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Summary

Sterile inflammation contributes to many pathological states associated

with mitochondrial injury. Mitochondrial injury disrupts calcium home-

ostasis and results in the release of CpG-rich mitochondrial DNA. The

role of CpG-stimulated TLR9 innate immune signalling and sterile inflam-

mation is well studied; however, how calcium dyshomeostasis affects this

signalling is unknown. Therefore, we interrogated the relationship besw-
een intracellular calcium and CpG-induced TLR9 signalling in murine

macrophages. We found that CpG-ODN-induced NFjB-dependent IL1a
and IL1b expression was significantly attenuated by both calcium chela-

tion and calcineurin inhibition, a finding mediated by inhibition of degra-

dation of the NFjB inhibitory protein IjBb. In contrast, calcium

ionophore exposure increased CpG-induced IjBb degradation and IL1a
and IL1b expression. These results demonstrate that through its effect on

IjBb degradation, increased intracellular Ca2+ drives a pro-inflammatory

TLR9-mediated innate immune response. These results have implications

for the study of innate immune signalling downstream of mitochondrial

stress and injury.

Keywords: cytokines; inflammation; monocytes/macrophages; rodent;

transcription factors; transgenic/knockout mice.

Introduction

It is increasingly recognized that sterile inflammation

underlies many disease states.1,2 Central to the pathogene-

sis of sterile inflammation is the innate immune response

to non-microbial activators. Cellular injury downstream

of trauma, ischaemia/reperfusion or toxin exposure

releases organelle components into the cytosol and intra-

cellular contents into the surrounding extracellular space.

Some of these released molecules contain damage-associ-

ated molecular patterns (DAMPS), which serve as ligands

for both intracellular and cell surface pattern recognition

receptors (PRRs). Unchecked activation can lead to a

pro-inflammatory state and subsequent immune pathol-

ogy, many of which are macrophage-derived interleukin

(IL)1 dependent.1,2

When sequestered in their native intracellular location,

DAMP-containing components represent no danger to

the host. Several mitochondrial components are well-

established DAMPs and can trigger the innate immune

response and sterile inflammation.3,4 Mitochondrial DNA

is rich in unmethylated CpG motifs and is a recognized

ligand for endosomal toll-like receptor (TLR)9.5 Mito-

chondrial DNA-TLR9 activation signals exclusively

through the adaptor protein myeloid differentiation pri-

mary response 88 (MyD88) leading to pro-inflammatory

Abbreviations: BMDM, bone marrow-derived macrophages; CpG, 50—C—phosphate—G—30; CpG-ODN, CpG-oligodeoxynu-
cleotides; DAMPs, damage-associated molecular patterns; IL1, interleukin-1; IL1⍺, interleukin 1 alpha; IL1b, interleukin 1 beta;
IjB⍺, NF-kappa-B inhibitor alpha; IjBb, NF-kappa-B inhibitor beta; IjBe, NF-kappa-B inhibitor epsilon; mRNA, messenger
ribonucleic acid; MyD88, myeloid differentiation primary response 88; NE-PER, nuclear and cytoplasmic extraction reagent;
NFjB, nuclear factor kappa-light-chain-enhancer of activated b-cells; PRRs, pattern recognition receptors; TLR4, toll-like recep-
tor 4; TLR9, toll-like receptor 9; T-PER, tissue protein extraction reagent

ª 2020 John Wiley & Sons Ltd, Immunology, 160, 64–7764

IMMUNOLOGY OR IG INAL ART ICLE

https://orcid.org/0000-0002-3227-0588
https://orcid.org/0000-0002-3227-0588
https://orcid.org/0000-0002-3227-0588
https://orcid.org/0000-0002-8449-5631
https://orcid.org/0000-0002-8449-5631
https://orcid.org/0000-0002-8449-5631
mailto:


nucelar factor kappa-light-chain-enhancer of activated b-

cells (NFjB) activation.3,4,6–9 Thus, any cellular stress

causing mitochondrial injury can result in innate immune

signalling and sterile inflammation.

Exogenous CpG-oligodeoxynucleotides (ODN) stimulate

TLR9 mediate innate immune signalling, and have been

used to study the pathogenesis of sterile inflammation.

CpG-ODN has been used to study atherosclerosis,10–14

ischaemia-reperfusion,11,15–19 infection/sepsis,20–37 and var-

ious autoimmune diseases.38–50 Importantly, mitochondrial

stress and injury has also been implicated in the pathogene-

sis of atherosclerosis,51 ischaemia-reperfusion,52,53 infec-

tion,54,55 and various autoimmune diseases.56 However,

mitochondrial stress and injury leads to other pathological

changes that impact innate immune signalling beyond

CpG-rich DNA release.57–60 Previous reports have shown

that cytosolic calcium levels dictate the degree and duration

of TLR4-mediated innate immune signalling,61–67 in part

due to its effect on NFjB signalling.62,68–71 The NFjB
inhibitory protein IjBb is particularly susceptible to alter-

nations in intracellular calcium, as calcium-mediated acti-

vation of calcineurin is a key step in IjBb inactivation and

subsequent NFjB activation.72,73 The degradation kinetics

of IjBa and IjBb dictates the magnitude and duration of

NFjB target gene expression,74–77 which directly affects

IL1a and IL1b expression.78–81 Previous reports have

demonstrated that exposing astrocytes33 and pulmonary

endothelial cells82 to CpG-ODN results in IjBa degrada-

tion, while IjBb was not evaluated. Exposing WEHI-2312 B

lymphoma cells to CpG-ODN results in degradation of both

IjBa and IjBb,83 but whether this occurs in non-cancerous

cells is unknown. While it is well known that mitochondrial

stress can disrupt intracellular calcium homeostasis,84–86

how this affects CpG-ODN TLR9-NFjB signalling is

unknown.

Therefore, we sought to interrogate how altering intra-

cellular calcium affected CpG-induced TLR9-mediated

innate immune signalling in macrophages. We found that

in RAW 264.7 macrophages, CpG-ODN induced IjBb
degradation and subsequent NFjB activation. This

resulted in increased expression of the MyD88-dependent

primary response genes IL1a and IL1b, which was inhib-

ited by pharmacological NFjB blockade. Both calcium

chelation (EGTA-AM) and calcineurin inhibition (FK-

506) attenuated IjBb degradation, NFjB activation, and

IL1a and IL1b expression. In contrast, exposure to a cal-

cium ionophore (A23187) increased CpG-induced IjBb
degradation, and IL1a and IL1b expression. Finally, using

bone marrow-derived macrophages (BMDMs) lacking or

overexpressing IjBb, we demonstrated that this key inhi-

bitory protein is both necessary and sufficient for CpG-

ODN-induced IL1 expression. These results demonstrate

that through its effect on IjBb degradation, increased

intracellular Ca2+ drives a pro-inflammatory TLR9-medi-

ated innate immune response. These results have

implications for the study of innate immune signalling

downstream of mitochondrial stress and injury, and

reveal potential therapeutic targets to attenuate inflamma-

tion associated with TLR9 activation.

Materials and methods

Cell culture

RAW 264.7 macrophages (ATCC) were cultured in Dul-

becco’s modified Eagle’s media (DMEM 1 9) containing

4�5 g/l D-glucose, L-glutamine and sodium pyruvate.

Media was supplemented with 10% fetal bovine serum,

2% HEPES, 1% GlutaMAX and 1% penicillin/strepto-

mycin. Cells were seeded 2 days prior to exposures. Seed-

ing densities were as follows: 2 9 106 cells/10-cm dish for

cytosolic and nuclear extracts, and 450 000 cells/well on a

six-well plate for whole-cell lysates and mRNA isolations.

BMDMs were collected from 10–12-week-old male B6

and IjBb�/� mice (kind gift of Dr Sankar Ghosh), and

were cultured for 7 days as previously described before

usage in experiments.87

CpG exposures and pharmacological NFjB inhibition

RAW 264.7 cells were exposed to CpG-ODN (0�3–3 lM,
0–24 hr; InvivoGen tlrl-1668, San Diego, CA, USA). To

pharmacologically inhibit NFjB activity, cells were

exposed to Bay 11-7085 (1–10 lM for 1 hr; Sigma-Aldrich

B5681, St. Louis, MO) prior to CPG exposure. BMDMs

derived from B6 and IjBb�/� mice were exposed to

CPG-ODN (0�3 lM; InvivoGen tlrl-1668).

Calcium imaging, calcium chelation, calcineurin inhibi-
tion and calcium ionophore exposures

To interrogate the role of intracellular calcium on CPG-

induced NFjB signalling, RAW 264.7 cells were pre-trea-

ted with Fluo-4, AM (5 lM for 30 min; ThermoFisher

F14201, Waltham, MA), EGTA/AM (250 lM for 30 min;

Santa Cruz Biotechnology sc-203937, Dallas, TX), or FK-

506 (10 lM for 24 hr; Selleckchem S5003, Houston, TX)

before being exposed to CpG DNA. RAW 264.7 cells were

co-treated with calcium ionophore A23187 (10 lM;
Sigma-Aldrich C7522). BMDMs were co-treated with cal-

cium ionophore A23187 (0�5 lM; Sigma-Aldrich C7522).

Fluorescent imaging of the calcium probe was captured

using a standard FITC filter, and the Olympus IX83

microscope and Olympus DP80 camera using Olympus

CellSens software.

Protein isolation and Western blot analysis

Whole-cell lysates were collected by scraping cells off cul-

ture vessels using tissue protein extraction reagent (T-
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PER; ThermoFisher Scientific), while cytosolic and

nuclear extracts were collected using the nuclear and

cytoplasmic extraction reagent (NE-PER) kit (Thermo-

Fisher Scientific). Whole-cell, cytosolic and nuclear

extracts were electrophoresed on a 4–12% polyacrylamide

gel (Invitrogen, Waltham, MA), and proteins were

transferred to an Immoblin-FL membrane (Millipore,

Burlington, MA). The membrane was then probed

with antibodies against IjBa (Cell Signaling 4814, Bev-

erly, MA), IjBb (Invitrogen PA1-32136), Calnexin (Enzo

Life Sciences 6956, Farmingdale, NY), cREL (Cell

Signaling 12707), p65 (Cell Signaling 6956 & 8242), p50

(Abcam 32360, Cambridge, MA) and Lamin B

(Santa Cruz Biotechnology sc-6217). Blots were viewed

using the LiCor Odyssey imaging system, and densitomet-

ric analysis was performed using ImageStudio (LiCor,

Lincoln, NE).

mRNA isolation, cDNA synthesis and analysis of relative
mRNA levels by real-time quantitative polymerase chain
reaction (RT-qPCR)

Cells were scraped off culture vessels using a mixture of

RLT, and mRNA extracted using the RNeasy Mini Kit

according to the manufacturer’s instructions (Qiagen,

Germantown, MD). mRNA purity and concentration

were measured using the NanoDrop (ThermoFisher Sci-

entific) before proceeding to synthesize cDNA using the

Verso cDNA synthesis kit (ThermoFisher Scientific). Rela-

tive mRNA levels were evaluated by RT-qPCR using exon

spanning primers IL1a (Mm00439620_m1), IL1b
(Mm01336189_m1), IRG1 (Mm01224532_m1) and

CxCL10 (Mm00445235_m1), TaqMan gene expression

and StepOnePlus Real-Time PCR System (Applied Biosys-

tems, Waltham, MA). Relative quantification was per-

formed by normalization to the endogenous control 18s

using the cycle threshold (DDCt) method.

Results

CpG-ODN-induced TLR9 innate immune signalling
induces degradation of the NFjB inhibitory proteins
IjBa and IjBb

First, we sought to determine if CpG-ODN-mediated

TLR9 innate immune signalling in macrophages proceeded

through IjBa and IjBb. Therefore, we exposed RAW

264.7 cells to CpG-ODN (0�3, 1 or 3 lM) for 1 hr and

evaluated cytosolic IjB levels. We observed IjBb degrada-

tion following exposure to all doses (Fig. 1a). In these

dose�response experiments, there was minimal effect on

cytosolic IjBa levels, but only one time point was evalu-

ated. Having noted the greatest degradation at a CpG-

ODN exposure of 3 µM, this dose was used in the subse-

quent experiments.

We next sought to determine the time course of IjBa
and IjBb degradation in CpG-ODN-exposed macro-

phages. We noted significant degradation of IjBa at 0�5
and 1 hr of exposure (Fig. 1b,c), and significant degrada-

tion of IjBb at 0�5 hr of exposure that continued

through 8 hr of exposure.

To confirm that these findings were not limited to the

RAW 264.7 murine macrophage cell line, we exposed

BMDMs to CpG-ODN (0�3 lM, 1–5 hr). At the time

points evaluated, we found significant degradation of

IjBa at 1 hr of exposure (Fig. 1d,e), and IjBb at 5 hr of

exposure (Fig. 1d,e). These results demonstrate that CpG-

mediated innate immune signalling proceeds through

both IjBa and IjBb in macrophages.

CpG-ODN-induced TLR9 innate immune signalling
induces nuclear translocation of cRel, p65 and p50

Having noted CpG-ODN-induced IjB degradation, we

next evaluated for NFjB subunit nuclear translocation.

Within 30 min of exposure, nuclear levels of p65 and

cRel had increased significantly (Fig. 2a,b). Nuclear levels

of p50 took longer to significantly increase (Fig. 2a,b).

We evaluated later time points (16–24 hr), and found

that nuclear levels of both cRel and p50 remained signifi-

cantly elevated (Fig. 2c,d).

We next evaluated CpG-ODN-exposed BMDMs for

NFjB subunit nuclear translocation. At 1 hr of exposure,

nuclear levels of p65 and p50 had increased significantly

(Fig. 2e,f). These results demonstrate that CpG-mediated

innate immune signalling results in nuclear translocation

key activating NFjB subunits in macrophages.

CpG-ODN-induced IL1 gene expression is NFjB
dependent

Given the association between sterile inflammation and

IL1, we next evaluated CpG-ODN-exposed macrophages

for IL1a and IL1b expression. In RAW 264.7 cells, expres-

sion of both IL1a and IL1b significantly increased within

1 hr of exposure, and remained significantly elevated

through 5 hr of exposure (Fig. 3a). Having noted that a

single exposure to CpG-ODN induced NFjB nuclear

translocation that lasted through 24 hr of exposure

(Fig. 2c,d), we evaluated IL1a and IL1b at 24 hr of expo-

sure. At this time point, expression of both IL1a and

IL1b remained significantly elevated (Fig. 3b). Similarly,

expression of both IL1a and IL1b increased significantly

in CpG-ODN-exposed BMDMs (Fig. 3c).

To implicate NFjB signalling IL1a and IL1b expres-

sion, RAW 264.7 cells were pre-treated with the NFjB
inhibitor BAY 11-7085 prior to exposure to CpG-ODN.

Pre-treatment with BAY 11-7085 (1–10 lM, 1 hr) resulted

in a consistent inhibition of CpG-ODN-induced IjBa
and IjBb degradation at doses of 5 and 10 lM (Fig. 3d,
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e). Preventing inhibitory protein degradation resulted in

an attenuated CpG-ODN-induced nuclear translocation

of both p50 and p65 (Fig. 3f). Furthermore, BAY 11-7085

pre-treatment resulted in a dose-dependent decrease in

CpG-ODN-induced IL1a and IL1b expression (Fig. 3g).

These results demonstrate a key role of NFjB signalling

in CpG-ODN-induced IL1a and IL1b expression.

TLR4-mediated innate immune IjBb/NFjB signalling
is Ca2+ dependent

Previous reports have demonstrated that Ca2+-mediated

activation of calcineurin is a key step in IjBb inactiva-

tion and subsequent NFjB activation,72,73 but whether

this is relevant to TLR-mediated innate immune
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Figure 1. Exposure to CpG-ODN causes dose- and time-dependent IjBb and IjB⍺ degradation. (a) Representative Western blot of whole-cell

lysates from RAW 264.7 exposed to CpG-ODN (0�3–3 µM, 1 hr). Whole-cell lysate from RAW 264.7 exposed to lipopolysaccharide (LPS; 1 lg/
ml, 1 hr) as the positive control and calnexin shown as the loading control. Densitometric values normalized to calnexin for individual lanes are

provided below each lane. (b) Representative Western blot of cytosolic extracts from RAW 264.7 exposed to CpG-ODN (3 µM, 0–8 hr) with cal-

nexin shown as the loading control. (c) Densitometry ratio to control of IjB⍺ and IjBb in cytosolic extracts from RAW 264.7 exposed to CpG-

ODN. Values shown as means � SEM; n = 6/time point. *P < 0�05 versus unexposed control. (d) Representative Western blot of cytosolic

extracts from bone marrow-derived macrophages (BMDMs) exposed to CpG-ODN (0�3 µM, 0–5 hr) with GAPDH shown as the loading control.

(e) Densitometry ratio to control of IjB⍺ and IjBb in cytosolic extracts from BMDMs exposed to CpG-ODN. Values shown as means � SEM;

n = 3/time point. *P < 0�05 versus unexposed control.
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signalling is unknown. The role of IjBb in mediating

TLR4-mediated NFjB signalling is well character-

ized.78,79 Thus, RAW 264.7 cells were exposed to either

a cell-permeant calcium chelator (EGTA-AM), a cal-

cineurin inhibitor (FK-506) or a calcium ionophore

(A23187) and lipopolysaccharide (LPS), and NFjB sig-

nalling was assessed. Previous reports have shown that

RAW 264.7 cells are sensitive to the calcium ionophore

A23187.67 Both EGTA-AM (Fig. 4a,b) and FK-506

(Fig. 4c,d) pre-treatment resulted in a dose-dependent

inhibition of LPS-induced IjBb degradation. Addition-

ally, exposure to A23187 in the absence of LPS resulted

in significant IjBb degradation (Fig. 4e,f). These results

demonstrate that intracellular calcium has a direct effect

upon innate immune IjBb/NFjB signalling.

TLR9-mediated innate immune IjBb/NFjB signalling
is Ca2+ dependent

We next evaluated the role of Ca2+ in TLR9-mediated

IjBb/NFjB signalling. We found increased signal from

RAW 264.7 cells pre-treated with the cell-permeable fluo-

rescent calcium indicator Fluo-4 within 1 hr of exposure

to CpG-ODN (Fig. 5a,b). Objectively, we found that fluo-

rescent signalling increased by 50% when the entire sur-

face area of the 35-mm culture dish was evaluated. We

found that both EGTA-AM (Fig. 5c,d) and FK-506

(Fig. 5c,d) inhibited CpG-ODN-induced IjBb degrada-

tion in a dose-dependent manner. Furthermore, CpG-

ODN-induced IL1a and IL1b expression was significantly

attenuated by EGTA-AM (Fig. 5e) and FK-506 (Fig. 5f).
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Figure 2. Exposure to CpG-ODN leads to nuclear translocation of the NFjB subunits cREL, p65 and p50. (a) Representative Western blot of

nuclear extracts from RAW 264.7 exposed to CpG-ODN (3 µM, 0–8 hr) with lamin B shown as the loading control. (b) Densitometry ratio to

control of p65, p50, cREL in nuclear extracts from RAW 264.7 exposed to CpG-ODN. Values shown as means � SEM; n = 6/time point.

*P < 0�05 versus unexposed control. (c) Representative Western blot of nuclear extracts from RAW 264.7 exposed to CpG-ODN (3 µM, 0–24 hr)

with lamin B shown as the loading control. (d) Densitometry ratio to control of p65, p50, cREL in nuclear extracts from RAW 264.7 exposed to
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n = 3/time point. *P < 0�05 versus unexposed control.
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These results confirm that Ca2+-mediated activation of

IjBb/NFjB signalling links CpG-ODN and IL1a and

IL1b expression.

Calcium ionophores act synergistically to increase
CpG-ODN-mediated IL1 expression

The effect of the calcium ionophore A23187 on CpG-me-

diated IjBb/NFjB signalling was tested next. Exposure to

A23187 alone resulted in significant degradation of IjBb
[Fig. 6a (lanes 3 and 4) and b]. Furthermore, simultane-

ous exposure of RAW 264.7 cells to CpG-ODN and

A23187 resulted in significant degradation of IjBb
[Fig. 6a (lanes 7 and 8) and b] compared with CpG expo-

sure alone [Fig. 6a (lanes 5 and 6) and b]. Consistent

with this finding, CpG-ODN plus A23187 induced signifi-

cantly higher IL1a and IL1b expression compared with

CpG-ODN alone in RAW 264.7 cells (Fig. 6c). Similarly,

CpG-ODN plus A23187 induced significantly higher IL1a

and IL1b expression compared with CpG-ODN alone in

BMDMs (Fig. 6d).

Targeting IjBb inhibits CpG-ODN IL1 expression

Having demonstrated the effects of intracellular Ca2+ on

TLR9-mediated IL1a and IL1b expression, we sought to

further interrogate the role of IjBb. To do this, we used

BMDMs isolated from IjBb�/� mice, as well as IjBb-
overexpressing (AKBI) mice. Previous work has demon-

strated that NFjB signalling that proceeds through indi-

vidual inhibitory proteins confers specificity to the

resulting transcriptome, including the expression of

IL1.74,75,78,79,88,89 Thus, cellular systems and organisms

lacking a specific IjB isoform reveal isoform-specific tar-

get genes. In IjBb�/� BMDMs, CPG-ODN-mediated sig-

nalling cannot proceed through IjBb but does so

exclusively through IjBa (Fig. 7a,b). Of note, CpG-ODN-

induced IL1a and IL1b expression is significantly
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Figure 3. CpG-ODN-induced expression of IL1⍺ and IL1b is attenuated by the NFjB inhibitor Bay 11-7085. (a) Fold-increase in IL1⍺ and IL1b
mRNA expression in RAW 264.7 following CpG-ODN exposure (3 µM, 0–5 hr). n = 6/time point. *P < 0�05 versus unexposed control. (b) Fold-

increase in IL1⍺ and IL1b mRNA expression in RAW 264.7 following CpG-ODN exposure (3 µM, 24 hr). n = 6/time point. *P < 0�05 versus

unexposed control. (c) Fold-increase in IL1⍺ and IL1b mRNA expression in bone marrow-derived macrophages (BMDMs) following CpG-ODN

exposure (0�3 µM, 0–5 hr). n = 3/time point. *P < 0�05 versus unexposed control. (d) Representative Western blot of whole-cell lysates from
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with calnexin shown as the loading control. (e) Representative Western blot of cytosolic extracts from RAW 264.7 pre-treated with the NFjB
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n = 5/time point. *P < 0�05 versus unexposed control. †P < 0�05 versus CpG-ODN exposed.
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suppressed in IjBb�/� BMDMs (Fig. 7c). Due to overex-

pression of the inhibitory protein IjBb (Fig. 7d), CpG-

ODN-induced NFjB signalling (Fig. 7d,e) and the expres-

sion of IL1a and IL1b mRNA are blunted in AKBI

BMDMs (Fig. 7f). To overcome the attenuated signalling

associated with IjBb overexpression, AKBI BMDMs were

simultaneously exposed to CpG-ODN and A23187. Expo-

sure to CpG-ODN and A23187 significantly increased

IL1a and IL1b expression compared with CpG-ODN or

A23187 alone (Fig. 7g).

Discussion

We found that in macrophages, CpG-ODN-mediated

TLR9 signalling proceeds through IjBb/NFjB signalling.

Furthermore, CpG-ODN-induced IL1a and IL1b are

NFjB dependent. Importantly, we found that intracellular

calcium flux plays an important role in CpG-ODN-medi-

ated TLR9 activation and IL1 expression. Specifically,

CpG-mediated degradation of the NFjB inhibitory pro-

tein IjBb and subsequent IL1 expression is attenuated
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264.7 following pre-treatment with the cell-permeable calcium chelator EGTA-AM followed by LPS exposure. Values shown as means � SEM;

n = 5/time point. *P < 0�05 versus unexposed control. (c) Representative Western blot of whole-cell lysates from RAW 264.7 pre-treated with
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with calcium chelation or calcineurin inhibition. Con-

versely, exposure to calcium ionophore alone results in

IjBb degradation and IL1 expression, and exposure to

ionophore and CpG-ODN amplifies these effects. Finally,

using BMDMs lacking or overexpressing IjBb, we

demonstrate that this key inhibitory protein plays a cen-

tral role in CpG-ODN-induced IL1 expression. These

results reveal potential therapeutic targets to attenuate the

pro-inflammatory effects of IL1 associated with sterile

inflammation.

These results are interesting because they implicate a

specific NFjB inhibitory protein isoform in the regulation

of CpG-ODN-mediated IL1 expression. Canonical NFjB
signalling proceeds through phosphorylation and proteol-

ysis of the IjB family of inhibitory proteins. Three

cytoplasmic inhibitory proteins have been identified:

IjBa, IjBb and IjBe.76 Much has been learned about the

IjB isoforms by evaluating the inflammatory stress-in-

duced NFjB transcriptome in cells and mice lacking the

expression of individual IjBs.74,75,78,79,88,89 Each isoform

uniquely contributes to the degree and duration of NFjB
activation, as well as the NFjB transcriptome. Multiple

studies have implicated IjBb in TLR4-mediated IL1b
expression.78–80,90,91 However, this is the first report link-

ing IjBb to IL1 expression following CpG-ODN TLR9-

mediated innate immune signalling.

Our data demonstrate that intracellular calcium affects

CpG-ODN-mediated TLR9 signalling. The effect of intra-

cellular calcium on TLR9-mediated innate immune sig-

nalling is not unexpected. These findings are consistent
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Representative Western blot of whole-cell lysates from RAW 264.7 pre-treated with calcium chelator EGTA-AM (250 µM, 0�5 hr) or calcineurin
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ODN exposed.
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with previous reports demonstrating a relationship

between intracellular calcium and other TLR-mediated

innate immune signalling pathways, including TLR4.61–71

Exposure to CpG-ODN alone causes decreased mitochon-

drial Ca2+ uptake,92 which could affect intracellular cal-

cium availability. We did observe an increase in signal

from the cell-permeable calcium indicator (Fig. 5a,b).

These mechanisms alone may explain why calcium chela-

tion with EGTA-AM and calcineurin inhibition with FK-

506 attenuate CpG-ODN-stimulated IL1 expression

(Fig. 5c–f). Whether other causes of calcium dyshome-

ostasis, including store-operate calcium entry and second

messenger-operated calcium entry, are mechanistically

active after CpG-ODN exposure deserves further study.

Previous reports have demonstrated that intracellular cal-

cium affects CpG-ODN-induced gene expression, but

whether this effect was mediated in part though cytosolic

signalling was not investigated.93 We believe that our

findings are particularly relevant for understanding the

role of TLR9-mediated innate immune signalling and the

pathogenesis of sterile inflammation. Mitochondrial stress

and injury are known to trigger pro-inflammatory NFjB

activation via endosomal TLR9 binding mitochondrial

CpG-rich DNA.3–9 The ability of CpG-rich mitochondrial

DNA to trigger TLR9 activation has led to the appropri-

ate use of CpG-ODN for the study of multiple disease

states where mitochondrial stress and injury are believed

to play a pathogenic role.51–56 These include atherosclero-

sis,10–14 ischaemia-reperfusion,11,15–19,94 infection/sep-

sis,20–37 and various autoimmune diseases.38–50 Due to

the direct link between mitochondrial stress and intracel-

lular calcium dyshomeostasis,84–86 the effect of intracellu-

lar calcium on CpG-ODN-mediated innate immune

signalling is relevant to the study of these disease states

associated with sterile inflammation.

An additional mechanistic contribution is the recogni-

tion that intracellular calcium plays an important role in

CpG-ODN-mediated innate immune signalling and the

kinetics of IjBb degradation. Previous studies have

demonstrated that intracellular calcium has a specific

effect on IjBb degradation. The inhibitory function of

IjBb depends on phosphorylation of two c-terminal ser-

ine residues.95–98 Importantly, increased cytoplasmic cal-

cium is associated with increased calcineurin activity.99
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Figure 6. Concurrent exposure to CpG-ODN and A23187 accelerates IjBb degradation, and increases IL1⍺ and IL1b expression. (a) Representa-

tive Western blot of whole-cell lysates from RAW 264.7 lysates exposed concurrently to calcium ionophore A23187 (10 µM, 0–4 hr) and CpG-
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Calcineurin has been shown to inactivate IjBb through

dephosphorylation of the c-terminal serine residues that

dictate its inhibitory activity.72 These previous reports

have established an important mechanistic link between

intracellular calcium, IjBb and NFjB activity. Our report

demonstrates that these mechanisms are relevant to

TLR9-mediated innate immune signalling.

Lastly, we demonstrate a mechanistic link between

CpG-ODN-mediated TLR9 innate immunity, calcium-

sensitive IjBb/NFkB signalling, and the expression of

IL1a and IL1b. It is not unanticipated that the CpG-

ODN-mediated IL1a and IL1b expressions are NFjB
dependent (Fig. 3). Building on this observation, we show

that CpG-ODN IL1a and IL1b expression is sensitive to

intracellular calcium, with expression being significantly

attenuated by calcium chelation and calcineurin inhibi-

tion (Fig. 5), and significantly increased with ionophore

exposure (Fig. 6). Finally, we demonstrate that calcium-

dependent IjBb/NFjB signalling is sufficient for IL1a
and IL1b expression (Fig. 7g), and that CpG-ODN and

calcium ionophore exposure synergistically and signifi-

cantly increase IL1a and IL1b expression (Fig. 7g). These

findings have therapeutic implications for various disease

states associated with mitochondrial injury/stress, sterile

inflammation and IL1 expression.1,2

TLR9 was first identified as the receptor for bacterial

DNA.8 Through TLR9-mediated innate and adaptive

immune responses, the host organism mounts a defense

against these offending pathogens. However, many endoge-

nous ligands activate TLR9 signalling. These include alar-

mins such has HMGB1 and mitochondrial DNA.2 Thus,

shared signalling underlies the pathophysiology of this

‘sterile inflammation’ that occurs in the absence of micro-

bial stimulation, and the response to microbial challenge.

It has been argued that the cost�benefit ratio of the

inflammatory response to endogenous ligands is much

lower than that of the response to microbial challenge.1

While the inflammatory response helps clear microbial

challenge and assist in tissue repair, chronic inflammation

can result in tissue damage and ongoing injury. With

sterile inflammation, the innate immune activation may

not confer benefit to the host organism as the inciting

stimulus is not threatening. Thus, attenuating innate

immune activity in the setting of sterile inflammatory stim-

ulus represents a potential therapeutic target to improve

the cost�benefit ratio of this response. Understanding the

mechanisms underlying sterile inflammation may reveal

therapeutic targets to limit this ongoing tissue injury.

There are many limitations to the current study. We

have evaluated the transcriptional regulation of TLR9-me-

diated IL1a and IL1b expression. However, we did not

evaluate NLRP3 inflammasome activation, which is a crit-

ical step in IL1b secretion and activity. Of note, calcium

flux can activate the NLRP3 inflammasome.100 Conse-

quently, further studies are needed to assess how targeting

calcium flux after TLR9 stimulation would affect inflam-

masome activity. Furthermore, we did not assess IL1a
and IL1b protein expression in this set of experiments.

While our findings regarding the transcriptional activa-

tion of IL1a and IL1b protein expression remain valid,

more work needs to be done to determine the functional

outcomes of altered IL1a and IL1b protein expression.

We did not measure intracellular calcium flux in these

experiments. However, we used doses of EGTA-AM, FK-

506 and A23187 previously reported to affect RAW 264.7

cells, and performed robust dose�response experiments.

Furthermore, we only evaluated this pathway in murine

macrophages. It is not known whether these findings are

relevant to other cells.

The role of TLR9-mediated IL1 expression is increas-

ingly recognized in the pathogenesis of diseases associated

with sterile inflammation.1–4,101 Given the strength of

these findings, targeting IL1 activity has been proposed as

a therapeutic intervention to limit inflammatory injury.2

We believe that our data support targeting calcium

dyshomeostasis to limit injury associated with sterile

inflammation. The role of the mitochondria in maintain-

ing intracellular calcium homeostasis is well known, and

mitochondrial injury leads to increased intracellular cal-

cium levels.84–86 Our findings demonstrate that when

Figure 7. IjBb/NFjB signalling mediates CpG-ODN-induced IL1⍺ and IL1b expression. (a) Representative Western blot of cytosolic extracts from

WT and IjBb�/� bone marrow-derived macrophages (BMDMs) exposed to CpG-ODN (0�3 µM, 0–5 hr) with GAPDH shown as the loading control.

(b) Densitometry ratio to control of IjB⍺ and IjBb in cytosolic extracts from WT and IjBb-/- BMDMs following exposure to CpG-ODN. Values

shown as means � SEM; n = 4/time point. *P < 0�05 versus unexposed control. †P < 0�05 versus WT CpG-ODN exposed. (c) Fold change in IL1⍺
and IL1b mRNA expression in WT and IjBb�/� BMDMs following CpG-ODN exposure (0�3 µM, 0–5 hr). Values shown as means � SEM; n = 4/

time point. *P < 0�05 versus unexposed control. †P < 0�05 versus WT CpG-ODN exposed. (d) Representative Western blot of cytosolic extracts from

WT and AKBI BMDMs exposed to CpG-ODN (0�3 µM, 0–5 hr) with GAPDH shown as the loading control. (e) Densitometry ratio to control of

cytosolic IjB⍺ and IjBb in cytosolic extracts from WT and AKBI BMDMs following exposure to CpG-ODN. Values shown as means � SEM;

n = 4/time point. *P < 0�05 versus unexposed control. †P < 0�05 versus WT CpG-ODN exposed. (f) Fold-change in IL1⍺ and IL1b mRNA expres-

sion in WT and AKBI BMDMs following CpG-ODN exposure (0�3 µM, 0–5 hr). Values shown as means � SEM; n = 4/time point. *P < 0�05 versus
unexposed control. †P < 0�05 versus WT CpG-ODN exposed. (g) Fold-change in IL1⍺ and IL1b mRNA expression in AKBI BMDMs following con-

current exposure to calcium ionophore A23187 (1 µM, 4 hr) and CpG-ODN (0�3 µM, 4 hr). Values shown as means � SEM; n = 3/time point.

*P < 0�05 versus unexposed control. †P < 0�05 versus AKBI CpG-ODN exposed. #P < 0�05 versus AKBI A23187 exposed.
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paired with the release of unmethylated CpG-rich DNA,

increased intracellular calcium acts as a second stimulatory

event that converges on TLR9 innate immune signalling.

These converging signals result in a synergistic increase in

IL1a and IL1b expression. These findings are critically

important as pre-clinical models have demonstrated the

limitations of targeting IL1 signalling.102 Our results raise

the possibility of targeting calcium dyshomeostasis or

IjBb/NFjB signalling to attenuate injury associated with

sterile inflammation. In fact, these mechanisms may under-

lie the protective effect of tacrolimus on ischaemia-reperfu-

sion.103 Furthermore, specifically targeting the TLR9-

mediated IjBb/NFjB signalling pathway may be particu-

larly effective due to the role of IL1 in recruiting neu-

trophils to the site of injury.1 By targeting this mechanism,

it may be possible to attenuate IL1a and IL1b expression,

and the degree and duration of sterile inflammation. It is

possible that therapeutically manipulating this pathway

may result in shifting the cost�benefit ratio of the sterile

inflammatory response so it is beneficial to the host.
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