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Abstract 

Introduction:  This is a systematic review on the main algorithms using machine 
learning (ML) in retinal image processing for glaucoma diagnosis and detection. ML 
has proven to be a significant tool for the development of computer aided technol-
ogy. Furthermore, secondary research has been widely conducted over the years for 
ophthalmologists. Such aspects indicate the importance of ML in the context of retinal 
image processing.

Methods:  The publications that were chosen to compose this review were gathered 
from Scopus, PubMed, IEEEXplore and Science Direct databases. Then, the papers pub-
lished between 2014 and 2019 were selected . Researches that used the segmented 
optic disc method were excluded. Moreover, only the methods which applied the 
classification process were considered. The systematic analysis was performed in such 
studies and, thereupon, the results were summarized.

Discussion:  Based on architectures used for ML in retinal image processing, some 
studies applied feature extraction and dimensionality reduction to detect and isolate 
important parts of the analyzed image. Differently, other works utilized a deep convo-
lutional network. Based on the evaluated researches, the main difference between the 
architectures is the number of images demanded for processing and the high compu-
tational cost required to use deep learning techniques.

Conclusions:  All the analyzed publications indicated it was possible to develop an 
automated system for glaucoma diagnosis. The disease severity and its high occur-
rence rates justify the researches which have been carried out. Recent computational 
techniques, such as deep learning, have shown to be promising technologies in fundus 
imaging. Although such a technique requires an extensive database and high com-
putational costs, the studies show that the data augmentation and transfer learning 
techniques have been applied as an alternative way to optimize and reduce networks 
training.
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Objective
This paper describes supervised methods for glaucoma screening in retinal images. 
The studies reviewed in this article were categorized into deep learning and non-deep 
learning methods. Hence, its main objective is to evaluate the algorithms recently 
proposed by different groups, as well as to describe the preeminent steps in the devel-
opment of an automated diagnosis system. Further, machine learning algorithms can 
be of significant contribution to the earlier and automated diagnosis of glaucoma, as 
well as for other abnormal ocular conditions.

Methods
A literature review aims to synthesize works on a research source to aid further inves-
tigations. The methods utilized in the present study were based on the five steps 
described by Khan et  al. [1], as follows: framing questions for a review, identifying 
relevant work, assessing the quality of studies, summarizing the evidence, and inter-
preting the findings. Initially, the study objective was defined. Second, the current 
state-of-the-art of algorithms combining retinal image processing was determined. 
Then, the sources and criteria were defined in order to include the studies in this 
review. After that, the most significant works were selected. Furthermore, the analysis 
of those which presented discussions and perspectives of ML algorithms in the reti-
nal image processing for glaucoma detection and diagnosis occurred. Accordingly, an 
analysis was performed to determine convergences and divergences amidst studies.

Data identification and extraction

In this review, the following online databases were considered for the literature 
research: PubMed, US National Library of Medicine National Institute of Health, 
IEEE Xplore Digital Library, Science Direct and Scopus.

All the articles were published during the period between January 2014 and August 
2019. The search was restricted to the following keywords: “Machine Learning AND 
Retinal Image”, “Glaucoma AND Machine Learning”, “Optic Disc AND Machine 
Learning”, “Deep Learning AND Glaucoma”. The keywords search result in 15,228 
works. When the exclusion criteria were applied, a total of 110 works remained.

Selection and exclusion criteria

The selection process was performed according to the following exclusion criteria:

•	 Studies containing the words “OCT” and “Visual Field” in the title;
•	 Papers which did not include both “Glaucoma” and “Optic Disc” as keywords;
•	 Papers which did not include the word “Glaucoma” in the metadata.

In step of study selection, the researches were analyzed through the reading of the 
abstract, keywords, and methods. As a result, it was possible to acquire the selection 
criteria of the studies.
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The abstracts, keywords and methods of the 110 remaining studies were read in 
order to analyze their importance and influence. In this stage, the following criteria 
were applied to the selection of the most significant of those.

•	 Data acquisition: retinal image;
•	 Processing techniques: machine learning and deep learning;
•	 Analyzed eye structure: optic disc (OD);
•	 Methods that included the image classification process;
•	 The risk factors in glaucoma detection such as age, family ancestry, and race;
•	 Journal’s impact factor and paper’s citation number;
•	 Studies published in proceedings were disconsidered.

According to these criteria, 40 papers were selected for an integral reading. Subse-
quently, the researches which did not include the classification step (presenting only seg-
mentation) were excluded. In summary, 18 papers were chosen for this review: 10 of 
those included diverse machine learning approaches and the other 8 comprised methods 
with deep learning.

Background
Glaucoma is a neuropathic disease that is marked by ganglion cells degeneration [2, 
3]. Thus, an atrophy of the optic nerve fiber is followed by the erosion of the rim tis-
sue, which manifests as a cup enlargement. Currently, the detection of glaucomatous 
structural damages and changes is one of the most challenging aspects of the disease 
diagnosis methods [4, 5]. Moreover, glaucoma is generally diagnosed by the analysis of 
the intra-ocular pressure (IOP)—that should be higher than 22 mmHg without medi-
cation—the glaucomatous cupping of the optic disc, and the glaucomatous visual field 
defects [3].

One of the greatest challenges regarding glaucoma diagnosis is the asymptomatic 
aspect of the disease before severe stages. In this way, the number of undiagnosed 
patients is higher than the number of diagnosed [6]. Yet the size and shape of the optic 
cup disc is another important aspect to take into consideration during glaucoma diagno-
sis [7]. Hence, the vertical increase of the cup is a feature of glaucomatous optic neurop-
athy. By analyzing Fig. 1c, d, it is possible to identify an increase in the cup if compared 
to Fig. 1a, b. That is a clear glaucoma sign.

The main types of glaucoma can be classified into two categories: primary open-angle 
glaucoma (POAG) and primary angle-closure glaucoma (PACG) [8]. These two types are 
considered as the first stages of glaucoma. Still, there is another category called second-
ary glaucoma, which may be a result of trauma, of some specific types of medications 
(e.g., corticosteroids), inflammation, tumor, or other abnormal conditions [9].

There is no specific pattern to glaucoma diagnosis. Thus, determining if the patient 
has the disease becomes a complicated task [10]. Thereupon, longitudinal evaluation and 
documentation of structural damage to the optic nerve are of paramount importance to 
the diagnosis [11].

Different technical instruments can be used to aid the diagnosis of glaucoma. For 
instance, the retinal imaging test, also known as fundus imaging, is widely used 
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among the technology experts [3]. Likewise, there are different methods used for 
glaucoma screening.

Fundus imaging allows the identification of the main ocular structures, such as the 
optic disc (OD), optic disc cup (OD-cup), macula region [12], fovea, [13] and blood 
vessels [14]. This test may also detect abnormal conditions, including microaneu-
rysms, bleeding, exudates, and cotton wool spots [15]. As for the main advantages of 
retinal imaging, the non-invasiveness, safety, low cost, ease of adoption by ophthal-
mologists for diagnosis purpose, full coloration, and better detection of disk hemor-
rhages may be highlighted.

Due to its characteristics, fundus imaging is widely used in the development of 
diagnostic support systems. Such systems aim to detect and/or diagnose abnormal 
conditions by analyzing medical images, acting as a second opinion to the health pro-
fessional [16, 17]. Diagnostic support systems provide clinical decisions to assist phy-
sicians regarding their actions to avoid misdiagnosis or incomplete diagnosis.

In the field of ophthalmology, several studies that aim to develop a system for diag-
nosis support have been carried out. Over the last years, many support systems have 
been under investigation in the ophthalmic field. Nonetheless, one of the limitations 
of systems development is the diversity of exams. With reference to retinal images, 

Fig. 1  Optic nerve with normal cup and increased cup caused by glaucoma: a, b optic nerve with normal 
cup and dimension quotes; c, d optic nerve with increased cup
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there are distinct traits due to their variation in the lesion types and to the fact that 
they differ within themselves [18].

Statistics

Vision impairment and blindness are significant causes of disability worldwide [19–21]. 
In prevalence numbers, glaucoma is the second disease that causes such conditions [3]. 
To examine the global prevalence of POAG and PACG glaucoma variations, as well as 
to project the number of affected people in 2020 and 2040, Tham et al. [22] developed a 
systematic review and meta-analysis with data from 50 population-based studies. Thus, 
according to the results, in 2020 glaucoma will affect around 80 million people world-
wide. As for 2040, this number may reach 1115 million [22]. This prediction may reflect 
the asymptomatic characteristic of the disease.

The incidence rate of many glaucoma types is another important aspect, since it var-
ies in different racial and ethnic groups [23, 24]. Table 1 shows the estimates for each 
continent. The estimate for Asia and Africa is that more than 85 million people will have 
glaucoma by 2040.

Machine learning in the image processing context

The development of new technologies has been demonstrating its relevance for glau-
coma diagnosis and treatment. To this extent, machine learning (ML) techniques 
have proven to be essential for good research results. Still, the main feature of such an 
approach is the automated task resolution by a smart computational system [25].

ML is a data analysis method that automates the construction of analytical models, 
which are used in a large range of data types, including images [26]. Mitchell [27] defines 
machine learning as the ability to improve performance in accomplishing a task through 
experience.

Systems that use ML can learn from data, identify patterns and make decisions with 
minimal human intervention. Thus, in the context of diagnosis modeling using the clas-
sification paradigm, such a learning process is based on observing data as examples. In 
this situation, the model is constructed by learning from data along with its annotated 
labels.

In order to use some ML models when problems in image processing occur, it is neces-
sary to reduce the number of data entries. An image can be transformed into millions 

Table 1  Projection of  the  number of  people (aged between  40 and  80 years, in  millions) 
with primary glaucoma in 2020 and 2040

a  Data from the systematic review by Tham et al. [22]

World regiona 2020a 2040a

Asia 46.24 (33.08−65.91) 66.83 (48.39–93.77)

Africa 10.31 (6.41−15.28) 19.14 (11.89–28.30)

Europe 7.12 (5.20−9.68) 7.85 (5.76–10.55)

North America 3.94 (2.61−5.72) 4.72 (3.13–6.75)

Latin America and the Caribbean 8.11 (4.46−14.62) 12.86 (7.12–22.85)

Oceania 0.30 (0.16−0.50) 0.42 (0.22–0.69)

Worldwide 76.02 (51.92–111.7) 111.82 (76.50–162.9)
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of pixels for tasks such as classifications. In this sense, data entry would make process-
ing very difficult. Then, to make it easier, the image is transformed into a reduced set of 
features. This operation selects and measures the representative properties of raw input 
data in a reduced form [28]. Moreover, such a set represents the relevant piece of infor-
mation required to perform a desired task. It can be represented by color, texture, shape 
or a simple portion of the image [29].

The main purposes of the studies in this field are to identify features to reduce mem-
ory and processing time requirements, to eliminate irreversible attributes, and to sim-
plify the generated model. Earlier studies usually applied computer vision methods to 
manually extract designed features. Accordingly, some methods used non-segmenta-
tion-based method, which designs various features, such as entropy [30], wavelet [31] or 
fractal dimensions [32]. Nonetheless, alternative methods applies a segmentation-based 
approach, which generates common measures for glaucoma diagnosis.

Image segmentation is the separation of the target region, those corresponding to the 
object of the real world, from the image background. For this process, Cheng et al. [33] 
proposed an optic disc and optic cup segmentation system that uses superpixel clas-
sification. Additionally, Chrástek et  al. [34] developed a method for optic nerve head 
(ONH) segmentation whose validation was based on morphological operations. In both 
techniques, the target region is based on the needs of specific applications. Usually, it 
corresponds to the subjective cognition and the experience of the operator [35].

Over the last years, some reviews were performed in order to describe which auto-
mated methods have been applied in glaucoma diagnosis. Diaz-Pinto et al. [36] employed 
five different deep learning models to assess glaucoma. Yet Almazroa et al. [37] reviewed 
segmentation methodologies and techniques for the disc and cup boundaries, the struc-
tures utilized to help to diagnose glaucoma. While the first study solely focused on deep 
learning methods, the second employed only heuristic and image processing techniques. 
On the other hand, in the present review, we have analyzed the supervised methods, cat-
egorizing both deep learning and non-deep learning algorithms for glaucoma diagnosis.

Results
In this section, we present an overview of the existing literature on machine learning 
algorithms for retinal image processing. Initially, the studies that utilize feature extrac-
tion methods are showed (listed in Table  2). Then, deep learning techniques are spe-
cifically presented, such as the convolutional neural network (CNN) architectures (as 
described by Table 3). The methods are approached in the context of glaucoma screen-
ing. Finally, all the metrics used to evaluate the results, as well as their values, are sum-
marized in Tables 2 and 3.

Methods using features extraction for glaucoma diagnosis

In 2014, Noronha et al. [38] developed a system using higher order spectra (HOS) cumu-
lants. In the first step, the image was decomposed into projections with the application 
of Radon transform. These were used to compute high-order statistic moments. Then, its 
combination constituted the high-order cumulant features. Thereafter, a dimensional-
ity reduction was performed through principal component analysis (PCA), independent 
component analysis (ICA), and linear discriminant analysis (LDA). As a result, the LDA 
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yielded the highest classification accuracy and its results were applied in a feature rank-
ing method using Fisher’s discrimination index (F). In addition, support vector machine 
(SVM) and naive Bayes (NB) methods were applied in the classification process. The sys-
tem was tested in a private database consisting of 272 fundus images. Hence, with the 
use of a tenfold cross-validation method, 100 images exhibited normal conditions, while 
72 and 100 revealed mild glaucoma and moderate/severe glaucoma, respectively.

Table 2  Main studies using features extraction

a  Only the best results obtained in each method were left

k-NN classifier, least-squares support vector machine LS-SVM, random forest RF, naive Bayes NB, support vector machine 
SVM

Methods Year Data Preprocessing Features 
Extract

No. 
of features

Best 
classifiera

Resultsa (%)

Acc Sp Sn

Noronha 
et al. [38]

2014 272 Image resize 
with interpo-
lation method

Higher order 
cumulant 
features

35 NB 92.65 100.00 92.00

Acharya 
et al. [39]

2015 510 Image resiz-
ing with 
histogram 
equalization

Gabor trans-
form

32 SVM 90.98 91.63 91.32

Issac et al. 
[40]

2015 67 Image resizing 
with statistical 
features

Cropped 
input 
image 
after 
segmenta-
tion

3 SVM 94.11 90 100

Raja et al. 
[45]

2015 158 Grayscale con-
version and 
histogram 
equalization

Hyper-
analytic 
wavelet 
transfor-
mation

16 SVM 90.14 85.66 94.30

Singh et al. 
[47]

2016 63 N/A Wavelet 
feature 
extraction

18 k-NN 94.75 100 90.91

Maheshwari 
et al. [30]

2017 488 Grayscale con-
version

Variational 
mode 
decompo-
sition

4 LS-SVM 94.79 95.88 93.62

Soltani et al. 
[48]

2018 104 Histogram 
equalization 
and noise 
filtering

Randomized 
Hough 
transform

4 Fuzzy logic 90.15 94.80 97.80

Koh et al. 
[49]

2018 2220 NA Pyramid 
histogram 
of visual 
words 
and Fisher 
vector

4 x 4 (grid) RF 96.05 95.32 96.29

Mohamed 
et al. [50]

2019 166 Color channel 
selection and 
illumination 
correction

Superpixel 
feature 
extraction 
module

256 SVM 98.63 97.60 92.30

Rehman 
et al. [51]

2019 110 Bilateral filtering Intensity-
based 
statistical 
features 
and tex-
ton-map 
histogram

2 SVM 99.30 99.40 96.90
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In 2015, Acharya et al. [39] developed a method using features that were extracted 
from Gabor Transform. From this procedure, the extracted coefficients were: mean, 
variance, skewness, kurtosis, energy, and entropies such as Shannon, Rényi, and 
Kapoor. Then the obtained features were subjected to PCA. Furthermore, feature 
ranking is another fundamental process to the proposed algorithm, since it allows the 
most representative features to be selected. Thus, the following were chosen: t-test, 
Bhattacharyya space algorithm, Wilcoxon test, receiver operating curve (ROC), and 
entropy ranking methods. The proposed method was tested in a private database con-
sisting of 510 fundus images, with the succeeding classifications: normal (266); mild 
(72); moderate (86) and severe (86). To split the groups with and without glaucoma, 
the authors also proposed a numerical risk index for the condition. The SVM and NB 
were used in the classification process.

Still, in 2015, Issac et  al. [40] developed an adaptive threshold-based method to 
segment the OD and OD-cup for glaucoma diagnosis. First, the ONH region was 
analyzed. Then, the histogram of the green channel was used for the OD segmen-
tation. The selected features for OD and OD-cup identification were: cup-to-disc 
ratio (CDR), neuroretinal rim (NRR) area, blood vessel area and the ISNT rule. More 
details about CDR, NRR, and ISNT rule can be found in the works of Hu et al., Mabu-
chi et al., Jonas et al. and Poon et al. [41–44]). Moreover, the SVM, the function ker-
nel RBF, and the Artificial Neural Network (ANN) were used as classifications. The 
private dataset used to test the method was composed by 67 images, 35 being healthy 
and 32 glaucomatous.

In the same year, Raja et al. [45] proposed a method based on the particle swarm opti-
mization (PSO) and group search optimization (GSO). With the application of the PSO 
framework, the g-best values were extracted through the population. At this point, the 
global optimal and potential members were scanned in order to identify better mem-
bers. The preprocessing was performed with the application of the grayscale conversion 
and histogram equalization. Regarding the feature extraction step, the hyper-analytic 
wavelet transform (HWT) and wavelet transform were applied. Such a process extracted 
the mean, energy, and entropy features that were utilized in the classification process. 
Later, the method was tested in the RIM-ONE public database [46], and the best results 
were attained with the SVM classifier.

Table 3  Main studies using deep convolutional network

a  Only the best results obtained in each method were entered

Methods Year Architecture Metrics (%)

Acc Sp Sn

Li et al. [55] 2018 Inception-v3 92 95.6 92.34

Fu et al. [58] 2018 Disc-aware ensemble network (DENet) 91.83 83.80 83.80

Raghavendra et al. [62] 2018 Eighteen-layer CNN 98.13 98.3 98

dos Santos Ferreira et al. [63] 2018 U-net for segmentation and fully connected with 
dropout for classification

100 100 100

Christopher et al. [65] 2018 ResNet50 97 93 92

Chai et al. [68] 2018 MB-NN 91.51 92.33 90.90

Bajwa et al. [69] 2019 Four convolutional layers and fully connected layers 87.40 85 71.17

Liu et al. [72] 2019 ResNet 99.6 97.7 96.2
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Following that, in 2016, Singh et  al. [47] proposed a method using wavelet feature 
extraction. Its initial step is characterized by OD segmentation and blood vessel removal. 
In this method, the largest lighter region is considered the optic disc center. In addition, 
the wavelet feature extraction process was used in the segmented OD. Thus, the dimen-
sionality reduction utilized PCA, and the normalization process, z-score. For the test 
and the training process, 63 images from patients aged between 18 and 75 years were 
utilized. Such a material was acquired from a private database. Still, the classification 
was performed using the random forest, NB, kNN and Artificial Neural Network (ANN) 
classifiers. Conclusively, the best results were reached with kNN and SVM.

In 2017, a method that applied a non-stationary classification technique, based on the 
VMD algorithm to get ten band-limited sub-signals, was developed by Maheshwari et al. 
[30]. Hence, textural features were extracted from those components in order to meas-
ure smoothness, coarseness, and pixel regularity in the images. After that, the normali-
zation step used the z-score. The RelieF algorithm was used to select the discriminatory 
features, which were fed to least-squares support vector machine (LS-SVM) during the 
classification process. The training step was performed in a private database consisting 
of 488 images, in which one half was normal, and the other with glaucoma. In addition, 
the test was carried out in the RIM-ONE [46] dataset.

One year later, Soltani et  al. [48] developed an algorithm for classification that was 
based on a fuzzy logic approach. Specifically, the algorithm examines risk factors such 
as age, family heredity, race, and image data. It consists of the following steps: image 
preprocessing, characterized by noise removal; OD contour detection and identifica-
tion; and excavation and extraction of key parameters. In this manner, the features were 
extracted through the randomized Hough transform (RHT). Afterwards, the images 
were classified, with the implementation of SVM, as normal, glaucoma-suspicious 
or glaucomatous. The method was performed in a private database consisting of 104 
images, in which 46 were glaucomatous and 58, normal.

Also in 2018, Koh et  al. [49] developed an algorithm based on the pyramid histo-
gram of visual words (PHOW) and the Fisher vectors. Thusly, this algorithm extracts 
the PHOW from the background images. Following that, the Gaussian mixture model 
(GMM) was performed on the training set to obtain a vocabulary to encode the Fisher 
vectors for training and testing. Then, the features were built with the application of the 
vectors, which were used as an input for the random forest classifier. Such a method 
employs a blindfold and tenfold cross-validation techniques for the validation process. 
Lastly, 2220 images were also acquired from a private database: 553 manifested glau-
coma, 346 diabetic retinopathy, 531 age-related macular degeneration, and 790 repre-
sented normal conditions.

In the year of 2019, Mohamed et  al. [50] developed a cup and disc segmentation 
method. The image pixels were clustered through the simple linear iterative clustering 
superpixel technique. During the image preprocessing step, the peak signal-to-noise 
ratio (PSNR) and contrast-to-noise ratio (CNR) were utilized for quantitative evalua-
tion. Therefore, a Simple Linear Segmentation (SLIC) algorithm was adopted to gener-
ate the desired number of superpixels, as well as the adjustable clustering compactness. 
Following the segmentation process, the mean, variance, kurtosis, and skewness features 
were extracted with an algorithm denominated as statistical pixel-level (SPL). The SVM 
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was used in the classification step with both linear function kernel and RBF. As for the 
method testing, it occurred by means of the RIM-ONE database [46].

Lastly, in 2019, Rehman et  al. [51] applied a superpixel technique. The image pre-
processing constituted three steps: noise removal and OD-edge enhancement, image 
enhancement and cropping, and cropping around the OD region. The SLIC superpixel 
method was adopted during the segmentation process. Moreover, the intensity-based 
statistical features, along with texton-map histogram, characterized the extraction tech-
nique. The statistical features extracted from the superpixels were: average, maximum, 
minimum, median, and mode intensity. In addition, the fractal feature was another fea-
ture extractor used. The authors obtained five features with statistical methods, six, with 
texton histogram, and six more with the fractal method. Then, SVM and RF methods 
were employed in the classification step. Regarding the test, the chosen methods were 
the DRIONS [52], the MESSIDOR [53], and the ONHSD [54] datasets. Thereupon, the 
best result was reached with the RB classifier in the ONHSD database.

Methods using deep convolutional network architectures for glaucoma diagnosis

In 2018, Li et al. [55] developed a method to evaluate the performance of a deep learn-
ing algorithm for the glaucoma optic neuropathy (GON) screening. To this extent, the 
Inception-v3 [56] was applied in the network architecture with a mini-batch gradient 
descent of size 32, which was used during the training process. Following that, Adam 
Optimizer [57] was utilized for the convergence step. The best result was reached with 
a learning rate equal to 0.002. Further, the method was performed in a private database 
consisting of 70,000 images. However, only 48,116 of those, that showed a visible optic 
disc, were used. With the utilization of the ground truth labeled by the medical experts, 
two detection levels of referable GON were adopted: non-referable GON and referable 
GON (constituted of suspected and certain GON).

That same year, Fu et  al. [58] proposed a Disc-aware Ensemble Network (DENet) 
for automated glaucoma screening which took into account the global and local 
image levels. In this manner, the global level was composed of two streams. The first 
of those streams was defined as a standard classification network using Residual Net-
work (ResNet). As for the second, it was a segmentation-guided network adapted by the 
U-shape convolutional network [59]. In order to transfer the OD region into polar coor-
dinate system, the local image-level was composed of the standard classification network 
based on the ResNet and disc polar transformation stream. Such an architecture con-
tains four deep streams: the global image stream, the segmentation-guided network, the 
disc region stream, and the disc polar stream transfers. All the deep streams outputs 
were combined for achieving the final screening result. The experiments applied ORIGA 
[60], Singapore Chinese Eye Study (SCES) [61], and the SINDI private database.

Still, in 2018, Raghavendra et al. [62] designed a method with an 18-layer CNN archi-
tecture composed of convolutional and max-pool layers. The classification layer was 
performed by utilizing the logarithmic soft-max activation function. Then, one output 
neuron was used to get the probability for each class. Training and testing steps were 
performed in images from the Kasturba Medical College private database: 589 images 
were defined as normal and 837, as abnormal. About 70% of the data was randomly 
adopted for training, and 30% for testing.
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In addition, dos Santos Ferreira et al. [63] schemed a method for both image segmen-
tation and classification in 2018. First, a U-net convolutional network was trained to 
perform the OD segmentation. At this stage, 80% of the data was employed for train-
ing and 20%, for testing. Then, the blood vessels were removed using Otsu algorithm. In 
the following step, an extraction of texture-based features was performed. To describe 
the texture of the ROI, parameters to calculate the phylogenetic density present in this 
structure were applied. Furthermore, a neural network implementation, based on the 
last CNN classification layer, was implemented. It consisted of 100 fully connected lay-
ers in which the dropout was equal to 0.5, the net was tested throughout 1,000 epochs, 
and the learning rate was 1 × 10−5. The images used in the test and training steps were 
acquired from RIM-ONE [46], DRIONS-DB [52] and DRISHTI-GS [64] databases.

In that corresponding year, Christopher et al. [65] evaluated the performance of the 
deep learning architecture for the GON screening by employing the native and the 
transfer learning-based methods. Therefore, the images were preprocessed to extract 
the ONH-centered region. A data augmentation process was applied in which two ran-
dom orientations and five random crops were employed in each image. Consequently, 
the dataset was increased by 10 times. What is more, the VGG16 [66], Inception-v3 and 
ResNet50 [67] architectures were used. Subsequently, the data were partitioned into 
independent training, validation, and testing sets using an 85–5–10% splitting. During 
the training process, the tenfold cross-validation technique was utilized. The method 
was performed in a private database consisting of 14.822 images: 33% were of Afri-
can descent people. In conclusion, the most satisfactory results were achieved through 
ResNet50 with transfer learning.

Once more in 2018, Chai et  al. [68] proposed a multi-neural network branch (MB-
NN) model using a domain knowledge, as well as hidden learning resources. In this 
way, the following features were extracted: CDR, retinal nerve layer defects (RNFLD), 
peripapillary atrophy (PPA), OD size, and ISNT rule. The Faster-RCNN deep learning 
model was adopted in the image segmentation process to obtain these features. Moreo-
ver, the applied domain knowledge features were: age, IOP, eyesight, and binary features, 
such as failing eyesight and eye injuries. CNN’s model was divided into branches, in 
which the first and the second analyzed the entire image and the disc region. As for the 
third, it comprehended a fully connected forward neural network in order to deal with 
domain knowledge features. Further, the training process used the multi-branch neural 
network (MB-NN) model. The method was performed in a private dataset consisting 
of 2554 images, in which 1023 indicated glaucoma or other conditions, and 1531 were 
non-glaucomatous.

A year later, Bajwa et al. [69] developed a two-stage framework for ROI localization 
and glaucoma classification. Thus, the first stage was performed in two steps. Initially, 
a semi-automated ground truth (GT) was developed, characterized by a RCNN-based 
architecture that automatically detected the OD. Next, the classification process was 
run. The OD was extracted, and the deep network was utilized. Thereupon, the archi-
tecture was divided into four convolutional layers: a Max pooling overlapping strides 
and three fully connected layers. The training, testing, and validation data were acquired 
from ORIGA [60], HRF [70], and OCT & CFI [71] databases. The most efficient results 
were achieved by means of cross-validation.
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In 2019 as well, Liu et al. [72] established a large-scale database of fundus images for 
glaucoma diagnosis, also known as the FIGD, and developed convoluted neural net-
works (GD-CNN) for automatically detecting GON. The network architecture was 
based on the ResNet [73]. The database was formed by 274.413 fundus images which 
were obtained from the Chinese Glaucoma Study Alliance.

Discussion
Based on the selected studies, it was possible to discern two generic architectures for 
glaucoma diagnosis: generic architecture using feature extraction (represented in Fig. 2), 
and generic architecture using deep convolutional network (represented in Fig. 3).

Fig. 2  Generic architecture using features extraction

Fig. 3  Generic architecture using deep convolutional network
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In the researches that employed the feature extraction generic architecture, it was 
possible to describe a pipeline with five steps for the development method, such as 
preprocessing, feature extraction, dimensionality reduction and classification. The 
segmentation step emerges as optional. Yet the preprocessing is performed in differ-
ent approaches: image size reduction [38–40], image channels manipulation [30, 45, 
50], histogram equalization and noise filtering [48], histogram of visual words [49] or 
bilateral filtering [51]. All the techniques were applied in order to highlight the OD 
and the OD-cup region. Furthermore, an important feature in the retinal images is 
characterized by the brightness in the central region, as well as the high noise level 
in the edge region [74]. Still, all the techniques aim to improve the image’s quality 
through filtering and lighting enhancement. Additionally, such a process removes the 
image’s noise in order to reduce the processing time during the image analysis.

In the segmentation process, Issac et al. [40] segmented the OD and OD-cup using 
the red channel. In this manner, the morphological dilatation was the differential of 
this process. Such a method was performed to remove the possible gap in the seg-
mented OD limit. Thus, it employed an element of dimension equal to the width of 
the primary blood vessels lying on the ONH, leading to a better OD segmentation.

However, Rehman et al. [51] performed the mentioned process utilizing the super-
pixel segmentation. Its main objective was to find similar pixel group clustering and to 
label those as the same type. It was observed that the processing step was facilitated 
due to the segmentation, which splits the images in regions. Differently, Singh et al. 
[47] segmented and preprocessed the OD in only one step. In the proposed method, 
the authors considered clinical assumption that the OD is the brightest region in the 
image [6]. Their algorithm localizes the OD employing the red channel to build a 
plane with various (x, y) points, since it allows OD localization and extraction.

Feature extraction is one of the most important steps in fundus imaging process-
ing. Acharya et al. [39] extracted statistical metrics as the image features. Thus, the 
extraction of 32 features, considered importantly related to the image intensity, was 
performed. In retinal imaging, those are useful during the classification process. 
Moreover, a valuable contribution of Acharya et al. [39] was represented by the devel-
opment of a risk index for glaucoma screening, which can be used in clinical daily 
activities. In addition, Raja et al. [45] employed almost the same metrics as Acharya 
et al. [39] with exception to skewness and kurtosis, extracted from the HWT.

The feature extraction is a key procedure when it comes to allowing the usage of 
classification algorithms and the reduction of data dimensionality. The method devel-
oped by Soltani et al. [48] is different, since it vertically and horizontally divides the 
OD and OD-cup diameters to compute the ISNT measure values and eye asymmetry. 
Such an aspect leads to the extraction of four characteristics, which are well known 
by ophthalmologists.

Differently, Mohamed et al. [50] provide information such as thickness, smoothness 
and regularity. These metrics indicate the relation among the pixel intensity values. 
That said, the SPL method was adopted to analyze the spatial distribution of gray val-
ues. Thus, this process occurs from the extraction of significant features within super-
pixels of the best color channels in order to derive a set of statistics for those features. 
Regarding this technique, the use of color channels represents a relevant aspect to be 
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taken into consideration. Table 2 summarizes all applied methods for feature extrac-
tion, as well the number of used features throughout each classification method.

Some methods investigated for this review have applied a dimensionality reduction 
process [38, 47]. In this way, its purpose is to reduce the number of features in order that 
the classifier mediation and the precision costs may be decreased. The better and more 
important the features are, the faster the classifier will be, avoiding the dimensionality 
curse.

Singh et  al. [47] used the PCA, while Noronha et  al. [38] the LDA. The difference 
between these methods is that the LDA classifies the data, while the PCA changes the 
localization shape of the original database, projecting those in other space. Another fea-
ture of LDA is that it maintains the class separation [38]. Additionally, the utilization 
of the feature ranking using Fisher’s discrimination index (F) represents a considerable 
element regarding Noronha’s method. Contrary to further methods, Maheshwari et al. 
[30] use a feature normalization process. Hence, these researchers used the z-score to 
improve the classifier performance.

The classification process marks the ultimate step, described in Fig. 2. Furthermore, 
the evaluated papers made use of the supervised learning standard based on the training 
process from a labeled dataset that acquires a required function. Still, the data employed 
in the training were extracted from the images. The SVM classifier presented the most 
favorable results in ten of the papers selected, as in the research of the following authors: 
Acharya et al. [39], Issac et al. [40], Raja et al. [45], Mohamed et al. [50], and Rehman 
et al. [51].

The principal features of the support vector machine (SVM) method are its gener-
alization and robustness in high dimensions. Apart from presenting a well-established 
theoretical basis into mathematics and statistics, that makes its usage easier, SVM can 
be employed for image classification. This method applies the high-dimensional linear 
hypothesis to produce hyperplane by measuring its margin, and searches for maximum 
points as well [75]. As for the classification problem performed by Soltani et al. [48], the 
authors use the fuzzy logic approach. Moreover, the SVM method needs an interval of 
values to indicate if a determined possibility is true or false.

To ascertain whether a diagnosis is correct, many parameters are needed. Accord-
ingly, for developing a system design, the subsequent aspects must be considered: three 
linguistic variables, two inputs and one output; membership functions, which indicates 
normal, glaucomatous and glaucoma-suspect classes; and fuzzy rules, including a total 
of six. Beyond that, such rules are based on the idea that it is necessary to evaluate its 
previous versions, considering it to those following. In this way, the decision process of 
the classes’ labels is performed by using a decision-making logic which is based on clini-
cal and imaging data.

The generic architecture that employs a deep convolutional network, as expressed in 
Fig. 3, consists of several layers of processing, which are trained to represent data in sev-
eral levels of abstraction. In case the responsible model for this task consists of a cascade 
of processing layers that resemble biological processes, it is unnecessary to extract the 
image features [76]. Thus, such a model transforms the raw input into output through a 
function. That said, the architecture is basically constituted of an input (Fig. 3a), a con-
volutional layer (Fig. 3b, c), which is responsible for the feature extraction process, a fully 
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connected layer (Fig. 3d), responsible for classification; and a desirable output (Fig. 3e). 
Differently from the architecture described in Fig. 2, the feature extraction and classifi-
cation processes are performed by the model.

In the method of Raghavendra et al. [62], four batch normalization layers were applied 
to allow the flow of the normalized data into the intermediary layers. Such a fact favors 
higher learning rates, which causes the process to be faster. In addition, a soft-max layer 
that allows reducing outliers in the data sample was inserted after the fully connected 
layer. Hence, Li et  al. [55] trained a net with 22 layers. The highlight of this model is 
characterized by the use of mean and maximum clustering and concatenation, which 
leads to the increase of the net precision power.

However, some works showed variability regarding the generic structural application, 
as presented in Fig. 3. Dos Santos Ferreira et al. [63] developed an architecture based on 
U-net [59] solely to perform the OD segmentation. In this way, the net does not have a 
fully connected layer. The possibility of training all three color channels of the network is 
the key highlight of the mentioned work.

On the other hand, Christopher et al. [65] utilized a method that is being widely used 
in CNN on data argumentation. It aims to increase the number and the type of varia-
tions of the training data. This process may result in a better net performance, creating 
more generalized models, since some types of image quality transformations and vari-
ations are enabled. Additionally, it produces a considerable number of examples to be 
learned by the model, facilitating the correct image classification.

Other works, such as the study developed by Fu et al. [58], contain four deep streams 
corresponding to various levels and modules of the fundus image. This model takes into 
consideration various levels and modules of the fundus image, providing a segmenta-
tion-guided network which localizes a region of the disc and generates the disc segmen-
tation representation.

The research of Bajwa et al. [69] proposed a framework composed of two levels: one 
for the OD localization and the other for classification. Moreover, the development of 
a new database represented another contribution of the authors [58]. Correspondingly, 
Liu et al. [72] developed a large-scale database of fundus images for glaucoma diagnosis 
(FIGD database). As for Chai et al. [68], their work took advantage of both deep learn-
ing models and domain knowledge. Aiming to evaluate all the images, the OD, and the 
domain feature, the authors projected a multi-branch neural network model. The differ-
ential of the method was that it had applied knowledge features—as CDR, RNFLD, PPA 
size, and symptoms from images and texts in the deep learning model—not only in the 
image, but also in domain.

Another substantial aspect observed throughout the analysis of the works is that 
all methods validated their models using the metrics of Sensitivity (Sn), Specificity 
(Sp), and Accuracy (Acc). In that manner, these metrics are key to recognition of the 
quality of created models. Figures 4 and 5 point out a graph with all these metrics. 
When training a model in the red channel, Dos Santos Ferreira et  al. [63] obtained 
100% in the three measures. However, in other channels as the blue channel, the Acc 
and Sn values were of 94% and 80%, respectively. Furthermore, the red channel pre-
sented better texture properties in the original images of the retina. In the images 
segmented by the method, this characteristic maintained such tone. Liu et  al. [77] 
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obtained the best Acc among the researched works: a Acc of 99.6% when applying 
deep learning. Thus, the development of a new database was of significant contribu-
tion. The method was evaluated on 274,413 images, representing the largest data set 
among the researched works.

With reference to the training and validation processes, some methods [38, 49, 65, 
69] used cross-validation to train their model. Still, the most satisfactory results were 
achieved with its application. Noronha et al. [38], Koh et al. [49], Christopher et al. 
[65], Bajwa et al. [69] obtained the respective values for Acc: 92.65%, of 96.05%, 97%, 
and of 87.4%. Lastly, the most significant advantage of cross-validation is that instead 
of utilizing just one test set to validate the model, many other sets are created from 
the same data.
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Conclusion
The glaucoma severity is highly proportional to the optic disc cup’s enlargement, even 
when there is no direct association degree between these two features. The methods 
which used some machine learning techniques suggested that the CDR metric and the 
ISNT are substantial information for glaucoma diagnosis. Moreover, all the works indi-
cated that the advantage of developing an automated method for ocular structure analy-
ses is to decrease the variability within medical expertise agreements.

All the authors highlighted the significance of the development of CAD systems in 
order to diagnose the disease in the initial stages, since it increases the efficiency of the 
screening process. Each evaluated technique in this review diagnoses glaucoma in a 
generic way and does not take into account its variations. Hence, improving the diagno-
sis efficiency and developing computational methods to correctly classify the glaucoma 
variations are some challenges for future researches.

Based on the papers it was possible to distinguish two features: generic architecture 
using features extraction, and generic architecture using deep convolutional network. 
The architectures which applied the feature extraction, normally utilized an important 
step on its process, represented by dimensionality reduction. It is noteworthy to clar-
ify that if such a step was excessive, the classifier could lose its generalization power. 
Thus, it is necessary to analyze the classifier behavior. Another aspect to be highlighted 
is that, among the works that employed such an architecture, there was not a predefined 
number of features to be used. This process depends ever on the developed method 
and on the tests performed throughout the validation process. Furthermore, the ideal 
dimensionality for a determined classifier and its dataset will be estimated by the model. 
Accordingly, these metrics are essential for the evaluation procedure of the models of 
the method.

According to Figs. 4 and 5, it is not possible to verify an increasing standard in the met-
rics values throughout the years. It appears that those values are more correlated with 
the chosen workflow and data than with the work’s originality, as well as the advance of 
new methods. In the previous section, the researchers were described in chronological 
manner. Still, those were weighted according to its originality and to the journal impact 
factor, since it can be considered as the work’s influence over new methods. Once the 
result values provided by the metrics did not allow the perception of a specific quality 
criterion, this aspect in question may be defined according to the database size, the vari-
ability, and to how the metrics were acquired.

The researches that employed a reduced dataset are more prone to obtain unfavorable 
results if applied on unpredicted data. This happens because small databases are more 
likely to accept smaller data variability. Thus, the dataset size portrays a meaningful role 
when it comes to the result confidence. Such a problem can be addressed by the evalua-
tion of the performed methods in small databases.

Currently, deep learning is considered the state-of-the-art regarding computational 
vision and fundus imaging processing. Its differential is such a model is more flexible for 
the decision in how the data will be handled to generate the best result. In this way, such 
a net may acquire methods to maximize the ability of the net to distinguish, in a super-
vised case, the distinct classes in the images applied in the training process. Nonetheless, 
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the disadvantage of deep learning is that an appropriate result is necessary in order to 
achieve an extensive database and high computational power for the processing.

There are several architectures for the CNN. Each of these is different in specific 
aspects such as: number and size of the layers, activation function, and net depth. In 
this way, it is not possible to determine the most efficient architecture for the glaucoma 
classification. Nonetheless, the empirical test demonstrated to be the best manner to 
perform the task. Although the differences between both generic architectures were evi-
denced, the development of researches indicates it is possible to develop an automated 
screening system for the glaucoma diagnosis.
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