus blood
MAIT cells in healthy individuals,*® suggesting organ-
specific activation and functionality. Stimulation with bac-
terial supernatants ex vivo confirmed previous studies on
the dysfunctional nature of cMAIT cells as they responded
with lower production of the proinflammatory cytokines
TNF and IFN-v in response to bacterial stimulation, which is
consistent with previous observations in chronic liver dis-
ease.'*?? On the contrary, peritoneal cells from patients
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Figure 6. Peritoneal MAIT cells from patients with decompensated cirrhosis release inflammatory cytokines. (A) Fre-
quency of CD69 expressing circulating CD3+ Va7.24+ CD161hi MAIT (cMAIT) cells from patients with decompensated liver
disease (DLC) and healthy controls (HC) and peritoneal CD3+ Va7.2+ CD161hi MAIT (pMAIT) cells from patients with DLC
after overnight stimulation with sterile filtered supernatants of bacterial cultures from riboflavin-producing E coli or riboflavin
non-producing Enterococcus faecalis. Unstimulated cells (bacterial culture broth) are shown as control (Ctrl) (n = 6). Per-

centage of MAIT cells with intracellular expression of (B) TNF,

(C) IFN-v, and (D) IL-17 after ex vivo stimulation with sterile

filtered bacterial supernatants for 6 hours as determined by flow cytometry. Results from 6-8 independent experiments are
shown. Concentrations of (E) TNF (n = 17-28), IFN-y (n = 10-12), and IL-17 (n = 10-12) measured by ELISA in AF in presence
and absence of SBP. *P < .05, *P < .01, *P < .001 in Wilcoxon signed-rank test (paired samples) and Mann-Whitney U test

(unpaired samples). P values from Mann-Whitney U test.

with advanced liver disease remained potent producers of
IFN-v and TNF after stimulation with bacterial supernatants
or phorbol myristate acetate/ionomycin. Having shown that
MAIT cells differ in function and phenotype when compared
with tissue resident MAIT cells** has important implica-
tions. First, the qualitative and quantitative assessment of
the depleted cMAIT cell pool in cirrhosis is challenging and
might underestimate compartmental and organ-resident
MAIT cell function in cirrhosis. Second, pMAIT cells
remain potent inflammatory cells with preserved antibac-
terial effector functions capable of fueling inflammatory
complications even in end-stage liver disease.

In addition to increased pMAIT cell activation in the
course of SBP, we show a direct activation of MAIT cells by
bacterial products from sterile filtered infected AF in an
MR1-restricted fashion, which suggests a direct role of mi-
crobial vitamin B-derived compounds in this process."” In
this capacity, they mirror liver-infiltrating peribiliary MAIT
cells, whose activation is MR1-dependent but largely inde-
pendent of IL-12 and IL-18.*° We propose that pMAIT cells
constitute a crucial part of peritoneal immune surveillance
to provide protection against spontaneous bacterial in-
fections from the gut.* Because of the enrichment of MAIT
cells in gut and liver and their capacity to identify gut-
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Percentage of (A) TNF, (B) IFN-v, and (C) IL-17 producing circulating CD3+ CD161hi Va7.2+ MAIT (cMAIT) cells from healthy
controls (HC) in comparison with peritoneal CD3+ CD161hi Va7.2+ MAIT (pMAIT) cells from patients with decompensated
cirrhosis (DLC) after ex vivo stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Mean and standard error
of the mean from 3-9 independent experiments are shown. Percentage of (D) granzyme B (n = 7-9) and (E) perforin (n = 7-9)
producing CD3+ CD161hi Va7.2 cMAIT cells from HC, CD3+ CD161hi Va7.2+ cMAIT, and CD3+ CD161hi Va7.2+ pMAIT
cells from patients with DLC. (F) Expression of Ki-67 in MR1/5-OP-RU-tetramer positive CD3+ CD161hi Va7.2+ pMAIT cells
and peritoneal conventional T cells from patients with DLC. ***P < .001 in Mann-Whitney U test.

derived bacteria and their products®’ the peritoneal
migration, activation, and retention of MAIT cells may pro-
vide an important link between gut, liver, and the perito-
neum. It is tempting to speculate that pMAIT cell activation
and MAIT cell-derived inflammation might even drive
extraperitoneal hepatic and systemic inflammation in
decompensated cirrhosis. This hypothesis is supported by
our observation of pMAIT cell activation correlating with
higher MELD score and elevated white blood cell count,
which are both surrogates of poor outcome in decom-
pensated cirrhosis.”

There are certain limitations present in our investiga-
tion. For the majority of experiments performed, MAIT cells
were defined as viable CD3+ CD161hi Va7.2+ T cells, and
TCR specificity by MR1 tetramers loaded with 5-OP-RU was
only available for validation experiments. The analysis of the
composition of the pMAIT cell subsets revealed the presence
of CD161hi Va7.2+ T cells nonreactive to the MR1 tetramer,
suggesting that they contain conventional T cells expressing
the Va7.2 chain. Detailed MAIT cell analysis revealed a
contamination with about 10% of CD8- CD4+ CD161hi

Va7.2+ MR1 tetramer-negative T cells. However, recent
reports have shown only minor differences in transcription
factor profiles of CD161hi Va7.2+ T cells and MR1 tet-
ramer+ MAIT cells.*” Future studies will be needed to
investigate differences in the development and function of
defined CD161hi Va7.2+ T-cell subsets and their regulation
during the onset and resolution of SBP. To reduce such
confounding factors, paired investigations of CD3+ CD161hi
Va7.24+ T cells in the blood and in the peritoneum were
performed, noncirrhotic controls were implemented, and
differences in functional activation status were confirmed
by blocking MR1.

Taken together, our findings provide evidence that
pMAIT cells are functionally competent innate immune cells
in decompensated cirrhosis, which accumulate in the early
course of SBP. In contrast to their circulating exhausted
counterparts, they retain effector functions and are prefer-
entially recruited over conventional T cells to the peritoneal
cavity in the context of SBP. We therefore propose a role of
pMAIT cells for immune surveillance protecting from
spontaneous gut-derived infections, thereby linking
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Figure 8. MAIT cells can be activated by infected AF in MR1-restricted fashion. (A) Mononuclear cells from healthy
controls were incubated with filtered AF from patients with decompensated cirrhosis in absence or presence of SBP for 24
hours, and T-cell activation was analyzed. Increase in CD69 surface expression after treatment with infected AF from patients
with SBP is shown in CD3+ Va7.2+ CD161hi MAIT cells (n = 9) (left panel) but not on conventional (conv) CD3+ Va7.2-
CD161- T cells (n = 6-9) (right panel). (B) Median fluorescence intensity (MFI) and percentage MR1-expressing CD14+
monocytes and CD14+ peritoneal macrophages from patients with decompensated cirrhosis in absence of SBP (n = 17). (C)
Median fluorescence intensity (MFI) and percentage of MR1-expressing CD14+ peritoneal macrophages in absence or
presence of SBP (n = 5-17). Percentage of (D) TNF and (E) IFN-y expressing pMAIT cells after incubation of mononuclear cells
with infected AF from patients with SBP in presence of MR1-blocking antibodies or isotype-matched controls (IgG2a) (n = 7).
*P < .05, *P < .01, **P < .001 in Wilcoxon signed-rank test (paired samples) and Mann-Whitney U test (unpaired samples).

peritoneal immune activation with extraperitoneal inflam-
matory complications.

Methods
Patient Cohort and Healthy Donors

Patients with decompensated cirrhosis who underwent
diagnostic ascites tap or therapeutic paracentesis at our
hospital between April 2017 and December 2019 were
eligible for this study. Exclusion criteria were evidence of
secondary peritonitis, tuberculous peritonitis, peritoneal
carcinomatosis, and human immunodeficiency virus

coinfection. Patients were stratified for the presence of SBP
by using current diagnostic criteria.*® Spontaneous fungal
peritonitis was also considered SBP if secondary peritonitis
was excluded. During the course of SBP, AF samples were
collected as clinically indicated and recommended by
guidelines.*® Thirteen patients with end-stage renal disease
who underwent peritoneal dialysis catheter implantation or
undergo continuous ambulatory peritoneal dialysis (CAPD)
and 19 healthy blood donors were included as noncirrhotic
controls. The study was approved by the Internal Review
Board of the Jena University Hospital (Ethics committee of
the Jena University Hospital, no 3683-02/3). Patients and
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Figure 9. Peritoneal MAIT cell activation status correlates
with liver function and systemic inflammation. Dot plots,
linear regression, and nonparametric Spearman’s rho (rs) with
P values are indicated to demonstrate correlation of CD69-
expressing pMAIT or cMAIT cells with (A and C) MELD
score in patients with decompensated liver cirrhosis (DLC)
without SBP, (B and D) white blood cell count (WBC) in pa-
tients with SBP. Correlation between variables was assessed
using Spearman’s method, and linear regression lines were
only used as a graphical representation to suggest the di-
rection of the association.

donors gave written informed consent before inclusion. All
authors had access to the study data and reviewed and
approved the final manuscript.

Isolation of Mononuclear Cells

Up to 500 mL AF and 8 mL EDTA blood were collected
from each patient. AF cells were enriched by centrifuga-
tion, and mononuclear cells were isolated from AF and
corresponding blood by using Lympholyte-H separation
media (Cedarlane, Burlington, Ontario, Canada) and
washed in phosphate-buffered saline (Thermo Fisher
Scientific, Waltham, MA). In selected experiments, T cells
were enriched by magnetic cell separation using positive
selection of CD3+ cells or negative selection of CD14-
(Miltenyi Biotech GmbH, Bergisch Gladbach, Germany) for
downstream analysis.

Cell Culture

Mononuclear cells were cultured in 96-well plates
(3 x 105/well) using RPMI 1640 medium (Thermo Fisher
Scientific) supplemented with 10% pooled heat-
inactivated fetal bovine serum (PAN-Biotech GmbH,
Aidenbach, Germany), 100 IU/mL penicillin/strepto-
mycin, and 2.2 mmol/L L-glutamine (Thermo Fisher

Peritoneal MAIT Cells in Decompensated Cirrhosis 673

Scientific) at 37°C and 5% CO,. To assess the intracellular
cytokine repertoire, cells were treated with 50 ng/mL
phorbol myristate acetate and 1 ug/mL ionomycin
(Invitrogen, Carlsbad, CA) for 6 hours and brefeldin A
(BD Biosciences, San Jose, CA) for 4 hours. To activate
MAIT cells by bacterial products, cells were treated with
sterile filtered bacterial supernatants at a final concen-
tration of 20% in supplemented media. We used super-
natants from 2 strains of riboflavin-producing bacteria,
ie, E coli (ATCC 25922) and E coli (SO1), and 1 strain that
has been shown not to induce MAIT cell activation,®? ie,
Enterococcus faecalis (ATCC 29212). Bacteria were grown
in 25 mL Luria Broth (Gibco/Thermo Fisher Scientific) at
37°C agitated at 160 rpm for 4-6 hours. The broth was
sterile filtered through a 0.45-um filter twice. In a further
approach, mononuclear cells were incubated with sterile
filtered AF from patients with and without SBP at a final
concentration of 10%. In some experiments, mononuclear
cells were incubated by using 10 ug/mL LEAF anti-
MR1 blocking antibodies (clone 26.5) or the IgG2a iso-
type (Biolegend, San Diego, CA) for 1 hour before
stimulation.

Immunoassay

Cytokines and chemokines were quantified in AF from
patients with SBP and in the absence of SBP. TNF was
determined by using human TNF-« ELISA Kit (Invitrogen),
CCL20 was determined by using human CCL20/MIP-3 alpha
Quantikine ELISA Kit (R & D Systems, Minneapolis, MN),
IL-17, IFN-v, CXCL10, and CCL5 (RANTES) were determined
by using a customized human multi-analyte ELISArray kit
(Qiagen, Hilden, Germany), all according to the manufac-
turer’s manual.

Cell Migration Assays

To assess the migratory properties, cMAIT cells were
activated by using incubation with filtered E coli bacterial
supernatants overnight, washed, and resuspended in RPMI
1640 medium supplemented with 0.1% bovine serum al-
bumin (Thermo Fisher Scientific, Waltham, MA). Cells
were seeded in the upper chamber of 24-well transwell
plate inserts with a pore size of 3 um at a density of 3 x
10° cells per well (Corning/Greiner, Frickenhausen, Ger-
many). Mononuclear cells were allowed to migrate against
a gradient of 150 ng/mL recombinant chemokines
CXCL10, CXCL12, CCL5, or CCL20 (PeproTech, Hamburg,
Germany) or against diluted AF from patients with or
without SBP (33% final concentration in RPMI 1640
supplemented with 0.1% bovine serum albumin) for 4
hours at 37°C. Cells having migrated into the bottom
chamber were collected, washed in phosphate-buffered
saline, stained, and counted using flow cytometry.

Flow Cytometry

For the analysis of expression of surface antigens on
leukocytes, cells were stained with LIVE/DEAD Fixable
Aqua Dead Cell Stain Kit (Thermo Fisher Scientific) and
incubated  with  fluorochrome-conjugated  primary
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antibodies (Table 5) at optimal dilutions at 4°C in Cytoperm Fixation/Permeabilization Kit (BD Biosciences)
phosphate-buffered saline containing 2% fetal calf serum for cytokines and cytotoxic granules or the Transcription
and 2 mmol/L EDTA. In some experiments, subsequent factor buffer set (BD Biosciences, San Jose, CA) for tran-
intracellular staining was performed by using the Cytofix/ scription factor expression analysis. Single color staining,
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Figure 11. CD161 expression on CD3+ Va7.2+ T cells during SBP. CD161 expression of (A) peritoneal and (B) blood CD3+
Va7.2+ T cells in patients with decompensated cirrhosis in absence of SBP, at day 1 and at day 3 of SBP. CD161 surface
expression was stratified according to high (CD161hi), intermediate (CD161int), and absent (CD161neg) expression. Mean and
standard error of the mean are shown.
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Table 5.List of Fluorochrome-Conjugated Primary Antibodies

Antibody Isotype Company Clone Fluorochromes
CD4 Mouse IgG1, « BD Pharmingen RPA-T4 APC
CD4 Mouse IgG1, « Miltenyi M-T466 FITC
CD8 Human IgG1 Miltenyi REA734 APC
CD8 Mouse IgG1, « BD Pharmingem HIT8a PE
CD8 Mouse IgG1, « Biolegend HIT8a BV510
CD3 Mouse 1gG2a, « Biolegend OKT3 BV421
CD14 Human IgG1 Miltenyi REA599 PE
CD14 Mouse IgG1, « Biolegend HCD14 BV421
CD49d (beta 7 integrin) Mouse IgG1, « BD Pharmingen 9F10 APC
CD69 Mouse IgG1, « BD Pharmingen N50 APC
CD103 (alpha E integrin) Mouse IgG1, « Biolegend Ber-ACT8 APC
CD161 Mouse IgG1, « Biolegend HP-3G10 PE
CD161 Mouse IgG1, « Biolegend HP-3G10 APC
CD183 (CXCR3) Mouse IgG1, « BD Pharmingen 1C6/CXCR3 APC
CD195 (CCR5) Mouse IgG2a BD Pharmingen 2D7/CCR5 APC
CD196 (CCRe6) Mouse IgG1, « BD Pharmingen 11A9 APC
CD197 (CCRY7) Mouse IgG2a Biolegend GO043H7 APC
CD279 (PD-1) Mouse IgG1, « Biolegend EH12.2H7 APC
GATA-3 Human IgG1 Miltenyi REA174 APC
Granzyme B Mouse IgG1, « Biolegend QA16A02 APC
IFN-v Mouse IgG1, « Biolegend 4S.B3 APC
IL-17A Mouse IgG1, « Biolegend BL168 APC
Ki-67 Human IgG1 Miltenyi REA183 APC
TNF alpha Mouse IgG1, « Biolegend MAb11 APC
MR1 Mouse 1gG2a, « Biolegend 26.5 APC
MR1/6-FP Tetramer NIH tetramer core facility APC/FITC
MR1/5-OP-RU Tetramer NIH tetramer core facility APC/FITC
Perforin Mouse IgG1 Biolegend B-D48 APC
ROR~(t) Human IgG1 Miltenyi REA278 APC
T-bet Human IgG1 Miltenyi REA102 APC
TCR Va7.2 Mouse IgG1, « Biolegend 3C10 FITC
TCR Va7.2 Mouse IgG1, « Biolegend 3C10 APC

isotype-matched controls, and fluorescence minus one
controls were performed. MR1/5-OP-RU tetramers'® were
obtained from the NIH tetramer core facility at Emory
University (Atlanta, GA). The MR1 tetramer technology was
developed jointly by Drs James McCluskey, Jamie Rossjohn,
and David Fairlie, and the material was produced by the NIH
Tetramer Core Facility as permitted to be distributed by the
University of Melbourne.

Statistical Analysis

Data are expressed as median with interquartiles and
visualized by using box plots unless otherwise indicated.
Differences between groups were analyzed by the Fisher
exact test, Wilcoxon signed-rank test for paired samples,
or the Mann-Whitney U test for unpaired samples as
appropriate. The Spearman rank correlation test was used
to assess the nonparametric correlation between vari-
ables. Statistical analysis was performed by using SPSS
versions 16 and 21 (IBM, Armonk, NY) and Prism 6

(GraphPad, La Jolla, CA). Owing to the exploratory nature
of the study, we applied a two-sided significance level of P
<.05 for tests without correction for multiple testing. All
authors had access to the study data and had reviewed
and approved the final manuscript. Systematic randomi-
zation and blinding were not performed.
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